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Abstract

Here we are concerning with two problems of a coupled system of random and
stochastic nonlinear differential equations with two coupled systems of nonlinear non-
local random and stochastic integral conditions. The existence of solutions will be
studied. The sufficient condition for the uniqueness of the solution will be given.
The continuous dependence of the unique solution on the nonlocal conditions will be
proved.

2010 MSC.34A12, 34A30, 34D20, 34F05, 60H10.
Key words. Stochastic processes, stochastic differential equation, coupled system, nonlo-
cal stochastic integral conditions.

1 Introduction

The coupled systems of differential equations with nonlocal conditions have studied by
some authors ( see for example [4]-[6] and references therein).
Let (Ω,z, P ) be a fixed probability space, where Ω is a sample space, z is a σ−algebra
and P is a probability measure.
Let Z(t;ω) = Z(t), t ∈ [0, T ], ω ∈ Ω be a second order stochastic process, i.e., E(Z2(t)) <
∞, t ∈ [0, T ].
Let C = C([0, T ], L2(Ω)) be the space of all second order stochastic processes which is
mean square (m.s) continuous on [0, T ]. The norm of Z ∈ C([0, T ], L2(Ω)) is given by

‖Z‖C = sup
t∈[0,T ]

‖Z(t)‖2, ‖Z(t) ‖2 =
√
E(Z2(t)).
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Let T ≥ 1. In this paper we study the existence of solutions (x, y) ∈ C([0, T ], L2(Ω)) of
the problem of the coupled system of random and stochastic differential equations

dx(t)

dt
= f1(t, y(φ1(t))), t ∈ (0, T ], (1)

dy(t) = f2(t, x(φ2(t)))dW (s), t ∈ (0, T ] (2)

subject to each one of the two nonlinear nonlocal stochastic integral conditions

x(0) +

∫ τ

0

h1(s, y(s))dW (s) = x0, y(0) +

∫ η

0

h2(s, x(s))ds = y0 (3)

and

x(0) +

∫ τ

0

h1(s, x(s))dW (s) = x0, y(0) +

∫ η

0

h2(s, y(s))ds = y0 (4)

where x0 and y0 are two second order random variables.
Let X = C([0, T ], L2(Ω))×C([0, T ], L2(Ω)) be the class of all ordered pairs (x, y), x, y ∈ C
with the norm

‖(x, y)‖X = max{ ‖x‖C , ‖y‖C} = max{ sup
t∈[0,T ]

‖x(t)‖2, sup
t∈[0,T ]

‖y(t)‖2}. (5)

Let φi : [0, T ] → [0, T ] be continuous functions such that φi(t) ≤ t and consider the
following assumptions

(A1) fi : [0, T ] × L2(Ω) → L2(Ω), i = 1, 2 are measurable in t ∈ [0, T ] for all
x ∈ L2(Ω) and continuous in x ∈ L2(Ω) for all t ∈ [0, T ]. There exist two bounded
measurable functions mi : [0, T ]→ R and two positive constants bi such that

‖fi(t, x)‖2 ≤ |mi(t)|+ bi‖x(t)‖2, i = 1, 2. (6)

(A2) hi : [0, T ] × L2(Ω) → L2(Ω), i = 1, 2 are measurable in t ∈ [0, T ] for all
x ∈ L2(Ω) and continuous in x ∈ L2(Ω) for all t ∈ [0, T ]. There exist two bounded
measurable functions ki : [0, T ]→ R and two positive constants ci such that

‖hi(t, x)‖2 ≤ |ki(t)|+ ci‖x(t)‖2, i = 1, 2. (7)

(A3) M = max{supt∈[0,T ] |m1(t)|, supt∈[0,T ] |m2(t)|}, b = max{b1, b2}.

(A4) K = max{supt∈[0,T ] |k1(t)|, supt∈[0,T ] |k2(t)|}, c = max{c1, c2}.

(A5) (b+ c)T < 1.

Now, integrating the two random and stochastic differential equations (1)-(2) (see [2], [3],
[7]-[11]) and using the nonlocal conditions (3)and (4) the following Lemma can be proved.
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Lemma 1. The integral representations of the solutions of the nonlocal problems (1)-(2)
with conditions (3) and (1) - (2) with conditions (4) are given by

x(t) = x0 −
∫ τ

0

h1(s, y(s))dW (s) +

∫ t

0

f1(s, y(φ1(s)))ds, (8)

y(t) = y0 −
∫ η

0

h2(s, x(s))ds+

∫ t

0

f2(s, x(φ2(s)))dW (s). (9)

and

x(t) = x0 −
∫ τ

0

h1(s, x(s))dW (s) +

∫ t

0

f1(s, y(φ1(s)))ds, (10)

y(t) = y0 −
∫ η

0

h2(s, y(s))ds+

∫ t

0

f2(s, x(φ2(s)))dW (s). (11)

respectively.

2 Solutions of the problem (1)-(3)

Define the mapping F (x, y) = (F1y, F2x) where F1y, F2x are given by the following
stochastic integral equations

F1y(t) = x0 −
∫ τ

0

h1(s, y(s))dW (s) +

∫ t

0

f1(s, y(φ1(s)))ds, (12)

F2x(t) = y0 −
∫ η

0

h2(s, x(s))ds+

∫ t

0

f2(s, x(φ2(s)))dW (s). (13)

Consider the set Q such that

Q={x, y ∈ L2(Ω), (x, y) ∈ X : ||(x, y)||X = max{||x(t)||2, ||y(t)||2} ≤ r.}

Now, we have the following two lemmas
Lemma 2. F : Q→ Q.
Proof. Let y ∈ Q, ‖y(t)‖2 ≤ r1, then

‖F1y(t)‖2 ≤ ‖x0‖2 + ‖
∫ τ

0

h1(s, y(s))dW (s)‖2 + ‖
∫ t

0

f1(s, y(φ1(s)))ds‖2

≤ ‖x0‖2 +

√∫ τ

0

‖h1(s, y(s))‖22ds+

∫ t

0

‖f1(s, y(φ1(s)))‖2ds

≤ ‖x0‖2 + +

√∫ τ

0

(|k1(s)|+ c1‖y(s)‖2)2ds+

∫ t

0

(|m1(S)|+ b1‖y(s)‖2)ds

≤ ‖x0‖2 + (K + cr1)
√
T + (M + br1)T < ‖x0‖2 + (K + cr1)T + (M + br1)T = r1
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where

r1 =
‖x0‖2 +KT +MT

1− (b+ c)T
> 0.

Let x ∈ Q, ‖x(t)‖2 ≤ r2, then

‖F2x(t)‖2 ≤ ‖y0‖2 + ‖
∫ η

0

h2(s, x(s))ds‖2 + ‖
∫ t

0

f2(s, x(φ2(s)))dW (s)‖2

≤ ‖y0‖2 +

∫ η

0

‖h2(s, x(s))‖2ds+

√∫ t

0

‖f2(s, x(φ2(s)))‖22ds

≤ ‖y0‖2 +

∫ η

0

(|k2(s)|+ c2‖x(s)‖2)ds+

√∫ t

0

(|m2(t)|+ b2‖x‖2)2ds

≤ ‖y0‖2 + (K + cr2)T + (M + br2)T < ‖y0‖2 + (K + cr2)T + (M + br2)T = r2

where

r2 =
‖y0‖2 +KT +MT

1− (b+ c)T
> 0.

Let r = max{r1, r2}, (x, y) ∈ Q, then

‖F (x, y)‖X = ‖(F1y, F2x)‖X
= max{‖F1y(t)‖C , ‖F2x(t)‖C} < r.

This proves that F : Q→ Q and the class of functions {F (x, y)(t)}, t ∈ [0, T ] is uniformly
bounded on Q.
Lemma 3. The class of function {F (x, y)(t)}, t ∈ [0, T ] is equicontinuous.
Proof. Let x, y ∈ Q, t1, t2 ∈ [0, T ] such that |t2 − t1| < δ, then

‖F1y(t1)− F1y(t2)‖2 = ‖
∫ t1

0

f1(s, y(φ1(s)))ds−
∫ t2

0

f1(s, y(φ1(s)))ds‖2

≤
∫ t2

t1

‖f1(s, y(φ1(s)))‖2

≤ (M + b‖y‖C)(t2 − t1)

and

‖F2x(t1)− F2x(t2)‖2 = ‖
∫ t1

0

f2(s, x(φ2(s)))dW (s)−
∫ t2

0

f2(s, x(φ2(s)))dW (s)‖2

≤

√∫ t2

t1

‖f2(s, x(φ2(s)))‖22ds

≤ (M + b‖x‖C)
√

(t2 − t1). (14)
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But

F (x(t2), y(t2))− F (x(t1), y(t1)) = (F1y(t2), F2x(t2))− (F1y(t1), F2x(t1))

= ((F1y(t2)− F1y(t1)), (F2x(t2)− F2x(t1))),

then from (14) and (14), we can deduce the equicontinuity of the class {F (x, y)(t)}, t ∈
[0, T ] on Q.

2.1 Existence Theorem

Now, we have the following existence theorem
Theorem 1. Let the assumptions (A1) - (A5) be satisfied, then there exists at least one
solution (x, y) ∈ X of the problem (1)-(3).
Proof. Let (xn, yn) ∈ Q be such that (xn, yn)→ (x, y) w.p.1.
Using lemmas 1-3, then applying stochastic Lebesgue dominated convergence Theorem [1],
we can obtain

L.i.mn→∞F (xn, yn) = (L.i.mn→∞F1yn, L.i.mn→∞F2xn)

= (L.i.mn→∞{x0 −
∫ τ

0

h1(s, yn(s))dW (s) +

∫ t

0

f1(s, yn(φ1(s)))ds},

L.i.mn→∞{y0 −
∫ η

0

h2(s, xn(s))ds+

∫ t

0

f2(s, xn(φ2(s)))dW (s)})

= (x0 −
∫ τ

0

h1(s, L.i.mn→∞yn(s))dW (s) +

∫ t

0

f1(s, L.i.mn→∞yn(φ1(s)))ds,

y0 −
∫ η

0

h2(s, L.i.mn→∞xn(s))ds+

∫ t

0

f2(s, L.i.mn→∞xn(φ2(s)))dW (s))

= (x0 −
∫ τ

0

h1(s, y(s))dW (s) +

∫ t

0

f1(s, y(φ1(s)))ds,

y0 −
∫ η

0

h2(s, x(s))ds+

∫ t

0

f2(s, x(φ2(s)))dW (s))

= (F1y, F2x) = F (x, y).

This proves that the operator F : Q→ Q is continuous.
Then by Arzela-Ascoli Theorem [1], the closure of FQ is a compact subset of X, then
applying Schauder Fixed Point Theorem [1], there exists at least one solution (x, y) ∈ X
of the problem (1)-(3) such that x, y ∈ C([0, T ], L2(Ω)).

2.2 Uniqueness Theorem

Replace the assumptions (A1) and (A2) by (A∗1) and (A∗2) respectively such that
(A∗1) The functions fi : [0, T ] × L2(Ω) → L2(Ω), i = 1, 2 are measurable in t ∈ [0, T ]
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for all x ∈ L2(Ω) and satisfy Lipschitz condition with respect to the second argument

‖fi(t, u)− fi(t, v)‖2 ≤ b‖u− v‖2.

(A∗2) The functions hi : [0, T ] × L2(Ω) → L2(Ω), i = 1, 2 are measurable in t ∈ [0, T ]
for all x ∈ L2(Ω) and satisfy Lipschitz condition with respect to the second argument

‖hi(t, u)− hi(t, v)‖2 ≤ c‖u− v‖2.

Remark. Let the assumptions (A∗1) and (A∗2) be satisfied, then we can get

‖fi(t, u)‖2 − ‖fi(t, 0)‖2 ≤ ‖fi(t, u)− fi(t, 0)‖2 ≤ b‖u‖2,

‖fi(t, u)‖2 ≤ ‖fi(t, 0)‖2 + b‖u‖2 ≤M + b‖u‖2
and

‖hi(t, u)‖2 ≤ ‖hi(t, 0)‖2 + c‖u‖2 ≤ K + c‖u‖2.

Theorem 2. Let the assumptions (A∗1)− (A∗2) and (A3)− (A5) be satisfied, then the
solution of problem (1)- (3) is unique.
Proof. Let (x1, y1) and (x2, y2) be two solutions of the problem (1)-(3), then

(x(t), y(t)) = (x0 −
∫ τ

0

h1(s, y(s))dW (s) +

∫ t

0

f1(s, y(φ1(s)))ds,

y0 −
∫ η

0

h2(s, x(s))ds+

∫ t

0

f2(s, x(φ2(s)))dW (s)) (15)

where

‖x1(t)− x2(t)‖2 ≤ ‖
∫ τ

0

[h1(s, y2(s))− h1(s, y1(s))]dW (s)‖2 + ‖
∫ t

0

(f1(s, y1)− f1(s, y2))ds‖2

≤

√∫ τ

0

c2‖y2 − y1‖2Cds+ Tb‖y1 − y2‖C ≤ T
√
c‖y1 − y2‖C + Tb‖y1 − y2‖C

≤ T (b+ c)‖y1 − y2‖C ,
≤ T (b+ c) max{‖x1 − x2‖C , ‖y1 − y2‖C}

and

‖y1(t)− y2(t)‖2 ≤
∫ η

0

‖h2(s, x2(s))− h2(s, x1(s))‖2ds+

√∫ t

0

b2‖x1(s))− x2(s)))‖22ds

≤
√
Tb‖x1 − x2‖C + cT‖x2 − x1‖C

≤ T (b+ c)‖x1 − x2‖C ,
≤ T (b+ c) max{‖x1 − x2‖C , ‖y1 − y2‖C}.
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Hence

‖(x1, y1)− (x2, y2‖X = ‖(x1 − x2), (y1, y2)‖X
= max{‖(x1 − x2)‖C , ‖(y1, y2)‖C}
≤ T (b+ c) max{‖x1 − x2‖C , ‖y2 − y1‖C}
≤ T (b+ c)‖(x1, y1)− (x2, y2)‖X .

This implies that
(1− T (b+ c))‖(x1, y1)− (x2, y2)‖X ≤ 0

and
‖(x1, y1)− (x2, y2)‖X = 0,

then (x1, y1) = (x2, y2) and the solution of the problem (1)-(3) is unique.

2.3 Continuous Dependence

Theorem 3. Let the assumptions of Theorem 2 be satisfied. Then the solution (15) of
the problem (1) - (3) depends continuously on the two random data (x0, y0).
Proof. Let (x̂, ŷ) be the solution of the coupled system

x̂(t) = x̂0 −
∫ τ

0

h1(s, ŷ(s))dW (s) +

∫ t

0

f1(s, ŷ(φ1(s)))ds

ŷ(t) = ŷ0 −
∫ η

0

h2(s, x̂(s))ds+

∫ t

0

f2(s, x̂(φ2(s)))dW (s),

such that ‖(x0, y0)− (x̂0, ŷ0)‖X < δ1, then

‖x− x̂‖C ≤ ‖x0 − x̂0‖C + T (b+ c)‖y − ŷ‖C
≤ δ1 + T (b+ c)‖y − ŷ‖C
≤ δ1 + T (b+ c) max{‖x− x̂‖C , ‖y − ŷ‖C}

‖y − ŷ‖C ≤ ‖y0 − ŷ0‖C + T (b+ c)‖x− x̂‖C ,
≤ δ1 + T (b+ c)‖x− x̂‖C
≤ δ1 + T (b+ c) max{‖x− x̂‖C , ‖y − ŷ‖C}.

Then

‖(x, y)− (x̂, ŷ)‖X = ‖(x− x̂, y − ŷ)‖X
= max{‖x− x̂‖C , ‖y − ŷ‖C}
≤ δ1 + T (b+ c) max{‖x− x̂‖C , ‖y − ŷ‖C}
≤ δ1 + T (b+ c)‖(x, y)− (x̂, ŷ)‖X .

This implies that

‖(x, y)− (x̂, ŷ)‖X ≤
δ1

1− T (b+ c)
= ε
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which completes the proof.
Theorem 4. The solution (15) of the problem (1)-(3) depends continuously on the two
random functions h1 and h2.
Proof. Let (x̂, ŷ) be the solutions of the coupled system

x̂(t) = x0 −
∫ τ

0

h∗1(s, ŷ(s))dW (s) +

∫ t

0

f1(s, ŷ(φ1(s)))ds,

ŷ(t) = y0 −
∫ η

0

h∗2(s, x̂(s))ds+

∫ t

0

f2(s, x̂(φ2(s)))dW (s)

such that ‖h∗i (s, .)− h(s, .)‖2 ≤ δ2, i = 1, 2, then

‖x(t)− x̂(t)‖2 = ‖
∫ τ

0

[h∗1(s, ŷ(s))− h1(s, y(s))]dW (s) +

∫ t

0

[f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))]ds‖2

≤

√∫ τ

0

‖h∗1(s, ŷ(s))− h1(s, y(s))‖22ds+

∫ t

0

‖f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤

√∫ τ

0

[‖h∗1(s, ŷ(s))− h∗1(s, y(s))‖2 + ‖h∗1(s, y(s))− h1(s, y(s))‖2]2ds

+

∫ t

0

‖f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤

√∫ τ

0

(c‖y(s)− ŷ(s)‖2 + δ2)2ds+

∫ t

0

b‖y(s)− ŷ(s)‖2ds

≤ (c
√
T + bT )‖y − ŷ‖C + δ2

√
T

≤ T (b+ c) max{‖x− x̂‖C , ‖y − ŷ‖C}+ δ2T

Similarly we can get

‖y(t)− ŷ(t)‖2 = ‖
∫ η

0

[h∗2(s, x̂(s))− h2(s, x(s))]ds+

∫ t

0

[f2(s, x(φ2(s)))− f2(s, x̂(φ2(s)))]dW (s)‖2

≤ (cT + b
√
T )‖x− x̂‖C + δ2T

≤ T (b+ c)‖x− x̂‖C + δ2T

≤ T (b+ c) max{‖x− x̂‖C , ‖y − ŷ‖C}+ δ2T

≤ T (b+ c) max{‖x− x̂‖C , ‖y − ŷ‖C}+ δ2T.

Now

‖(x, y)− (x̂, ŷ)‖X = max{‖x− x̂‖C , ‖y − ŷ‖C
≤ T (b+ c) max{(‖x− x̂‖C , ‖y − ŷ‖C}+ δ2T

≤ T (c+ b)‖(x, y)− (x̂, ŷ)‖X + δ2T.
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This implies that

‖(x, y)− (x̂, ŷ)‖X ≤
δ2T

1− T (b+ c)
= ε

which completes the proof.

3 Solutions of the problem (1)-(2) and (4)

Define the mapping L(x, y) = (L1x, L2y) where L1x, L2y are given by the following
stochastic integral equations

L1x(t) = x0 −
∫ τ

0

h1(s, x(s))dW (s) +

∫ t

0

f1(s, y(φ1(s)))ds, (16)

L2y(t) = y0 −
∫ η

0

h2(s, y(s))ds+

∫ t

0

f2(s, x(φ2(s)))dW (s). (17)

Lemma 4. L : Q→ Q.
Proof. Let x, y ∈ Q, then we obtain

‖L1x(t)‖2 ≤ ‖x0‖2 + ‖
∫ τ

0

h1(s, x(s))dW (s)‖2 + ‖
∫ t

0

f1(s, y(φ1(s)))ds‖2

≤ ‖x0‖2 +

√∫ τ

0

‖h1(s, x(s))‖22ds+

∫ t

0

‖f1(s, y(φ1(s)))‖2ds

≤ ‖x0‖2 + +

√∫ τ

0

(|k1(s)|+ c1‖x(s)‖2)2
∫ t

0

(|m1(s)|+ b1‖y(s)‖2)ds

≤ ‖x0‖2 +K
√
T +MT + c

√
T‖x‖C + bT‖y‖C)

≤ ‖x0‖2 + ‖y0‖2 + (K +M)T + 2rT (b+ c)

and

‖L2y(t)‖2 ≤ ‖y0‖2 + ‖
∫ η

0

h2(s, y(s))ds‖2‖
∫ t

0

f2(s, x(φ2(s)))dW (s)‖2

≤ ‖y0‖2 =

∫ η

0

‖h2(s, y(s))‖2ds+

√∫ t

0

‖f2(s, x(φ2(s)))‖22ds

≤ ‖y0‖2 +

∫ η

0

(|k2(s)|+ c2‖y(s)‖2)ds+

√∫ t

0

(|m2(t)|+ b2‖x‖2)2ds

≤ ‖y0‖2 +KT +M
√
T + cT‖y‖C + b

√
T‖x‖C

≤ ‖y0‖2 + (K +M)T + T (b+ c)‖y‖C + T (b+ c)‖x‖C
≤ ‖x0‖2 + ‖y0‖2 + (K +M)T + 2rT (b+ c).
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This implies that

‖L(x, y)‖X = ‖(L1x, L2y)‖X
= max{‖L1x(t)‖C , ‖L2y(t)‖C}
≤ ‖x0‖2 + ‖y0‖2 + (K +M)T + 2rT (b+ c) = r

where

r =
‖x0‖2 + ‖y0‖2 + +(K +M)T

1− T (b+ c)
,

then the class {L(x, y)} is uniformly bounded and L(x, y) : Q→ Q.
Lemma 5. The class of function {L(x, y)(t)} , t ∈ [0, T ] is equicontinuous.
Proof. Let x, y ∈ Q, t1, t2 ∈ [0, T ] such that |t2 − t1| < δ, then

‖L1x(t2)− L1y(t1)‖2 = ‖
∫ t2

0

f1(s, y(φ1(s)))ds−
∫ t1

0

f1(s, y(φ1(s)))ds‖2

≤
∫ t2

t1

‖f1(s, y(φ1(s)))‖2ds

≤ (M + b‖y‖C)(t2 − t1) (18)

and

‖L2x(t2)− L2x(t1)‖2 = ‖
∫ t2

0

f2(s, x(φ2(s)))dW (s)−
∫ t1

0

f2(s, x(φ2(s)))dW (s)‖2

≤

√∫ t2

t1

‖f2(s, x(φ2(s)))‖22ds

≤ (M + b‖x‖C)
√

(t2 − t1). (19)

But

L(x(t2), y(t2))− L(x(t1), y(t1)) = (L1x(t2), L2y(t2))− (L1x(t1), L2y(t1))

= ((L1x(t2)− L1x(t1)), (L2y(t2)− L2y(t1))),

then from (18) and (19), we deduce the equicontinuity of the class {L(x, y)(t)} on Q.

3.1 Existence Theorem

Now, we have the following existence theorem
Theorem 5. Let the assumptions (A1) - (A5) be satisfied, then there exists at least one
solution (x, y) ∈ X of the problem (1)-(2) and (4).
Proof. Let {(xn, yn)} ∈ Q be such that (xn, yn)→ (x, y) w.p.1.
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Using lemmas 1-3, then applying stochastic Lebesgue dominated convergence Theorem [1],
we can obtain

L.i.mn→∞L(xn, yn) = (L.i.mn→∞L1xn, L.i.mn→∞L2yn)

= (L.i.mn→∞{x0 −
∫ τ

0

h1(s, xn(s))dW (s) +

∫ t

0

f1(s, yn(φ1(s)))ds},

L.i.mn→∞{y0 −
∫ η

0

h2(s, yn(s))ds+

∫ t

0

f2(s, xn(φ2(s)))dW (s)})

= (x0 −
∫ τ

0

h1(s, L.i.mn→∞xn(s))dW (s) +

∫ t

0

f1(s, L.i.mn→∞yn(φ1(s)))ds,

y0 −
∫ η

0

h2(s, L.i.mn→∞yn(s))ds+

∫ t

0

f2(s, L.i.mn→∞xn(φ2(s)))dW (s))

= (x0 −
∫ τ

0

h1(s, x(s))dW (s) +

∫ t

0

f1(s, y(φ1(s)))ds,

y0 −
∫ η

0

h2(s, y(s))ds+

∫ t

0

f2(s, x(φ2(s)))dW (s))

= (L1x, L2y) = L(x, y).

This proves that the operator L : Q→ Q is continuous.
Then by the Arzela-Ascoli Theorem [1], the closure of LQ is a compact subset of X, then
applying Schauder Fixed Point Theorem [1], there exists at least one solution (x, y) ∈ X
of the problem (1)-(2) and (4) such that x, y ∈ C([0, T ], L2(Ω)).

3.2 Uniqueness Theorem

Theorem 6. Let the assumptions (A∗1) − (A∗2) and (A3) − (A5) be satisfied then the
solution of problem (1)- (2) and (4) is unique.
Proof. Let (x1, y1) and (x2, y2) be two solutions of the problem (1)-(2) and(4) on the
form

(x(t), y(t)) = (x0 −
∫ τ

0

h1(s, x(s))dW (s) +

∫ t

0

f1(s, y(φ1(s)))ds,

y0 −
∫ η

0

h2(s, y(s))ds+

∫ t

0

f2(s, x(φ2(s)))dW (s)), (20)

then we can get

‖x1(t)− x2(t)‖2 ≤ c
√
T‖x1 − x2‖C + bT‖y1 − y2‖C < cT‖x1 − x2‖C + bT‖y1 − y2‖C

≤ (b+ c)T‖x1 − x2‖C + (b+ c)T‖y1 − y2‖C
≤ (b+ c)T max{‖x1 − x2‖C , ‖y1 − y2‖C}. (21)

Similarly, we can obtain

‖y1(t)− y2(t)‖2 ≤ (b+ c)T max{‖x1 − x2‖C , ‖y1 − y2‖C}. (22)
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Hence from (21) and (22)

‖(x1, y1)− (x2, y2)‖X = ‖(x1 − x2), (y1 − y2)‖X
≤ max{‖x1 − x2‖C , ‖y1 − y2‖C}
≤ (b+ c)T max{‖x1 − x2‖C , ‖y1 − y2‖C}.

This implies that
(1− (b+ c)T )‖(x1, y1)− (x2, y2)‖X ≤ 0.

Then
‖(x1, y1)− (x2, y2)‖X = 0

and (x1, y1) = (x2, y2) which proves that the solution of the problem (1)-(2) and (4) is
unique.

3.3 Continuous Dependence

Theorem 7. The solution (15) of the problem (1) - (2) and (4) depends continuously on
the two random data (x0, y0).
Proof. Let (x̂, ŷ) be the solution of the coupled system

x̂(t) = x̂0 −
∫ τ

0

h1(s, x̂(s))dW (s) +

∫ t

0

f1(s, ŷ(φ1(s)))ds

ŷ(t) = ŷ0 −
∫ η

0

h2(s, ŷ(s))ds+

∫ t

0

f2(s, x̂(φ2(s)))dW (s),

such that ‖(x0, y0)− (x̂0, ŷ0)‖X < δ3. Then we have

x(t)− x̂(t) = x0 − x̂0 −
∫ τ

0

[h1(s, x̂(s))− h1(s, x(s))]dW (s)

+

∫ t

0

[f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))]ds

and

‖x(t)− x̂(t)‖2 ≤ ‖x0 − x̂0‖C + c
√
T‖x− x̂‖C + bT‖y − ŷ‖C

≤ ‖x0 − x̂0‖C + cT‖x− x̂‖C + bT‖y − ŷ‖C
≤ ‖x0 − x̂0‖2 + cTmax{‖x− x̂‖C , ‖y − ŷ‖C}+ bTmax{‖x− x̂‖C , ‖y − ŷ‖C}
≤ max{‖x0 − x̂0‖2, ‖y0 − ŷ0‖2}+ (b+ c)Tmax{‖x− x̂‖C , ‖y − ŷ‖C}.

By the same way we can get

‖y(t)− ŷ(t)‖2 ≤ max{‖x0 − x̂0‖2, ‖y0 − ŷ0‖2}+ (b+ c)Tmax{‖x− x̂‖C , ‖y − ŷ‖C}
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and

‖(x, y)− (x̂, ŷ)‖X = max{‖(x− x̂‖C , ‖(y − ŷ‖C}
≤ max{‖x0 − x̂0‖2, ‖y0 − ŷ0‖2}+ (b+ c)Tmax{‖x− x̂‖C , ‖y − ŷ‖C}
≤ δ3 + (b+ c)Tmax{‖x− x̂‖C , ‖y − ŷ‖C}

which give our result

‖(x, y)− (x̂, ŷ)‖X ≤
δ3

1− T (b+ c)
= ε

and completes the proof.
Theorem 8. The solution (15) of the problem (1)-(2) and (4) depends continuously on
the two random functions h1 and h2.
Proof. Let (x̂, ŷ) be the solutions of the coupled system of stochastic integral equations
(1)-(2) and (4) such that

x̂(t) = x0 −
∫ τ

0

h∗1(s, x̂(s))dW (s) +

∫ t

0

f1(s, ŷ(φ1(s)))ds

ŷ(t) = y0 −
∫ η

0

h∗2(s, ŷ(s))ds+

∫ t

0

f2(s, x̂(φ2(s)))dW (s).

Let ‖h∗i (t, u(t))− h(t, u(t))‖2 ≤ δ4, i = 1, 2 then

‖x(t)− x̂(t)‖2 = ‖
∫ τ

0

[h∗1(s, x̂(s))− h1(s, x(s))]dW (s) +

∫ t

0

[f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))]ds‖2

≤

√∫ τ

0

‖h∗1(s, x̂(s))− h1(s, x(s))‖22ds+

∫ t

0

‖f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤

√∫ τ

0

[‖h∗1(s, x̂(s))− h∗1(s, x(s))‖2 + ‖h∗1(s, x(s))− h1(s, x(s))‖2]2ds

+

∫ t

0

‖f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤

√∫ τ

0

(c‖x(s)− x̂(s)‖2 + δ4)2ds+

∫ t

0

b‖y(s)− ŷ(s)‖2ds

≤ c
√
T‖x− x̂‖C + bT‖y − ŷ‖C + δ4

√
T )

≤ cT‖x− x̂‖C + bT‖y − ŷ‖C + δ4T.

≤ cT max{‖x− x̂‖C , ‖y − ŷ‖C}+ bT max{‖x− x̂‖C , ‖y − ŷ‖C}+ δ4T

≤ (b+ c)T max{‖x− x̂‖C , ‖y − ŷ‖C}+ δ4T.

Similarly we can get

‖y − ŷ‖C ≤ (b+ c)T max{‖x− x̂‖C , ‖y − ŷ‖C}+ δ4T
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and

‖(x, y)− (x̂, ŷ)‖X = max{‖x− x̂‖C , ‖y− ŷ‖C} ≤ (b+ c)T max{‖x− x̂‖C , ‖y− ŷ‖C}+ δ4T.

This implies that

‖(x, y)− (x̂, ŷ)‖X ≤
δ4T

1− T (b+ c)
= ε

which is completes the proof.

4 Conclusions

Here, we proved the existence of solutions of a coupled system of random and stochastic
nonlinear differential equations with coupled nonlocal random and stochastic nonlinear
integral conditions. The sufficient condition for the uniqueness of the solution have been
given. The continuous dependence of the unique solution have been studied.
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