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Abstract 

This study focuses on the decisions of picking, inventory, ripening, delivering, and 

selling mangoes in a harvesting season. Demand, supply, and prices are uncertain, and 

their probability density functions are fitted based on actual trading data collected 

from the largest spot market in Taiwan. A stochastic programming model is 

formulated to minimize the expected cost under the considerations of labor, storage 

space, shelf life, and transportation restrictions. We implement the sample-average 

approximation to obtain a high-quality solution of the stochastic program. The 

analysis compares deterministic and stochastic solutions to assess the uncertain effect 

on the harvest decisions. Finally, the optimal harvest schedule of each mango type is 

suggested based on the stochastic program solution. 

 

Keywords: Fresh agricultural products, harvest schedule, stochastic programming, 

sample-average approximation 
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1. Introduction 

This study considers a sequence of decisions for harvesting mangoes, where the 

fruit farmer determines the volume and timing for picking, storing, transporting, and 

selling different types of mangoes. These decisions are usually made on a daily basis 

but need to adjust frequently because of the fluctuated price and imbalances between 

demand and supply. Additionally, mango shelf-live are relatively shorter than other 

fresh fruits. Once picking the mangoes, they must be sold out within a day or two. 

Finally, the harvest season is very short, and there is often a shortage of personnel 

throughout the season. We tackle these challenges with the considerations of labor 

availabilities, transporter capacity, and storage spaces. The objective is to maximize 

the overall profit for multiple mango varieties during a harvest season. A stochastic 

program (SP) is formulated with the considerations of uncertain yield, demand, and 

prices. The distributions of uncertain parameters are estimated by using historical data 

collected from a spot market. 

The processes for harvesting mangoes are depicted in Fig. 1. The first type is the 

naturally-matured mangoes, which include Mangifera indica Linn and Irwin. The 

harvesting operations start from picking, stocking, delivering to trading. The shelf life 

of naturally-matured mangoes is two days. After picking, mangoes can be shipped to 

the market directly or stocking at the warehouse and then selling on another day. The 

second type is artificially-matured mangoes, including Jin-Hwang, Yu-Wen, Sensation, 

and Keitt. These mangoes must be harvested before they fully matured. The calcium 

carbide is applied to reduce the maturation time, and the average duration of the 

artificial maturation process is three days [1]. Once the artificial maturation operation                                                                                                                              

is complete, mangoes need to be kept for another day to ensure that their skin color 

and taste are ready for consumers. 

 

Fig. 1.The harvesting processes of naturally- and artificially-matured mangoes. 
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There are different ways to trade mangoes. The first mode is to sell mangoes in a 

spot market, where buyers negotiate mangoes prices with farmers according to mango 

qualities and overall supply quantities in the market. The transaction is confirmed 

whenever the farmer accepts the offer. Since mango demand and supply are highly 

fluctuated, the selling prices usually vary from day to day. The second mode to trade 

mangoes is the price contract, in which the wholesaler and farmer negotiate a fixed 

price prior to the harvest season. The contracted price can reduce price variation but 

less favorable for farmers in Taiwan. This is because the mango qualities differ 

between different ranches and the contracted price is usually much lower than the 

selling price in the spot market. 

Prior work has considered uncertain factors for making agricultural decisions. 

For example, scholars analyzed land allocation decisions under uncertain demand [2]. 

They developed a stochastic programming model with the objective to maximize the 

probability of satisfying demand. There is a strong correlation between demand and 

prices for selling mangoes in a spot market. Mango price tends to be lower on the day 

of higher quantity and higher when the trading volume is low. Fig. 2 illustrates the 

selling price and trading quantity on each day for different mango varieties during the 

harvest season. We found that few papers have developed models to cooperate the 

inter-effect between demand and supply. This study uses the actual data collected 

from [3] the Agriculture and Food Agency [3] along with forecasting models to 

construct the relationship between demand and prices. 

Fig. 2 Trading volumes and selling prices for each mango variety in the spot market. 

During the harvesting season, mango farmers determine how many mangoes to 

be picked on each day, when to start the artificial maturation operation, and how many 

mangoes to be sold. These decisions are usually made according to farmers’ 

experiences. To tackle the increasing uncertainties of price and yield, scholars 

suggested risk-sharing strategies, such as insurances [4]. Since the conclusion is based 

on a questionnaire survey result among farmers in Dutch, these suggested strategies 

may not be available in our case. In the area of mathematical models, a survey paper 
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highlighted the applications of stochastic programming in supply chain planning 

under uncertain demands [5]. Other fields applications, such as finance, 

manufacturing, telecommunication, transportation, and energy can be found in 

another review paper [6]. Among these applications, a common assumption of 

stochastic programming model is that the uncertain parameter’s distribution function 

must be given in order to formulate the deterministic equivalent program and thus the 

problem becomes computationally trackable. Interested readers may refer to the 

textbook for a comprehensive review of stochastic programming models and solution 

approaches for solving each of them [7]. Another approach to model uncertain 

considerations is robust optimization. Such a model assumes that the variances of 

uncertain parameters are bounded. Instead of considering the expected performance, 

the goal is to find the optimal solution considering the worst-case scenario [8]. The 

drawback of robust optimization is that its decisions may be over-conservative when 

parameter values are high variance. An application of robust optimization models in 

agriculture may refer to the wine grape harvest scheduling problem done by Bohle et 

al. [9]. 

This study applies the stochastic programming model to explore the operational 

decisions for mango farmers. Both demand and production yields are predicted via the 

bass models. The forecast error of each mango type is assumed normally distributed, 

where mean and variance are estimated according to the forecast errors. Additionally, 

we assume that the forecast error distribution is identical and independent on each day 

during the harvesting season. Uncertain parameters are constructed based on the 

time-series forecast and forecast error distribution. The stochastic programming 

model’s objective function minimize the expected cost and constraints capture the 

precedent operations in a harvesting process as well as resource capacities. 

2. Literature review 

 Harvesting and processing planning have been studied broadly during past 

decades. An early work analyzed the production schedule for a fresh tomato packing 

house [10]. Higgins developed models to determine a harvesting schedule to minimize 

the variability of the daily supply of sugar cane to the mill and variability in daily 

transportation resource usage [11]. Caixeta-Filho et al. considered the production plan 

of lily flower that maximizes net revenue for the farm by taking into account the 

planting week and expected harvest week [12]. Another work by Caixeta-Filho 

focused on the orange harvesting scheduling in the juice processing industry [13]. 

Recently, Vizvári et al. analyzed crop planting decisions with the development of 
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stochastic programs [14]. The crop yield was assumed to be uncertain and cyclic due 

to the crop’s memory of drought. A chance constraint was formulated to ensure that 

a certain level of demand is satisfied. Their results suggested that planting crops in a 

smaller area can provide an extra supply to cover requirements during the low yield 

season. Another related work studied the crop rotation decision where both yield and 

demand are fluctuated and uncertain [2]. The objective function is to maximize the 

probability of demand satisfaction. In the livestock industry, Guan and Philpot 

analyzed the milk distribution decision in an arborescent supply chain. They 

developed models to predict milk supplies and used random forecast errors for 

modeling uncertain parameters in the multi-stage stochastic program [15]. Other 

researchers assessed the productivity risk under different levels of price settings. A 

dynamic stochastic programming model was proposed to evaluate both the long-term 

and short-term rotation strategies for planting crops [16]. 

 Recently, attention has turned to the question about freshness and shelf life 

effects on agricultural decisions. Ahumada and Villalobos analyzed both harvesting 

and inventory decisions simultaneously with the consideration of shelf life, where the 

selling price was assumed to decrease over time for the decaying in the quality of 

agriculture products [17,18]. The objective maximized the profit under labor force 

capacity limits. A related work by Ferrer et al. developed a MIP model for grape 

planting decisions. Their model determined laborer and machine allocations and the 

sequence of fields to be harvested [19]. The grape quality was formulated as a 

non-increasing function in time. Similar considerations were studied in another paper 

by Zhang and Wilhelm [20]. In the area of inventory models, Lodree and Uzochukwu 

developed a two-period inventory model for fresh products to consider product 

deterioration, uncertain demand, lead times, and consumer preferences [21]. Also, 

Noparumpa et al. developed models to determine production allocation decisions for a 

winemaker. They considered both the expected profit and risks of quality rating 

degradation [22]. 

We found that prior studies focused on specific operational decisions in the 

agriculture industry. Yet, none of them have considered the end-to-end process. This 

study aims to coalesce data analysis and decision model to assess interactions between 

decisions in different operations. Furthermore, the agriculture product price is 

strongly correlated with yields. The difference between this study and related 

literature is that the relationship between prices and yields is considered in the 

harvesting decision. Finally, uncertainties significantly affect agriculture decisions. 

This study develops stochastic programming model of mango harvesting that 
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explicitly considered uncertain demand, yields, and prices. The next section will 

explain the detailed procedure of modeling uncertain parameters and the mathematical 

formulas in stochastic programming. 

3. Methods 

 The harvesting planning comprises a sequence of operational decisions for 

different varieties of mangoes from June to September. To model uncertain yields and 

demand, we first apply forecasting the Bass diffusion model and use time-series 

trading data in previous years to estimate model parameters. Forecasting errors are 

calculated using another data set of the testing data. For each mango type, the 

forecasting error is assumed to be an independent and identical normal distribution, 

where its mean value and variance are estimated using forecasting errors obtained 

beforehand. To model the selling price, a regression model is used to explore the 

relationship between the price and demand. The contents of this section firstly 

describe key features and parameters for each mango variety. Then, we explain the 

data collection approach and how the uncertain parameters are setup using fitting 

results. The last subsection presents the stochastic programming model. 

3.1 Data and assumptions 

This study considers the common types of mangoes in Taiwan, and each of them 

has a different maturation process, picking schedule, and shelf life. The 

naturally-matured mangoes (including Mangifera indica Linn and Irwin) have a short 

shelf life of about two days, while the artificially-matured mangoes (including 

Jin-Hwang, Yu-Wen, Sensation, and Keitt) have a longer shelf life of up to thirty days. 

The harvest timing varies from year to year. Fig. 3 displays the sales data collected 

from Tainan County between June and September in 2015. The line chart shows the 

weekly sales volume for each mango type, and the pie chart depicts the proportion of 

sales volume. The harvest season starts in June and ends by the end of September. The 

highest volume occurs on the fourth week of June. Also, most trading takes place in 

June and July, and August and September have less than one-fifth of the entire volume. 

Irwin has the most trading volume among the six mango types, which accounts for 

more than 60% of the overall volume. In comparison, Jin-Hwang is the 

second-highest product with a 20% market share. 
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Fig. 3. The weekly trading volume and market share of each mango type during a 

harvesting season. 

Table 1 summarizes the major characteristics of mangoes considered in this 

study. Mangifera indica Linn and Irwin are natural-maturation mangoes. The other 

mango types must perform the artificial maturation, and this process will take three 

days. The seasons for picking Mangifera indica Linn start from the beginning of June 

until the end of July, and for Irwin, Jin-Hwang, and Yu-Wen are between June and 

August. The Sensation and Keitt picking seasons are between August and September. 

Table 1. Maturing types and picking time windows for different mango varieties. 

Mango varieties Is artificial maturation 

required? 

Picking timeline 

Mangifera indica Linn No June-July 

Irwin No June-August 

Jin-Hwang Yes June-August 

Yu-Wen Yes June-August 

Sensation Yes August-October 

Keitt Yes August-October 

3.2 Time-series forecasts and forecast error analysis 

 This section describes how the distributions of uncertain parameters for the 

stochastic programming model are constructed. Mango demand will grow rapidly 

with the increase in productivity at the beginning of the season. Once the peak is 

passed, the demand will begin to shrink exponentially. Such a pattern can well fit by 

the use of the Bass diffusion model [23]. We segregate trading data by mango types 

and use each of them to estimate model parameters separately.  

Let f (t) be the density of adopters at time period t with an associated cumulative 

distribution F (t). Notation p represents the coefficient of innovation (or external 

influence) and q is the coefficient of imitation (or internal influence). Thus, the 
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proportion of demand not being at time period t is equal to the portion of new 

innovator and new imitator as the following equation 𝑓(𝑡)/(1 − 𝐹(𝑡) ) = 𝑝 + 𝑞𝐹(𝑡). 

We further denote m as the total demand of adopters, 𝑛(𝑡) as the number of adopters 

at time t defined as 𝑛(𝑡) = 𝑚𝑓(𝑡), and the cumulative demand of adopters at period t 

as  𝑁(𝑡) . Hence, the number of new adopters can be determined by 𝑛(𝑡) =

(𝑝 + 𝑞(𝑁(𝑡) 𝑚⁄ ) ൫𝑚 − 𝑁(𝑡)൯. Let 𝑌௧ be the cumulative adopters and 𝑆௧ be the new 

ones observed at time t. The estimation of new adopters is as the following equation: 

𝑆௧ = 𝑚𝑝̂ + (𝑞ො − 𝑝̂)𝑌௧ିଵ − (𝑞ො 𝑚)⁄ 𝑌ଶ
௧ିଵ + 𝜀̂(𝑡). The objective of the estimation is to 

find the parameter values of p and q such that the total error is minimal. The actual 

trading volume is aggregated in a weekly basis for fitting the forecasting models. 

Table 2 shows the estimated parameters in the Bass model for each mango 

variety. As a result, all 𝑞ො/𝑝̂ ratios are greater than one (the smallest value is 2.0 for 

Mangifera indica Linn and the largest ratio is 28.1 for Keitt). It implies that the 

demand increas or decreases exponentially over time. Also, the sales volume in the 

previous time period has positive effects (i.e., (𝑞ො − 𝑝̂) 𝑌௧ିଵ > 0). 

Table 1. The fitting results of internal influence and external influence factors 

Mango variety External influence (𝑝̂) Internal influence (𝑞ො) 𝑞ො/𝑝̂ 

Mangifera indica Linn 0.0500 0.1000 2.0 

Irwin 0.0134 0.0394 2.9 

Jin-Hwang 0.0064 0.0495 7.7 

Yu- Wen 0.0106 0.0578 5.5 

Sensation 0.0324 0.1230 3.8 

Keitt 0.0042 0.1180 28.1 

 

The Bass models perform well in capturing demand trends during the harvesting 

season. Fig. 4 shows the actual and forecast trading volumes for different mango 

varieties. As one can tell, the model can precisely predict the start time, peak time, 

and end time of each mango type. Except for Jin-Hwang, Sensation, and Keitt 

mangoes, the predicted peak volume is very close to the actual situation. We further 

analyze the accuracy of the Bass model. Table 3 shows the Mean Absolute 

Percentage Error (MAPE) of each mango type, where MAPE is defined as the ratio 

of the expectation of absolute errors divided by actual demand 

ଵ

௡
∑

|௔௖௧௨௔௟೟ି௙௢௥௘௖௔௦ ೟|

௔௖௧௨௔௟೟

௡
௧ୀଵ ×  100%. The MAPEs of Mangifera indica Linn, Jin-Hwang, 

and Yu-Wen are less than 20%, Irwin and Keitt are about 30%, and Sensation 
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performed the worst at 40%. 

 
Fig. 4. Comparing the trading volumes of actual and forecast in a time series. 

Table 2. The Bass model MAPE performances. 

 Mango variety 

Mangifera indica Linn Irwin Jin-Hwang Yu- Wen Sensation Keitt 

MAPE 18% 27% 14% 13% 40% 30% 

3.3  Stochastic programming model 

 Stochastic programming has been widely applied for analyzing the optimal 

decision under uncertain environments [6]. In this study, demand, yield, and price are 

considered as random variables, the probability distribution of which has been 

explained in the foregoing subsection. The objective is to minimize the expected cost, 

which includes inventory cost, shipping cost, artificially maturing cost, and sales 

revenue across all mango varieties during the multi-month harvest season. The 

decision variables involve picking quantity, inventorying quantity, artificial 

maturation quantity, shipping quantity, and sales volume on each time period. Table 4 

summarizes notations used in the stochastic programming model. 

Table 4. Notations. 

Sets: 

𝐼 The set of naturally-matured mangoes 

𝐽 The set of artificially-matured mangoes 

𝐾 The set of all mango varieties,  𝐾 = 𝐼 ∪ 𝐽 

𝛺 The set of all random scenarios,  𝜔 ∈ 𝛺 

𝑇 The set of planning time periods 
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Decision variables: 

𝑥௞௧(𝜔) 

𝑦௜௧(𝜔) 

𝑦௝௧
ଵ (𝜔) 

𝑦௝௧
ଶ (𝜔) 

𝑟௜௧(𝜔) 

𝑟௝௧
ଵ(𝜔) 

𝑟௝௧
ଶ(𝜔) 

𝑖௜୲(𝜔) 

𝑖௝௧
௪(𝜔) 

𝑖௝௧
௠(𝜔) 

𝑤௝௧(𝜔) 

ℎ௝௧(𝜔) 

𝑎௞௧(𝜔) 

The number of k type mangoes picked at time t in scenario 𝜔 

The sales volume of naturally-matured mangoes at time t in scenario 𝜔 

The sales volume of one-day-old artificially-matured mangoes 

The sales volume of two-day-old artificially-matured mangoes 

The shipping quantity of naturally-matured mangoes 

The shipping quantity of one-day-old artificially-matured mangoes 

The shipping quantity of two-day-old artificially-matured mangoes 

The number of naturally-matured mangoes 

The inventory level of mangoes waiting for artificial maturation 

The inventory level of artificially-matured mangoes 

The number of mango j ripened artificially at time t in scenario 𝜔 

The number of unsold one-day-old artificially-matured mangoes 

The number of mangoes not yet picked 

Parameters: 

𝑝௞௧(𝜔) 

𝑣௜௧ 

𝑣௝௧
௪ 

𝑣௝௧
௠ 

𝛽௞௧(𝜔) 

𝑑௞௧(𝜔) 

𝑂ே 

𝑂஺ 

𝐶 

𝑙 

The selling price of mango type k at time period t in scenario 𝜔 

The inventory cost of naturally-matured mangoes 

The inventory cost of mangoes waiting for artificial maturation 

The inventory cost of artificially-matured mangoes 

The yield of mango type k at time period t in scenario 𝜔 

The demand of mango type k at time period t in scenario 𝜔 

Maximum inventory level for naturally-matured mangoes 

Maximum inventory level for artificially-matured mangoes 

The capacity limit of picking mangoes 

The transportation cost 
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Fig. 5 illustrates our ideas to formulate the MIP model, where the flow chart at 

the top represents the harvesting process for naturally-matured mangoes, and another 

one is for artificially-matured mangoes. Each rectangular block represents either 

picking, artificially maturing, shipping, or trading operation in both flow charts, while 

trapezoid blocks represent stocking mangoes with various statuses. The directed edge 

represents the sequence to perform two consecutive operations. Most blocks are 

connected by less than or equal to one incoming and out-going arcs, except for the 

operations of picking and stocking matured-and-unsold artificially-matured mangoes. 

Since the farmer can defer artificially maturing decisions, two out-going arcs depart 

from the picking operation. Another block with multiple out-going arcs is the 

matured-and-unsold stocking, in which the solid out-going arc represents the first 

attempt of farmers to deliver and sell the one-day-old mangoes, and the dashed 

out-going arc is the second attempt for dealing with the two-day-old mangoes. 

Additionally, two in-coming arcs connect to the matured and unsold stocks, where the 

sold arc represents the influx of one-day-old mango, and the dashed arc is the 

returning unsold mangoes. 

 

Fig. 5. Illustrating the relationship between constraints and decision variables in 

the proposed stochastic programming model. 

The stochastic programming model of mango harvest and distribution is as 

the following: 

𝑚𝑖𝑛 𝐸 ቂ∑ ∑ 𝑣௜௧ 𝑖௜௧(𝜔) +௜∈ூ௧∈் ∑ ∑ 𝑙 𝑟௜௧(𝜔)௜∈ூ௧∈் + ∑ ∑ ൫𝑣௝௧
௪ ൫𝑖௝௧

௪(𝜔) +௝∈௃௧∈்
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 𝑤௝௧(𝜔)൯ + 𝑣௝௧
௠ 𝑖௝௧

௠(𝜔) + 𝑙 𝑟௝௧
ଵ(𝜔) + 𝑣௝௧

௠ ℎ௝௧(𝜔) + 3𝑙  𝑟௝௧
ଶ(𝜔)൯ − ∑ ∑ 𝑝௜௧ 𝑦௜௧(𝜔)௜∈ூ௧∈் −

             ∑ ∑ 𝑝௝௧ ቀ𝑦௝௧
ଵ (𝜔) + 𝑦௝௧

ଶ (𝜔)ቁ௝∈௃௧∈் ቃ,  

Subject to 

𝑥௞௧(𝜔) ≤ 𝛽௞௧(𝜔) ∀𝑡 ∈ {1}, ∀𝑘 ∈ 𝐾, (1) 

𝑥௞௧(𝜔) ≤ 𝛽௞௧(𝜔) + 𝑎௞௧ିଵ(𝜔) ∀𝑡 ∈ {2. . |𝑇|}, ∀𝑘 ∈ 𝐾, (2) 

∑ 𝑥௞௧(𝜔)௞ఢ௄ ≤ 𝐶  ∀𝑡 ∈ 𝑇, (3) 

𝛽௞௧(𝜔) − 𝑥௞௧(𝜔) = 𝑎௞௧(𝜔)  ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐼 ∪ 𝐽, (4) 

𝑖௜௧(𝜔) = 𝑥௜௧(𝜔) ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, (6) 

𝑖௝௧
௪(𝜔) = 𝑥௝௧(𝜔) − 𝑤௝௧  ∀𝑡 ∈ {1}, ∀𝑗 ∈ 𝐽, (7) 

𝑖௝௧
௪(𝜔) = 𝑖௝௧ିଵ

௪ (𝜔) + 𝑥௝௧(𝜔) − 𝑤௝௧ ∀𝑡 = {2. . . |𝑇|}, ∀𝑗 ∈ 𝐽, (8) 

𝑤௝௧(𝜔) ≤ 𝑥௝௧(𝜔) ∀𝑡 ∈ {1}, ∀𝑗 ∈ 𝐽, (9) 

𝑤௝௧(𝜔) ≤ 𝑖௝௧ିଵ
௪ (𝜔) + 𝑥௝௧(𝜔) ∀𝑡 = {2. . . |𝑇|}, ∀𝑗 ∈ 𝐽, (10) 

𝑖௝௧
୫(𝜔) = 0 ∀𝑡 = {1. . .3}, ∀𝑗 ∈ 𝐽, (11) 

𝑖௝௧
୫(𝜔) = 𝑤௝௧ିଷ(𝜔) + 𝑖௝௧ିଵ

୫ (𝜔) −     𝑟௝௧
ଵ(𝜔) ∀𝑡 = {4. . . |𝑇|}, ∀𝑗 ∈ 𝐽, (12) 

∑ 𝑖௜௧(𝜔)∀௜∈ூ ≤ 𝑂ே  ∀𝑡 ∈ 𝑇, (13) 

∑ (𝑖௝௧
௪(𝜔) +∀௝∈௃ ∑ 𝑤௝௦) ≤  𝑂஺௧

௦ୀଵ   ∀𝑡 = {1. . .3}, (14) 

∑ ( 𝑖௝௧
௪ + ∑ 𝑤௝௧(𝜔)௧

௧ିଶ +  𝑖௝௧
௠ − ℎ௝௧∀௝∈௃ (𝜔)) ≤ 𝑂஺   

 

∀𝑡 = {4. . . |𝑇|}, (15) 

𝑟௜௧(𝜔) ≤ 𝑖௜௧ିଵ(𝜔) ∀𝑡 = {2. . . |𝑇|}, ∀𝑖 ∈ 𝐼, (16) 

𝑟௝௧
ଵ(𝜔) ≤ 𝑖௝௧ିଵ

୫ (𝜔) ∀𝑡 = {5. . . |𝑇|}, ∀𝑗 ∈ 𝐽, (17) 
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𝑦௜௧(𝜔) ≤ 𝑟௜௧(𝜔) ∀𝑡 = {2. . . |𝑇|}, ∀𝑖 ∈ 𝐼, (18) 

𝑦௜௧(𝜔) ≤ 𝑑௜௧(𝜔) ∀𝑡 = {2 … |𝑇|}, ∀𝑖 ∈ 𝐼, (19) 

𝑦௝௧
ଵ (𝜔) ≤ 𝑟௝௧

ଵ(𝜔) ∀𝑡 = {5. . . |𝑇|}, ∀𝑗 ∈ 𝐽, (20) 

ℎ௝௧(𝜔) = 0  ∀𝑡 = {1 … 3}, ∀𝑗 ∈ 𝐽, (21) 

ℎ௝௧(𝜔) = 𝑟௝௧
ଵ(𝜔) − 𝑦௝௧

ଵ (𝜔)  ∀𝑡 = {4. . . |𝑇|}, ∀𝑗 ∈ 𝐽, (22) 

𝑟௝௧
ଶ(𝜔) = 0  ∀𝑡 = {1. . .4}, ∀𝑗 ∈ 𝐽, (23) 

𝑟௝௧
ଶ(𝜔) ≤ ℎ௝௧ିଵ(𝜔)  ∀𝑡 = {5. . . |𝑇|}, ∀𝑗 ∈ 𝐽, (24) 

𝑦௝௧
ଶ (𝜔) = 0  ∀𝑡 = {1. . .4}, ∀𝑗 ∈ 𝐽, (25) 

𝑦௝௧
ଶ (𝜔) ≤ 𝑟௝௧

ଶ(𝜔)  ∀𝑡 = {5. . . |𝑇|}, ∀𝑗 ∈ 𝐽, (26) 

𝑦௝௧
ଵ (𝜔) + 𝑦௝௧ାଵ

ଶ (𝜔) ≤ 𝑑௝௧(𝜔)  ∀𝑡 = {1. . . |𝑇|}, ∀𝑗 ∈ 𝐽, (27) 

All decision variables are nonnegative.  (28) 

The objective function is to minimize the expected costs, where the first and 

second terms represent the inventory cost and transportation cost of 

artificially-matured mangoes, respectively. The third term 𝑣௝௧
௪ ൫𝑖௝௧

௪(𝜔) +  𝑤௝௧(𝜔)൯ 

accounts for the inventory cost of one-day-old artificially-matured mangoes. The 

fourth term 𝑣௝௧
௠ 𝑖௝௧

௠(𝜔)  represents the inventory cost of two-day-old 

artificially-matured mangoes. Since the freshness will decay over time, we set a 

higher inventory cost of artificially-matured mangoes than mangoes waiting 

artificially-matured (i.e., 𝑣௝௧
௠ ≫ 𝑣௝௧

௪ ). The fourth term 𝑙 𝑟௝௧
ଵ(𝜔)  accounts for the 

shipping cost of one-day-old artificially-matured mangoes. The fifth term 𝑣௝௧
௠ ℎ௝௧(𝜔) 

is the inventory cost of unsold mangoes. These mangoes must return to the farmer and 

then ship to the market on another day. Also, a third trip may need for returning the 

unsold two-day-old mangoes, and therefore, the total shipping cost of two-day-old 

artificially-matured mangoes is modeled as three times of per-unit shipping cost 

3𝑙  𝑟௝௧
ଶ(𝜔) . The terms ∑ ∑ 𝑝௜௧𝑦௜௧(𝜔)௜∈ூ௧∈்  and ∑ ∑ (𝑝௝௧(𝑦௝௧

ଵ (𝜔) + 𝑦௝௧
ଶ (𝜔)))௝∈௃௧∈்  

account for the total sales incomes of selling naturally-matured mangoes and 

artificially-matured mangoes, respectively. 
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In Constraints (1) and (2), the picking quantity must be less than or equal to the 

number of mangoes ready to be harvested. Since the picking decision can delay for 

one day, the right hand side of constraints (2) includes both yield and unpicked 

mangoes in the previous time period. Constraint (3) considers the capacity limit of 

picking mangoes at each time period. Constraint (4) is used to compute the number of 

unpicked mangoes 𝑎௞௧(𝜔), which is equal to yield minus picking quantity. Constraint 

(6) ensures that the inventory quantity of naturally-matured mangoes  𝑖௜௧ is equal to 

the picking quantity 𝑥௜௧.  

The artificially-matured mango can be preserved for a long time before maturity. 

Constraints (7) and (8) determine the inventory quantity of mangoes waiting for 

artificial maturation 𝑖௝௧
௪(𝜔), equal to the previous inventory plus picking quantity 𝑥௝௧  , 

and then minus artificially-matured quantity 𝑤௝௧. Constraints (9) and (10) ensure that 

the ripening quantity cannot exceed inventory and picking. Constraints (11) and (12) 

compute inventory of mangoes that have artificially matured. Since the maturing 

process takes three days, the inventory levels in the first three time periods are zeros 

( 𝑖௝௧
୫(𝜔) = 0, 𝑡 = 1. .3) . In constraint (12), the 𝑖௝௧

୫(𝜔)  is equal to the 

artificially-matured quantity three days ago, plus previous inventory, and then minus 

the shipping quantity of one-day-old matured mangoes 𝑟௝௧
ଵ(𝜔). 

The artificially and naturally-matured mangoes are kept separately. Constraint (13) 

ensures that the total inventory of naturally-matured mangoes is less than or equal to 

the warehouse capacity 𝑂ே. In constraint (14), the inventory level of artificially 

matured mangoes in the first three days, equal to mangoes waiting to be matured plus 

the total amount of ripening from the first day to the present, cannot exceed the 

maximal capacity 𝑂஺. Similarly, the left-hand side in constraint (15) determines the 

inventory levels on the fourth day and after cannot exceed the capacity limit, where 

the mango inventory is equal to the mangoes waiting to be mature, the mangoes in 

ripening, the mangoes that have matured, and minus unsold one-day-old mangoes. Fig. 

6 is a numerical example to explain the left-hand-side formulations in constraints (14) 

and (15). Suppose that seven mangoes are picked on the first day, and two of them are 

ripening. Therefore, five unripened mangoes and the total inventory at the end of the 

day are seven. Five mangoes are harvested on the second day, and thus the total 

inventory is twelve, including the first day’s harvest.  Additionally, assuming that 

two mangoes are beginning to ripen, and therefore the total ripening mangoes are four, 

two of which one day old matured and two are two days old matured. On day five, the 

inventory level includes mangoes picked from day one to day four, and then minuses 

two mangoes ripened on day one and sold on day five. 
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Fig. 6. The numerical example to illustrate the inventory levels of 

artificially-matured mangoes defined at the left-hand-sides in constraints (14) and 

(15). 

Constraint (16) ensures that the shipping quantity of naturally-matured mangoes 

𝑟௜௧ is less than or equal to the inventory in the previous time period to account for 

lead-time of inventory and transportation operations. Constraint (17) ensures that the 

quantity to delivery one-day-old artificially-matured mangoes cannot exceed the 

ripened mangoes. Constraint (18) ensures that the naturally-matured mango selling 

quantity is less than or equal to the shipping quantity. Constraints (19) ensures the 

naturally-matured mangoes selling quantities are less than or equal to the demand. 

Constraints (20) ensure that the selling quantity of one-day-old artificially-matured 

mangoes are less than or equal to the shipping quantity. Constraints (21) and (22) 

determine the number of unsold one-day-old mangoes, which is zero in the first three 

days, and then defined as shipments minus sales. In constraints (23) and (24), the 

number of two-day-old mangoes is zero in the first four days or no more than stocks 

after the fourth day. Similarly, constraints (25) and (26) specify the boundary of 

selling two-day-old mangoes each day. In constraint (27), the total sales of 

one-day-old and two-day-old mangoes cannot exceed the demand. 
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4. Results 

We use the forecasts and forecast error distributions to construct the probability 

distribution of the uncertain parameters of the stochastic programming model. The 

forecast error at each time period follows an independent and identical normal 

distribution, where the mean and standard deviation are estimated from the testing 

data set. The demand and yield at each time period are generated using forecasts and 

forecast error distributions, both of which are sampled from the same probability 

distribution but sampled separately. In addition, the mango price is generated by a 

linear function of mango demand, where its parameters are fitted by the same data set 

used to build the forecast model. It is worth mentioning that the fitting results show an 

opposite relationship between the sales price and trading volume of all mango types, 

and this trend is the same as that of most fresh products. 

4.1 Convergence analysis of SAA 

The sampling sizes of uncertain parameters affect both the model accuracy and 

the runtime to solve stochastic programs. Models using larger sampling size provide a 

better approximation, but they are usually more difficult to solve. There is no clear cut 

to determine the best sampling size. We implement the sample average approximation 

(SAA) to obtain a well quality solution in time for the proposed stochastic 

programming model [6]. The algorithm samples coefficients in both objective 

function and constraints and then resolves the new sampled problems iteratively. The 

optimal objective value will stabilize once the sample size increased to a sufficient 

number. We stop the algorithm when the gap of objective values in two consecutive 

iterations is less than a tolerated value. Fig. 7 displays the expected profit (that is, the 

objective value multiplied by -1) of stochastic programs in different sample sizes. The 

objective value decreases as the sample size increases, and when the same size 

increases to forty, it will stabilize at about five million. 
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Fig. 7. The expected profits of stochastic program solutions with different sample 

sizes. 

In the following analysis, we use a sample size of two hundred. We believe that 

such a sample size would provide relatively robust results, and similar findings would 

be concluded even using larger sample sizes. 

4.2 Comparing deterministic and stochastic solutions 

This section compares the deterministic and stochastic models to assess the value 

of stochastic solutions and understand the impact of uncertain forecast errors on 

profits. The benchmark model, known as the expected value (EV) model, is 

formulated as a deterministic mathematical program using the expected values of 

uncertain parameters. The EV solution is then applied to each sampled problem 

instance to obtain the expectation of expected value solution (EEV). For minimization 

problems, the stochastic program solution is less than or equal to EEV. This is because 

the EV solution is suboptimal (or even infeasible) for each sampled problem instance. 

The value of stochastic solution (VSS), defined as EEV – SP, represents the potential 

loss of profit for mango farmers using the expected value to make harvest decisions. 

Another implication is the impact of uncertain forecast errors on profits. Our analysis 

uses two hundred randomly generated scenarios, and the results are shown in Table 5. 

The objective function is to minimize the total cost. Thus, a smaller objective value 

means a more profitable solution. The EV objective value (approximately minus 5.8 

million) is less than SP, but when the EV solution applies to all other scenarios, the 

expected objective value is -4,911,662. Therefore, EV is about 20% higher than EEV 

(from -5,816,137 to -4,911,662). This implies that the EV objective value is too 

optimistic and may mislead decision-makers. In contrast, if decision-makers adopt the 

SP solution rather than EV, they can increase profit by $50,252. 
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Table 3. Comparing expected-value model and stochastic program model solutions 

EV SP EEV VSS 

-5,816,137 -4,961,914 -4,911,662 50,252 

4.3 The optimal harvest planning 

The SP solution provides abundant information about the timing and quantities of 

each operational decision. Table 6 is the color code of each operation that will be 

used for presenting the optimal harvest planning in Table 7. Due to the limitation of 

manuscript length, Table 7 only contains the optimal quantity for picking, stocking, 

delivery, and sales in June. In these tables, each cell shows the lower and upper limits 

of the best solution in all scenarios. For example, the picking quantities of Mangifera 

indica Linn on June 5th are between 11 and 13 tons. If there is only a single value in a 

cell, it means that all scenarios obtain the same solution. 

Table 4. Color coding for different operations 

Operations Color 

Picking  

Delivering  

Selling  

Ripening  

Inventory of artificially-matured mangoes before ripening  

Inventory of artificially-matured mangoes with 2 days remaining shelf life  

Inventory of artificially-matured mangoes with 1 day remaining shelf life  
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Table 5. The optimal harvest decision in June (unit: tons) 

Varieties 6/1-6/4 6/5 6/6 6/7 6/8 6/9 6/10 6/11 6/12 6/13 6/14 6/15 6/16 6/17 6/18 6/19 6/20 6/21 6/22 6/23 6/24 6/25 6/26 6/27 6/28 6/29 6/30 

Mangifera 

indica Linn 

  [11,13] [25,27] [25,27] [9,24] [23,26] [22,24] [21,26] [19,22] [18,19] [16,17] [14,17] [5,11]    [9,10]    [6,7] [5,7] [4,5]            

    [11,13] [25,27] [25,27] [24,29] [23,26] [22,24] [20,26] [19,22] [18,19] [16,17] [14,17] [5,11]     [9,10]     [6,7] [5,6] [0,4]           

    [11,13] [25,27] [25,27] [24,29] [23,26] [22,24] [20,26] [19,22] [18,19] [16,17] [14,17] [5,11]     [9,10]     [6,7] [5,6] [0,4]           

Irwin 

                                      [23,24] [24,25] [30] [30] [30] [30] [30] [30] 

                                        [23,24] [24,25] [30] [30] [30] [30] [30] 

                                        [23,24] [24,25] [30] [30] [30] [30] [30] 

Jin-Hwang 

                        [17,21] [28,30] [3,5]                         

                                    [54,56]                 

                                    [54,56]                 

                            [54,56]                         

                        [18,21] [48,51]                           

                                  [53,56]                   

                                                      

Yu-Wen 

  [16,19]                        [24,26]                        

          [16,19]                         [24,26]                 

          [16,19]                         [24,26]                 

  [16,19]                         [24,26]                         

                                                      

        [16,19]                         [24,26]                   

                                                    

Sensation 

                                                      

                                                      

                                                      

Keitt 
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In Table 7, the Mangifera indica Linn is the earliest harvested mango, and its 

season starts at the beginning of June. All mangoes are delivered and sold on the next 

day after they are harvest. Another naturally matured mango, Irwin, is harvested from 

the end of June. Similar to Mangifera indica Linn, they are sold one day after harvest. 

For artificially matured mangoes, Yu-Wen mangoes are picked in early June, and Jin 

Hwang mangoes are harvested from June 18th to June 21st. Both mango types are 

ripened on the harvest day. Also, all mangoes are sold when the ripening process 

complete. 

5. Discussion and Conclusions 

This study integrated forecasting and mathematical programming models for 

making mango harvest decisions in Taiwan. We addressed important concerns in the 

agriculture industry where demand and supply are highly uncertain. A time-series 

model was developed to forecast the demand and supply of different mango types 

using actual trading data in Taiwan. Also, a stochastic programming model was 

developed to determine the optimal picking, ripening, stocking, shipping, and selling 

decisions. The SAA was implemented for solving the stochastic program, and the 

computational result showed that the algorithm could obtain a quality solution in time. 

We conducted a case study to assess the value of stochastic solutions, where the 

stochastic programming model obtained more profitable solutions than the 

deterministic model used expected values. Finally, we organized the overall harvest 

plan according to the optimal solution to help farmers prepare resources in advance. 

Our findings and suggestions are as follows. The workforce requirement to pick 

mangoes in June is higher than July and August. This is because the harvest time of 

naturally-matured mangoes is in June, and the harvest time cannot be changed. Thus, 

it is recommended to plant more mango varieties to alleviate peak labor requirements. 

The naturally-matured mangoes require less storage space because they are sold 

immediately after harvest. In contrast, more storage space should be planned for 

stocking artificially-matured mangoes to increase operational flexibility. 

The limitation of this study is that we only consider operational decisions during 

a harvest season. Agriculture decisions in the early stage can have impacts. For 

example, mango yield quantity and timing are related to fruit bagging and pollination 

decisions made before the harvest season. A potential extension of our work is to 

include the above considerations to provide fruit farmers with more comprehensive 

planning. 
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