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Abstract Human Activity Recognition (HAR) is a pro- 

cess to automatically detect human activities based on 

stream data generated from various sensors, including 

inertial sensors, physiological sensors, location sensors, 

cameras, time, and many others. Unsupervised con- 

trastive learning has been excellent, while the contrastive 

loss mechanism is less studied. In this paper, we pro- 

vide a temperature (τ ) variance study affecting the loss 

of SimCLR model and ultimately full HAR evaluation 

results. We focus on understanding the implications of 

unsupervised contrastive loss in context of HAR data. 

In this work, also regulation of the temperature(τ ) co- 

efficient is incorporated for improving the HAR feature 

qualities and overall performance for downstream tasks 

in healthcare setting. Performance boost of 1.3% is ob- 

served in experimentation. 
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1 Introduction 

 
The purpose of human activity recognition (HAR), which 

consists of observations and analysis of human behaviour 

and its environment, is to determine the current be- 

haviour and goals of the human body. HAR research has 

gained attention by its advantages in smart surveillance 

 

systems, healthcare systems, connections between vir- 

tual reality, smart homes, aberrant behaviour detection 

and other areas and its capacity to support and con- 

nect with unique disciplines. One of the most widely- 

discussed research areas is HAR[1] among academics 

from both academia and industry whose aim is the 

progress of all-round computing and human computer 

interaction. The advances in deep learning have made 

the field a key component of the most smart systems. 

In the majority of computer vision tasks such as image 

classification, object detection, image separation and 

activity recognition, and natural languages processing 

(NLP). Due to the intensive work required by manually 

notifying millions of data samples, supervised strategy 

to learn features from labelled data has nearly been sat- 

urated. Though a plethora of information is available, 

researchers have been urged to find alternative ways of 

making use of it by lack of annotations. 
Unsupervised learning makes it possible for us to learn 

feature representations without the supervision of hu- 

man beings.Contrastive learning has reached a state 

of the arts in a variety of tasks, which was recently 

proposed as an unsupervised study[2–7]. The main dif- 

ference from other techniques is that the data trans- 

formation and contrastive loss strategy used. In short, 

most contrastive learning methods construct first a se- 

ries of augmentated data to build positive and nega- 

tive pairs on an instance level. Similiarity between pos- 
   itive pairs could then be maximised by different con- 
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trast losses, such as Triplet[8], NCE[9] and NT-Xent[3], 

while negative pairs could be minimised. Uniformity 

helps contrastive learning to learn distinguishable char- 

acteristics, but over-pursuit of uniformity makes the 

contrastive loss unable to tolerate closely correlated 

samples which break down the underlying structure 

and damage downstream feature attributes[10, 11]. Re- 
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cently, SimCLR was incorporated for healthcare and 

HAR in particular for the first time[12]. Motivated from 

the work done by Tang et al., in this paper, we lay out 

a module that would deemed to be beneficial for HAR 

systems and other healthcare-related applications. Main 

contribution of this work is summarized below: 

– We provide a study for understanding the behaviour 

of contrastive learning (emphasising on temperature 

coefficient, τ ) in sensor data context for human ac- 

tivity recognition. 

– We optimise the SimCLR module by regulating the 

temperature coefficient in order to enhance the qual- 

ity of features for downstream tasks. 

CLR[3] reduce the gap between unsupervised and su- 

pervised pre-training representations in linear classifi- 

cation performance. 

 

 
3 Contrastive Learning 

 
The purpose of contrastive methodology is to compre- 

hend a function that maps the input data features to 

the features on a hypersphere dimension. Wang et al. 

depicted that the contrastive loss for a given unlabelled 

training sample set X = {x1, . . . , xN } is given as fol- 

lows[11]: 

– Improved performance for overall model[12]. 
L (xi) = − log 

 

  
 

k /=i 

exp (si,i/τ ) 

exp (si,k/τ ) + exp (si,i/τ ) 

  

(1) 

2 Related Work 

 
Many studies have examined the identification of hu- 

man activities from diverse points of view. These in- 

clude: by specialised approach [13]; by algorithm type 

[14], by sensor type[1, 15, 16]; by fuse type [17] or by 

device type [18], although other analyses have been 

carried out more generally by the HAR categories[19, 

20]. HAR accomplished five primary tasks, namely the 

recognition of the fundamental activities[21], the recog- 

nition of everyday activities[22], uncommon events[23], 

biometric subjects[24], and energy expenditure predic- 

tions[25]. Different sensors such as video cameras, ambi- 

ent temperature sensors, relative humidity, light, pres- 

sure and wearable sensors are used. The major forms of 

wearable sensors are generally integrated smartphone 

sensors or sensors incorporated into wearable devices. 

Dong and Biawas [26] introduced a wearable sensor net- 

work designed to monitor human activity. In a simi- 

lar study, Curone et al. have used wearable triaxial ac- 

celerometers to monitor activity[27]. 
Progress in deep learning has made the field a central 

part of the smart systems. The ability to learn rich pat- 

terns from today’s vast amount of data makes the use of 

deep neural networks (DNNs) an important approach 

in HAR. The amount of annotated training data avail- 

able is very reliant on traditional supervised learning 

approaches. Self-supervised learning methods have re- 

cently integrated both generative[28] and contrastive[3] 

approaches that have been able to use unlabelled data 

to understand the underlying representations. In recent 

studies[29, 7, 30–34] on unsupervised feature representa- 

tion for images, concept known as contrastive learning 

was incorporated[5]. Contrastive learning (CL) is a dis- 

criminatory approach that aims to group similar sam- 

ples closer and far away. The results after application of 

contrastive learning are astounding: for example, Sim- 

 
Where si,j = f (xi)T g (xj) · f (·) is an extractor that 

maps pixel space corresponding images onto space in 

a hypersphere. g(·) could serve the same purpose as of 

f [3]. τ is a temperature hyper-parameter that helps in 

distinguishing positive and negative samples. The con- 

trastive loss attempts to attract positive key samples 

and separate the negative key samples. This goal can 

also be achieved with a simpler contrastive loss function 

as shown below[11]: 
 

Lsimple (xi) = −si,i + λ     si,j (2) 
i/=j 

The goal of contrastive learning is to learn augmented 

data alignment and discriminatory embedding. The con- 

trastive loss does not restrict negative sample distri- 

bution. The temperature contributes to the control of 

penalty strength on hard negative samples. Specifically, 

small contrastive losses tend to penalise much more the 

most severe negative samples in the form of a more sep- 

arate local structure in a sample and a more uniform 

embedding distribution[11]. 

 

 
4 Methodology 

 
SimCLR[3] architecture consists of these primary mod- 

ules. 

– A data incrementation module that randomly trans- 

forms a given example of data leading to two corre- 

lated views on the same example. 

– A network base neural encoder that extracts vectors 

from enhanced data examples. 

– A neural network projection head maps the space 

where the contrast loss is applied. 

– A loss function set to a contrastive prediction task. 
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Table 1 Comparison with baseline models 

Model Supervised(only) Self-Supervised SimCLR(optimised) 

Weighted F1  0.922 0.923 0.955 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 

 
 
 

 

Loss Variation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 

 
 
 

 
 

T-SNE[35] Plot 
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Table 2 Quantitative comparison on the MotionSense Vali- 
dation Dataset. 

 

Temperature(τ ) F1 Macro F1 Micro F1 Weighted 

0.07 0.858 0.870 0.874 

0.1 0.900 0.921 0.922 

0.2 0.935 0.954 0.955 
0.3 0.931 0.951 0.951 
0.7 0.894 0.914 0.916 

1 0.879 0.905 0.907 

 

 

 

5 Results & Discussion 

 
5.1 Dataset 

 
MotionSense[36] was used in our assessment as a pub- 

licly available dataset. This dataset comprises data from 

24 individuals who carried an iPhone 6s in the front 

pocket of their pants and perform 6 different activi- 

ties: walking downstairs, upstairs, walking, jogging, sit- 

ting and standing. In this study 6630 windows, each 

400 timestamping and 50 percent overlap, were used 

for data from a 50% tri-axial accelerometer. 

 
 

5.2 Experimental Setup 

 
Linear and fine tune evaluation was administered on 

NVIDIA TESLA V100 SXM2. During pre-entraining 

for 200 epochs and batch size 512 the SGD optimizer 

with a cosine decay of learning rate is used. TPN[37] 

is incorporated as a base encoder for the HAR systems 

to suit the needs of a comparatively lightweight neural 

network architecture. The projection head was utilised 

as a three-layer, fully connected MLP with a loss func- 

tion of NT-Xent. The base decoder is composed of three 

temporal (1D) layers, each with 24, 16, 8 and 32, 64 

and 96 kernel sizes. During preparation the projection 

head is composed of 3 fully connected layers with 256, 

128 and 50 units, and the grading head is composed of 

two fully connected layers of 1024 and 6 units in the 

fine-tunated evaluation. A 0.1 drop-off rate is used to 

activate the ReLU function. At the end there is an ad- 

ditional global maximum pooling layer. The model is 

trained at the SGD optimizer for linear assessment for 

50 epochs and a learning rate of 0,03. The model is per- 

fectly tuned with Adam optimizer and a study rate of 
0.001 for 50 epochs for a finely tuned assessment. 

 

 
5.3 Quantitative Results 

 
In this section we conduct extensive experimentation on 

the temperature coefficient, in order to understand the 

modeling relationship of the proposed network using 

activity prediction precision as the assessment metric. 

The effect of the temperature is assessed. In the first 

place, we try to determine whether the temperature 

precisely checks the severity of the penalties in severe 

negative samples. Numerical results are tabulated in 

Table 2. 

– When the temperature is 0.2 or 0.3, the model achieve 

the best results. Small or large temperature model 

achieve inadequate performance. 

– The current model shows a 1.3% increase in perfor- 

mance than the previous[12]. 

 
 

5.4 Qualitative Results 

 
If the loss value is extremely minimal, the contrastive 

loss function will inflict substantial penalties on clos- 

est neighbours. Semantically similar instances of data 

will very likely be distributed with the anchor point. 

Considering the depictions in T-SNE plots in Figure 2, 

we follow that embedding with τ = 0.07 is distributed 

better and evenly, although the embedding with τ = 

1 is more reasonable and locally clustered and globally 

separated. 

– With the τ decreasing, there is a larger gap from 

positive samples to other misleading negatives, i.e. 

more distinguishable positive and negative samples. 

– Indeed, as shown in Figure 2, small temperatures 

tend to increase the impact of the hard negative 

samples. 

– Results demonstrate that the positive samples are 

more aligned with the increased temperature and 

that the model tends to develop more invariant fea- 

tures with regard to the different transformations ap- 

plied to sensor data. 

 
 

6 Comparative Study with Baseline Models 

 
In this section, we compare our best model with the 

most advanced methods. A linear and finally defined 

evaluation was conducted using the MotionSense dataset 

to evaluate the impact of using different temperature(τ ) 

variances for SimCLR pre-training. Results are shown 

in Table 1. F1 scores are taken directly from work al- 

ready carried out by Tang et al. for supervised and self- 

supervised models. 

 

 
7 Conclusion 

 
In this work, we have studied one of the most impor- 

tant tasks in digital health applications i.e., HAR and 
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the SimCLR contrastive learning framework from visual 

representation learning. We have examined the effect of 

temperature(τ ) changes on contrastive loss in connec- 

tion with sensor data to improve the feature quality and 

performance for downstream tasks. 

 
 

References 
 

1. Salwa Slim, Ayman Atia, M Elfattah, and Mostafa- 

Sami M Mostafa. Survey on human activity recognition 
based on acceleration data. Intl. J. Adv. Comput. Sci. 
Appl, 10:84–98, 2019. 

2. Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, 
Piotr Bojanowski, and Armand Joulin. Unsupervised 
learning of visual features by contrasting cluster assign- 

ments. arXiv preprint arXiv:2006.09882, 2020. 

3. Ting Chen, Simon Kornblith, Mohammad Norouzi, and 

Geoffrey Hinton. A simple framework for contrastive 
learning of visual representations, 2020. 

4. Jean-Bastien   Grill,   Florian   Strub,   Florent   Altché, 
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