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Abstract

Here we are concerning with two problems of a coupled system of random and
stochastic nonlinear differential equations with two coupled systems of nonlinear non-
local random and stochastic integral conditions. The existence of solutions will be
studied. The sufficient condition for the uniqueness of the solution will be given.
The continuous dependence of the unique solution on the nonlocal conditions will be
proved.
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1 Introduction

The coupled systems of differential equations with nonlocal conditions have studied by
some authors ( see for example [4]-[6] and references therein).

Let (2, F, P) be a fixed probability space, where € is a sample space, f is a o—algebra
and P is a probability measure.

Let Z(t;w) = Z(t), t € [0,T], w € Q be asecond order stochastic process, i.e., E(Z2(t)) <
oo, t € [0,T].

Let C = C([0,T], L2(R2)) be the space of all second order stochastic processes which is
mean square (m.s) continuous on [0,7]. The norm of Z € C([0,T], L2(Q)) is given by

1Zlc = S 1Z(®)]]2, 1Z2@) 2 = VE(Z()).
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Let T > 1. In this paper we study the existence of solutions (x,y) € C([0,T7], L2(€2)) of
the problem of the coupled system of random and stochastic differential equations

dx(t)

7 - fl(tay(¢1(t)))7 tE(O,T], (1)

dy(t) = fat,2(92(1)))dW(s),  t€(0,T] (2)

subject to each one of the two nonlinear nonlocal stochastic integral conditions

£(0) + / (s, y(s)AW(s) = 20, y(0) + / " ha(s, 2(s))ds = o 3)

and
£(0) + / hn(s,2(s)AW(s) = 70, y(0) + / ha(s, y(s))ds = vo (4)

where z9 and 1y, are two second order random variables.
Let X = C([0,T7], L2(€2)) xC(]0,T], L2(£2)) be the class of all ordered pairs (z,y), =,y € C

with the norm

Iz, y)llx = max{ |[z]lc,llyllc} = max{ sup [[x(t)l[2, sup [ly(¢)2}- ()
t€[0,7 t€[0,T]

Let ¢; : [0,7] — [0,7] be continuous functions such that ¢;(¢) <t and consider the
following assumptions

(A1) fi @ [0,7] x La(R2) — La(R2), i = 1,2 are measurable in ¢t € [0,7] for all
x € Ly(2) and continuous in x € Ly(Q2) for all ¢ € [0,T]. There exist two bounded
measurable functions m; : [0,7] — R and two positive constants b; such that

1fi(t, )2 < [ma(®)] + billx(®)ll2, 7= 1,2. (6)

(A2) h; : [0,T] x Ly(Q2) — Lo(2), ¢ = 1,2 are measurable in ¢ € [0,7] for all
x € Ly(Q) and continuous in z € Ly(Q2) for all ¢t € [0,T]. There exist two bounded
measurable functions k; : [0,7] — R and two positive constants ¢; such that

[hi(t )ll2 < [Ri(O)] + cillz(®)ll2, 7= 1,2. (7)

(A3) M = max{supycgor [ (1) 0Dy [ma(8)]}, b = ma{br, b}
(AD) K = max{supicio b (0] 50picgom oD}, © = max{er o).
(A5) (b+¢o)T < 1.

Now, integrating the two random and stochastic differential equations (1)-(2) (see [2], [3],
[7]-[11]) and using the nonlocal conditions (3)and (4) the following Lemma can be proved.
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Lemma 1. The integral representations of the solutions of the nonlocal problems (1)-(2)
with conditions (3) and (1) - (2) with conditions (4) are given by

o) = a0 [ Cs.y(e)aw /ﬁsy% ))ds (8)

y®=:mjKM@ﬂW%+éﬁ@M@@WW@- ©
and

xw::m—lhmw@MW@+AUmwm@mm (10)

yw::%j[maww@+[ﬁ@ﬂwmwww. (11)
respectively.

2 Solutions of the problem (1)-(3)

Define the mapping F(x,y) = (Fiy, Fyz) where Fyy, Foz are given by the following
stochastic integral equations

Fa(t) = zo— | h(s IW@+/ﬁ@M%@Wm (12)

FQZL'(t) =

c\c\

" has, (s %+/ﬁsw@UWWU (13)
Consider the set () such that

Q={z,y € Lo(Q), (x,y) € X : |[(z,y)l|x = max{[[z()]]z, [[y()]|2} <7}

Now, we have the following two lemmas
Lemma 2. F:0Q — Q.
Proof. Lety € @, |y(t)||2 <, then

[Fy®)]2 < ||$o||2+II/Thl(S,y(S))dW(S)IbJrII/ fi(s,y(01(s)))ds]|

Hmh+¢/lwsy |ww+/nﬁsy¢<mmw

nmm++¢Almwn+mwwmvw+Aummﬁuwmmwmw

< lzoll2 + (K + crl)ﬁ+ (M +br)T < ||zo|l2 + (K 4+ cr)T + (M +br)T =1,

IN

IN
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where

0.
I —GroT

Let z € @Q,  [|z(t)]]2 < 72, then

[F2z(@)l2 < lyoll2 + | /Onh2(37$(8))d8||2+||/0 fa(s, 2(pa(s)))dW (s)]|2

_|mmﬁ[mww@mw+¢éwww%@mws

n t
mm+/umw+mmwmw+¢/wmm+wwﬁ@

0 0
< lyolla + (K 4 ero)T + (M + bro)T < ||lyoll2 + (K 4+ cro)T + (M + bry)T =1y

N

IN

where
lle+ KT+ MT
1—(b+¢)T '
Let r = max{ry, 2}, (z,y) € Q, then
[1F(z,9)llx = [[(Fiy, Faz)llx

= max{[|Fy(t)lle, [Fax(t)llo} <7

This proves that F': Q — @ and the class of functions {F(x,y)(t)}, ¢ € [0,T] is uniformly

bounded on Q.
Lemma 3. The class of function {F(z,y)(t)}, t € [0,7] is equicontinuous.
Proof. Let z,y € Q, ti,ty € [0,T] such that |ty — 1] <4, then

IFy(t) — Fiy(t)le = HAlfd&M¢ﬂ$D%—:AQﬁwﬁmm@DMﬂh

S{Zﬁﬁ@%%@mm
< (M +blylle)(ts —t1)

and

[ Foz(th) — Fax(ta)]l2 = H/ fa(s, 2(¢a(s)))dW (s / fa(s, 2(d2(s)))dW (s)]|2

¢/lmSw@ ) s

(M +bllzllc) v/ (t2 — t). (14)

IN

IN
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But

F(x(ts),y(t2)) — Fz(tr), y(t1)) (Fry(tz), Fax(tz)) — (Fiy(ty), Fax(t))

(Fry(tz) — Fiy(t)), (Fax(te) — Faz(t))),

then from (14) and (14), we can deduce the equicontinuity of the class {F(z,y)(t)}, t €
[0,7] on Q.

2.1 Existence Theorem

Now, we have the following existence theorem

Theorem 1. Let the assumptions (A1) - (A5) be satisfied, then there exists at least one
solution (x,y) € X of the problem (1)-(3).

Proof. Let (z,,y,) € @ be such that (z,,y,) = (z,v) w.p.1.

Using lemmas 1-3, then applying stochastic Lebesgue dominated convergence Theorem [1],
we can obtain

Limp oo F(n,yn) = (LidMpooF1Yn, Limy oo Foxy,)

= imatro— [ bl DAVE) + [ hlsanon(s))ds}
Lo = [ hatsaa(6is + [ ls.aa(als)) W)

~ (- /0 "y (5, Lot ot (5))dAW () + /O (5. Lt (0 (5)))d5.
vo — /0 a5, Lo o (5))ds + /0 (5, L s (a(3) IV (5))

= o= [ haGss )W) + [ flsalnl)is

n t
= [ halsalo)ds [ fulsaloa(s)aw (s)
0 0
= (Fy, Fhr) = F(z,y).
This proves that the operator F : () — () is continuous.
Then by Arzela-Ascoli Theorem [1], the closure of F@) is a compact subset of X, then

applying Schauder Fixed Point Theorem [1], there exists at least one solution (z,y) € X
of the problem (1)-(3) such that z,y € C([0,T], L2(2)).

2.2 Uniqueness Theorem

Replace the assumptions (A1) and (A2) by (A*1) and (A*2) respectively such that
(A*1) The functions f; : [0,T] x Lao(Q2) — Ly(2), i = 1,2 are measurable in t € [0, 7]

5
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for all x € Ly(£2) and satisfy Lipschitz condition with respect to the second argument

1£i(t, w) = fult, v)ll2 < bllu = ]|,

(A*2) The functions h; : [0,T] x La(2) — L2(2), ¢ = 1,2 are measurable in ¢t € [0, 7]
for all z € Ly(€2) and satisfy Lipschitz condition with respect to the second argument

[[a(t; w) = it 0) |2 < efu = vll2.
Remark. Let the assumptions (A*1) and (A*2) be satisfied, then we can get
1fi(E w)ll2 = it 0) 2 < [[fult, w) = fult, 0)]]2 < bjullz,

1fi(t, w)ll2 < W[ falt; 0|2 + bllulls < M + blull,

and
[hi(t w)lla < 1Rt 0) ]2 + cllulls < K + cflulls.

Theorem 2. Let the assumptions (A*1) — (A*2) and (A3) — (A5) be satisfied, then the
solution of problem (1)- (3) is unique.
Proof. Let (z1,y;) and (z9,y2) be two solutions of the problem (1)-(3), then

(e(t),y(t) = (0 — / (s, 9())dW (s) + / fu(s, y(61 () ds,
" - /O"h2<s,x<s>>ds+ / (s, x(a())AW () (15)

laa(t) — )2 < | / (5, 32(5)) — (s, (VAW (3)]]2 + | / (Fr(s.m) — fi(5,3)dslo

< \// Allya — y1l|2ds + Thllyr — valle < TVellyr — yalle + Thllyr — v2llc
0
< T+ )y — vl
< T(b+¢)max{|zs — zalle, yr — vellc}
and
n t
la(®) = ga(D)lls < / o, 2(s)) — ha(s, 21(5)) lods + / B2 (s)) — a(s))) 12ds
0 0
< VTb||zy — zol|c + cT)jzy — 21]l0
S T(b+C)||ZL'1—CL’2||C7
< T(b+¢)max{|zs — zalle, 11 — vallc}


https://doi.org/10.20944/preprints202107.0103.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 July 2021 d0i:10.20944/preprints202107.0103.v1

Hence

[(z1,91) = (22, 02llx = [[(21 — 22), (y1,92) [ x

= max{||(z1 — z2)le, (Y1, v2)llc}

T(b+ c) max{||lz1 — z2llc, [ly2 — willc}
T+ o)l[(z1,y1) — (w2, y2) | x-

IA A

This implies that
A =TO+ )z, 1) = (z2,92)[x <0
and
(@1, 91) — (22, 82) [l x =0,
then (z1,y1) = (22,y2) and the solution of the problem (1)-(3) is unique.

2.3 Continuous Dependence

Theorem 3. Let the assumptions of Theorem 2 be satisfied. Then the solution (15) of
the problem (1) - (3) depends continuously on the two random data (zo, yo).
Proof. Let (&,¢) be the solution of the coupled system

B(t) = o / s, 9()) AW (5) + / Fi(s, 3(61(s)))ds
0t) = g0 / " ha(s, i(s))ds + / fo(5,2(62(5)))dW (s),

such that ||(zo,v0) — (%0, %0)||x < 01, then

|z =2 < |20 —Zolle +T(b+c)lly —9llc
< G +TO+)ly—1le
< 0 +T(b+c)max{[|x — 2|c, ly — 9lc}
ly —dllc < llyo —volle +T(b+ )|z — Zc,
< H+TOh+o)z—12c
< 0 +T(b+c)max{|z — 2c, ly — 9llc}-
Then
(2, y) — (2,9)]Ix [(x =2,y —9)llx
max{ ||z — 2| c, |y — 9lc}
< 0 +T(b+ c)max{||z — 2|c, ly — 9llc}
< G +TO+ )z y) — (2,9)]x.
This implies that
. 01
_ < v _
Iz, y) = (2. 9)lx < 5 “Thto  ©

7
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which completes the proof.

Theorem 4. The solution (15) of the problem (1)-(3) depends continuously on the two
random functions h; and hs.

Proof. Let (#,9) be the solutions of the coupled system

#(t) = 20— AThi<s,@<s>>dW<s>+ / fi(s. 561 ()))ds

i) = o /O”h;<s,a:~<s>>ds+ / Fols, #(al))) AW (5)

such that ||k} (s,.) — h(s,.)|l2 < d2, @ =1,2, then

le(t) = &)l = | /Tw;(s,@(s»—h1<s,y<s>>1dw<s>+ | s ton () = Al iten ()Nl

IN

\/ [ W5 9060) = oD + [ 150061 (1) = o505 s

IA

\// 77 (s,9(s)) = hils, y(s))ll2 + 77 (s,y(s)) = ha(s, y(s))ll2]*ds

b [ WAL = il 306 ()l

t
< \/ [ el =t s + [ blate) —io)lads
< (VT +T)|ly —illc + VT
< T(b+ o max{llo — dle. Jy -~ il + 6T

Similarly we can get

ly(®) — 9@l = II/ [h3(s, (s hz(S,w(s))]dH/o[ﬁ(sw(@(s)))—fz(s,i"(sbz(s)))]dW(s)llz
< (eI +bVT)||x — &| ¢ + 6T
< T+ o)z —2|c+ 6T
< T+ c)max{|z — &llc, [ly — gllc} + 6T
< T+ c)max{|z — Zllc, ly — 9llc} + T
Now

[(z,y) = (2,9)x = max{[jz—2|c,[ly —9llc
< T+ co)max{([lz — 2lc, ly — 9llc} + 62T
< T(C+ b)“(£7y) - (i.7g)HX + 62T
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This implies that
0T

H(‘Tay) - (iag)”X S m =€

which completes the proof.

3 Solutions of the problem (1)-(2) and (4)

Define the mapping L(x,y) = (Lix, Loy) where Lyz, Loy are given by the following
stochastic integral equations

Lyz(t) = :L'O—/OThl(s,x(s))dW(s)+/0 fi(s,y(e1(s)))ds, (16)
Lw@==mjKM@MW®+Ah®ﬂ@®WW®- (17)

Lemma 4. L:Q — Q.
Proof. Let z, y € (), then we obtain

[Laz(®)]l2 < ||:Eg||2+||/OThl(s,x(s))dW(s)||2+||/O fi(5,y(¢1(s)))ds|l2

S|mm+¢lﬁm@amﬁw+lwmwwwmmw
snmm++¢llm@n+mw@mvlUW@M+MW@mmS
< |wolla + KVT + MT + eVT||||c + bT||yllc)
< lzollz + llvollz + (K + M)T + 2rT (b + ¢)
and

Loy (®)] snmm+nAWMammwmwAﬁ@wwmmMW®m
S|mmafmww@mw+¢lwwwm@mws
s|mm+4%mw+@mwmw+¢Aw@@ummmws
< Nwollz + KT + MVT + Tllylle + WT)zllo
< Moolle + (5 + MOT + T + Illylle + T(b+ &) zllo
< Nzollz + llwollz + (I 4+ M)T + 2rT(b + c).
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This implies that

LGz, y)llx = [(Laz, Lay)llx
= max{|[Liz(t)|c, | L2y ()]}
< lollz + [lgoll2 + (K + M)T + 2rT(b +¢) = 7

where
_ Nlzoll2 + llyoll2 + +(K + M)T

1-T(b+c) ’
then the class {L(x,y)} is uniformly bounded and L(z,y) : Q — Q.

Lemma 5. The class of function {L(z,y)(t)} ,¢t € [0,T] is equicontinuous.
Proof. Letz, y € Q, t1,t3 €[0,7] such that [|to — 1| <6, then

|La(ts) — Lyt = | / " Fuls y(n(s)))ds — / (s, y(a()))ds]

< / s, 9(61()))lads
< (M +blylle)(ta — 1) (18)

and

|Lox(ts) — Loz(t)lls = | / fols, 2(ba(s)))dW (s / fols, 2(a(5))) AW (5) |2

\/ [ s ot

(M +bllzllo) v/ (t2 = t)- (19)

IN

IN

But

L(x(ta),y(t2)) — L(x(t1),y(t1)) = (Liz(t2), Lay(t2)) — (Laz(t), Lay(t1))
= ((L1x(t2) — Liz(t)), (Lay(t2) — Lay(t1))),

then from (18) and (19), we deduce the equicontinuity of the class {L(x,y)(t)} on Q.

3.1 Existence Theorem

Now, we have the following existence theorem

Theorem 5. Let the assumptions (A1) - (A5) be satisfied, then there exists at least one
solution (x,y) € X of the problem (1)-(2) and (4).

Proof. Let {(z,,y,)} € @ be such that (z,,y,) = (z,v) w.p.1.

10
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Using lemmas 1-3, then applying stochastic Lebesgue dominated convergence Theorem [1],
we can obtain

Limy oo L(xp,yn) = (Liampyooln®n, Limy, oo Loyy)

= (amantro— [ Bl AW + [ Ao or(6))ds)
Lo = [ hatona(o)ds + [ alo,ma(on(s)iV ()

= o= [ s Lt DAW )+ [ (oLt scin(61(5)ds,
Yo — /077 ho(s, L.i.mp_00yn(s))ds + /Ot fo(s, Limy, oon(d2(s)))dW (s))

= o= [ )W) + [ flouln(0)ds

yo— / " has,y(s))ds + / fols,2(62(5))) AWV (5))
= (Liz,Loy) = L(z,y).

This proves that the operator L : () — () is continuous.

Then by the Arzela-Ascoli Theorem [1], the closure of L is a compact subset of X, then
applying Schauder Fixed Point Theorem [1], there exists at least one solution (x,y) € X
of the problem (1)-(2) and (4) such that x,y € C([0,T], Lo()).

3.2 Uniqueness Theorem

Theorem 6. Let the assumptions (A*1) — (A*2) and (A3) — (A5) be satisfied then the
solution of problem (1)- (2) and (4) is unique.

Proof. Let (z1,y1) and (x2,y2) be two solutions of the problem (1)-(2) and(4) on the
form

(1), y(t) = (r0 — /OTm(s,x(s»dW(sH / £1(5,9(n(5))ds,
o - /0"h2<3,y<3>>ds+ / fols.2(da()AW ()., (20)

then we can get

l1(8) = 22(D)le < VT |y = 2allo + 0Ty = yalle < eTlley — 22lle + 0T |y — gl

<
< (b+)T|xy — z2llc + (b+ )T ||lyr — v=2lle
< (b+ 0T max{|zr — walle, [y —wallc} (21)

Similarly, we can obtain

[92(8) = p2(D)ll2 < (b+ )T maz{|[zy — zalle, [y — galle}- (22)

11
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Hence from (21) and (22)

Iz, 1) — (zo,2)||lx = [[(x1 — 22), (y1 — o)l x
< max{|lz1 — x2|le, 11 — vellc}
< (b4 )T maz{||xy — z2|lc, |lyr — v2llc}-

This implies that
(L= (+)T)[(z1,91) — (22, 92)||x < 0.
Then
[(z1,91) = (22,92) [ x = 0

and (z1,y1) = (29,y2) which proves that the solution of the problem (1)-(2) and (4) is
unique.

3.3 Continuous Dependence

Theorem 7. The solution (15) of the problem (1) - (2) and (4) depends continuously on
the two random data (zo, yo)-
Proof. Let (#,9) be the solution of the coupled system

B(t) = o / o, (s) AW (s) + / F1(5, 3(1(s)))ds
0t) = g0 / " ha(s, 9(s))ds + / fo(5,2(62(5)))dW (s),

such that ||(zo,v0) — (Z0,%0)||x < d3. Then we have
x(t) —z(t) = xg— 29— /OT[hl(s,fc(s)) — hi(s,z(s))]dW (s)
[ T ulon(s) = Al ion ()

and

() = 2(t)]]2 lzo = Zollc + VT |z — &llc + Ty — gl
[z0 = Zolle + Tllx = &flc + 0Ty — yllo
[0 = Zoll2 + cT'max{|lx — Zc, ly —9llc} +bTmax{llx —Zlc, ly—9llc}

maz{|[zo = Zoll2, Yo = Yollo} + (0 + ) Tmaz{[lx = llo, ly = dllo}-

VAN VAN VARVAN

By the same way we can get

ly(@) — 4()ll2 < mazfllzo = Zoll2, [[yo = doll2} + (b + ) Tmaz{|z — Zlle, [ly —dllc}

12
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and

Iz, y) = (&, 9)lx = max{|[(z —Zlc, [I(y - dllc}
maz{||zo — Zoll2, llyo = Yoll2} + (b+ ) Tmaz{||z — Zllc, lly —vlc}

<
< s+ (b4 ) Tmazfl|lz — Zlle, lly —dlle}

which give our result
03

[(z,y) — (2,9)llx < m

=€

and completes the proof.

Theorem 8. The solution (15) of the problem (1)-(2) and (4) depends continuously on
the two random functions h; and hs.

Proof. Let (,9) be the solutions of the coupled system of stochastic integral equations
(1)-(2) and (4) such that

f@-—m—AEW@@MW@+Aﬁ@m@@Ww
gw=:m1[@@mmw+lﬁ@ﬂ@@WW@.

Let ||h3(t, u(t)) — h(t,u(t)|ls < 84, i =1,2 then

Hma—fum2=:u/ hi(s, & hmsa>mm«a+%}ﬁwwWﬂ@»—ﬁ@@wﬂ@mwm
< ¢/rm* ; stﬂ)W%&+AHh@w@ﬂﬁﬁ—ﬁ@@wﬂﬁmwk
< ¢/nm* #(5)) — (s, 2(3) 12 + 13 5, 2(5)) — Ba(s, 2(s)) ]2

+ /0 ||f1(87y(¢1(8))) — fl(sﬁg(¢1(3)))||2ds

¢A%ﬂﬂ$—ﬂ$h+&ﬂk+lbm&%%MMﬂs

VT |z — &lle + 6Ty — §llc + 6VT)

Tz — z||c + 0T ||y — 9llc + 94T

T maz{|lx = &llc. |y —dllc} + 0T maz{|z - @llc, lly—dlc} + 6T
(b+ 0T max{||lz — |, lly —dllc} + 6T

VAN VAN VAR VAN

Similarly we can get

ly = dlle < (b+ )T maz{llx —2lc, [ly =gl + 0T
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and

1(z,y) = (£, 9)lx = max{[lz = 2llc, ly —dllc} < 0+ )T max{|lz —Zlle, ly—dlc}t+0aT.

This implies that
. 04T
J— < _— =
Iz, y) = (@, 9)llx < 5 “Toro

which is completes the proof.

4 Conclusions

Here, we proved the existence of solutions of a coupled system of random and stochastic
nonlinear differential equations with coupled nonlocal random and stochastic nonlinear
integral conditions. The sufficient condition for the uniqueness of the solution have been
given. The continuous dependence of the unique solution have been studied.
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