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Abstract: The idea of using the lytic power of viruses against the malignant cells has been
entertained for many decades. However, oncolytic viruses (OV) gained broad attention as an
emerging anti-cancer therapy only recently with the successful implementation of the oncolytic
herpesvirus to treat advanced melanoma. OVs offer an attractive therapeutic combination of tumor-
specific cell lysis together with immune stimulation, yet the latter effect is less well studied.
Nevertheless, OVs can be envisaged as potential in situ tumor vaccines. The therapeutic potential
of OVs can be instigated further by using the molecular biological and biotechnological tools to
modify the existing viruses for their optimal tumor selectivity and enhanced immune stimulation.
Furthermore, OVs can be readily combined with other therapeutic agents to increase the efficacy of
the existing therapeutic schemes. In this review, we discuss biotechnological advances in the
development of therapeutic applications of OVs in Russia. Particular emphasis is made on the OV-
mediated treatment of glioblastoma. In addition, we highlight the challenges of oncolytic
virotherapy, and describe the strategies to optimize current approaches to improve clinical
outcomes.

Keywords: virotherapy, oncolytic viruses, gliomas, pancreatic cancer, adenoviruses, parvoviruses,
enteroviruses, blood-brain barrier, tropism, transgene.

1. Introduction

Oncolytic virotherapy has received a powerful impetus in recent years thanks to the
limited but encouraging success of clinical trials in Latvia [1], China [2], and the USA [3].
This led to the revitalization of the research on oncolytic viruses (OVs) in Russia and
commencement of new approaches to address inherent problems of biosafety and their
efficacy against solid tumors.

2. History of Studies on OVs in the former USSR and Russian Federation

The first records of anticancer activity conferred by viral infection are dated back to the
19th century and, at that time, the evidences were somewhat anecdotal (reviewed in [4]).
For example, in 1904 Dr. George Dock published a report about a leukemia patient who
experienced a decreased leukocyte count after a naturally occurring infection with
influenza [5]. Further, an Italian doctor de Pace described a case of curing a patient with
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cervical cancer during a course of anti-rabies vaccinations after a dog bite [6]. In 1949, the
Russian Far East Virus was observed to inhibit the growth of tumors transplanted into
mice [6]. Since then, considerable efforts have been spent around the world on the
elucidation of the molecular mechanisms for oncotropism and the oncolytic action of
various viruses. Significant oncolytic effects were observed for a number of neurotropic
viruses: tick-borne encephalitis (Far Eastern variant), Scottish sheep encephalomyelitis,
Omsk hemorrhagic fever, Langat and others (tick-borne encephalitis complex viruses).
Since the early 40s of the last century, this avenue of research has been actively pursued
by a number of research groups. R. Shen [7] and A. Moore [8] have shown that viruses
exhibited a significant oncotropism towards tumors found in experimental animals in
vivo, thereby inhibiting the growth of tumor cells. E.N. Levkovich and L.G. Karpovich
(Laboratory of Tick-Borne Encephalitis IPVE, Institute of Poliomyelitis and Viral
Encephalitis, Moscow, USSR) studied 25 strains of the tick-borne encephalitis virus (TBE)
and related strains of viruses (Scottish sheep encephalomyelitis, Omsk hemorrhagic fever,
Kyasanur forest fever etc) and found that these viruses actively reproduced in HeLa cells,
however, their cytopathogenic effects varied greatly [9]. In the next cycle of works, E.N.
Levkovich and G.I. Sergeeva showed an inhibitory effect of all strains of the TBE complex
viruses on the growth of Ehrlich's ascites carcinoma and Crocker's sarcoma in vitro. The
TBE and Langat viruses were found capable of infecting tumor cells with subsequent
reduction of their proliferative ability, as well as the delayed growth when transplanted
into experimental animals [10,11]. Despite the initial success, clinical studies on the overall
safety and efficacy of these OVs were never attempted due to the unresolved problems of
their high pathogenicity.

The idea of employing enteroviruses for virotherapy has emerged in the 1950s and was
based on the observation that enteroviruses can actively multiply and destroy various
tumor cell lines, including HeLa cells. This approach looked safe thanks to the
development of very efficient live attenuated poliomyelitis and other enterovirus
vaccines. Experimental and clinical studies conducted under the supervision of the
Academy of Medical Sciences and the Ministry of Health of the USSR in Moscow and Riga
revealed oncotropic and oncolytic activities of these enteroviruses. For the selection of
enteroviruses with oncolytic properties, several model human tumor cell lines were used.
Importantly, some of the tumor cell lines were transplanted into animals and hence
studies on xenografts have been carried out. The leading position in the former USSR was
held by a research group of M.K. Voroshilova (Laboratory of Immunology of
Enteroviruses, Institute of Poliomyelitis and Viral Encephalitis, Moscow), who has
actively studied the oncolytic potential of enteroviruses [12]. This group found that live
vaccines stimulate cellular immunity and can be used in cancer patients resulting in the
pronounced oncolytic effects of enteroviruses. [13]. This was especially true when
vaccines were administered with an interval of 2-3 weeks. Furthermore, Voroshilova and
Vaganova described successful attempts of using enteroviruses in patients with
gastrointestinal tract tumors [14]. Despite the initial encouraging results achieved with
these viruses for the treatment of malignant neoplasms, there were also cases of
uncontrolled development of viral infection in patients, which led to the emergence of a
virus-specific response and, as a consequence, significantly weakened their oncolytic
effect. At the same time, the lack of understanding of the mechanisms underlying the
oncolytic properties of viruses complicated the introduction of OVs into clinical practice
and impeded other studies on OVs for several decades. Only the recent advances in
molecular biology, virology, and genetic engineering methods have made possible
creating new viruses with improved selectivity for tumor cells. In recent years, research
groups from the Novosibirsk State University, the Institute of Chemical Biology and
Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
(Novosibirsk), the Institute of Molecular Biology named after V.A. Engelhardt RAS
(Moscow), National Research University named after V.I. N.I. Pirogov (Moscow), N.N.
N.N. Blokhin (Moscow), Research Institute of Experimental and Clinical Medicine
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(Novosibirsk) and a number of other scientific centers in Russia have accelerated their
work on various OVs.

3. Diversity of viruses as the basis for the development of new OVs

The collect-and-screen approach in the field of OVs has been widely used for various virus
strains and in vitro tumor cell models (see, for example, [15-18]). It should be noted that
the topicality and employability of this approach is still justifiable [19]. In fact, the old idea
of selecting specific anti-tumor viruses among the naturally occurring viruses is very
attractive. There is incessant attention to parvoviruses [10], as the simplest DNA-
containing viruses with pronounced oncolytic activity. Various poxviruses [21],
enteroviruses [22] [23], and all viral clades [24] are being actively studied in this respect
as well. A different approach consists of selecting those viruses that are known to have
good biosafety profiles and are easy to work with. In this respect, the vaccinia virus and
as well as coxsackie virus have attracted a considerable attention [19,25,26,28-30].
Combining these two practical themes, several Russian groups have focused their efforts
on adenoviruses as arguably the most promising candidates for virotherapy [31,32].

In fact, a strong argument in favor of using wild type OVs has been brilliantly formulated
by P. Chumakov: OVs can be viewed upon as therapeutic means featuring "nature-
likeness" [33]. Nevertheless, it would be too naive to assume that certain viruses
specifically have evolved in order to fight tumors. On the contrary, many viruses are
oncogenic by their nature. This hypothesis was clearly articulated as early as in 1930-s by
a Soviet scientist G. Zilber. The latter even managed to experimentally test his
“virogenetic” theory on rodents during his imprisonment in GULAG [34]. Moreover, the
infectious burden is one of the most important factors that determine the species-specific
lifespan on the evolutionary scale [35].

From the practical point of view, it is important to note that virus-mediated oncolysis can
be considered as a side effect defined by the features of cancer cells, e.g. accumulation of
genomic aberrations that dampen the antiviral defense. Accordingly, one can speculate
that tumors, due to their immunosuppressive features, can serve as backdoors for
emergent infections and hence facilitate zoonotic transmission.

Undoubtedly, the efficacy of anti-tumor activity of OVs in vivo is the integral result of their
interactions with both cancer cells and the immune cells of the host. During the evolution,
viruses have developed various mechanisms to control the immune response, which, in
principle, can be redirected to destroy cancer cells through eliciting both antiviral and
anti-tumor immune responses. Importantly, the infection of individual tumor cells
stimulates the so called abscopal effect, the destruction of its uninfected areas, including
metastases [36]. This effect is achieved by the release of a wide range of antigens upon cell
death, i. e. death associated molecular patterns (DAMPs), which in turn trigger both innate
and acquired anti-tumor immune responses [37,38].

Top priorities for development of OVs in Russia

It should be noted that at present, the clinical use of OVs is considered to be the "weapon
of last choice". Historically, OVs can only be prescribed against the most aggressive and
incurable tumors at the late stages of their progression when there is no response to any
other type of therapy. The most promising target for the development of OVs in Russia is
considered to be brain tumors, glioblastoma especially. In addition, pancreatic cancer is
emerging as a novel target for virotherapy. The main argument for the choice of these
particular neoplasms (Fig. 1) is the lack of effective means at the present time, together
with the severity of these diseases [39]. Considering the amount of research funding, it is
the therapy of brain tumors that has apparently gained the highest state priority for
oncoscience in Russia [40-42].
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Figure 1. A general scheme depicting the ways of implementation of replication-
competent viruses to treat various malignancies.

4. Glioblastoma

Tumors of the central nervous system (CNS) make up a small share among malignant
neoplasms in the population, but they are characterized by low detection rates in the early
stages and are extremely difficult to treat. Among adult patients, the vast majority are
represented by various types of gliomas, mainly in the form of diffuse grade II-IV tumors.
Of these, the most common is glioblastoma multiforme (average incidence rate -
3.19/100,000 population, median age of diagnosis - 64 years, median overall survival — 3-
18 months, and median progression free survival as low as 0.7-6 months [43,44]).
Complete resection is usually impossible, since in most cases, by the time of detection, the
tumor affects the parts of the brain that control muscle contractions, the organs of
perception and higher nervous activity. Standard protocols of glioblastoma treatment in
Russia include tumor resection followed by radiation therapy and/or chemotherapy with
temozolomide [45,46]. In general, progress in chemotherapy for glioblastoma multiforme
is rather slow; the practical list of available agents is limited to temozolomide alone or in
combination with anti-angiogenic agents, such as bevacizumab that slightly prolongs
progression-free survival but does not increase overall patient survival with
temozolomide [47,44]. In pediatric brain tumors temozolomide sometimes may be
successfully synergized by PARP inhibition [48]. Temozolomide is one of the few
therapeutic molecules that effectively crosses the barrier and accumulates in tumor tissue.
However, its genotoxic effect is neutralized by DNA repair mechanisms. Another
difficulty in the treatment of brain tumors, particularly in glioblastomas, in particular, is
their cellular heterogeneity [49,50]. Some of the cells form a population of so-called
glioblastoma cancer stem cells, which are more resistant to radiation and chemotherapy.
In addition, they can differentiate into other types of tumor cells (progenitor like tumor
cells), thereby facilitating the patient's fast exit from remission [51].

Finally, glioblastoma cells have the ability to develop resistance to a wide range of
chemotherapy drugs [52,45,53].

5. OVs in glioblastoma treatment

So far, the highest efficacy in the treatment of gliomas has been shown for
paramyxoviruses, particularly Newcastle avian disease virus (NDV, a single-stranded
RNA virus, non-pathogenic to humans). The exact mechanism underlying the specific
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oncolytic activity of this virus remains unknown. Infection of tumor cells has been shown
to activate both antiviral and anti-tumor immune responses via a Ras-mediated tyrosine
kinase signaling pathway. By 2020, only one phase I/1I clinical trial was conducted on the
treatment of recurrent glioblastoma multiforme with the NDV-HUJ strain in 11 patients
[54]. Tolerable doses have not been determined due to its minimal toxicity.

Table. Oncolytic viruses studied in Russia in recent years

Virus Transgene Tumor Model Route Ref
adeno (Ad5, Ad6) NA glioblastoma SCX1 IT [32]
adeno, vaccinia NA gliomas in vitro NA [17]
avian adeno p53 epidermoid carcinoma SCX IT [86]
IV (infected
Coxsackie NA glioblastoma SCX natural killer [92]
cell line)

Coxsackie, echo,

. . NA glioblastoma in vitro NA [23]
polio vaccine
Coxsackie, echo, . L
. . NA non-Hodgkin lymphoma in vitro NA [16]
polio vaccine, VSV
IV (infected
Coxsackie NA glioblastoma SCX human [28]
leukocytes)
Coxsackie, echo, NA glioblastoma sCX in vitro [30]
polio vaccine
Coxsackie NA neuroblastoma SCX v [29]
Coxsackie NA selection in various lines SCX 1T [67]
measles NA melanoma SCX IT [18]
NDV, wild strains NA non-small lung carcinoma SCX IT [15]
NDV NA selection in various lines in vitro NA [68]
polio V NA rat glioma in vitro NA [59]
polio V NA rat glioma (Ifnarl) SCX [71]
Sendai NA canine mastocytoma clinical IT [58]
Sendai NA various metastatic cancers clinical ID, IT [56]
apoptin various in vitro NA [78]
apoptin murine Erlich carcinoma IP, SCX IT [79]
apoptin epidermoid carcinoma SCX IT [80]
NS1 glioblastoma SCX IT [82]
. GM-CSF / lactaptin breast carcinoma SCX v [83]
vaccinia
GM-CSF / lactaptin breast carcinoma SCX IT [74]
apoptin various in vitro NA [78]
gfp cervical carcinoma, murine melanoma SCX P [25]
GM-CSF,
. melanoma SCX IT [26]
TA polyepitope
NA epidermoid carcinoma SCX IT [27]
Zika NA glioblastoma SCX IT [62]

1SCX — subcutaneous xenografts, IP — intraperitoneal, IT — intratumoral, ID -intradermal, IV —
intravenous, NA — not applicable, gfp - green fluorescent protein

In Russia, in addition to NDV, the oncolytic potential of other paramyxoviruses is
being extensively studied [55,56]. For example, Sendai virus [57,55], which also showed
promise in canine mast tumors [58] (published experimental works on OVs conducted in
Russia are listed in Table). Unlike NDV, data on clinical studies or other cases of the use
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of this virus for the treatment of CNS tumors in humans have not been published in open
sources. Unfortunately, most studies on polio vaccine virus in Russia have been limited
to rat glioma [59,60] with the exception of [23]. The Zika virus, a representative of
flaviviruses, has recently attracted particular interest, since it exhibits a significant
selectivity towards glioblastoma stem cells [61,62].

6. OVs administration routes and permeation through BBB

The main reason for the usual failure of OVs is the fact that a number of natural barriers
must be overcome during the penetrance of the oncolytic virus into the tumor. Like any
nanoscale object, most viruses are nonspecifically removed from the bloodstream by the
liver, lungs, and spleen. This barrier can be overcome by non-covalent modification of the
surface of viruses with molecules disguising them from the immune system and thereby
prolonging circulation. Polymers of both natural and synthetic origin are used for this
camouflage. The first class includes dextran, polysialic acid, hyaluronic acid, chitosan, and
heparin, the second - polyethylene glycol, polyacrylamide, and others. Also, preliminary
administration of, for example, magnetic polysialized particles can be used, which repels
the immune response to itself and ensure the prolongation of circulation. The next obstacle
is the activation of acquired antiviral immunity and hence the rapid inactivation of viral
particles. This is especially true in case of the use of viruses common to the population,
for example, adenoviruses of serotypes 3 and 7, or in pathogenic viral families for which
vaccination programs are deployed, for example, morbilliviruses. One of the strategies to
overcome this limitation is the use of non-immunogenic viruses, for example, viruses of
other animal species, or recombinant viruses with altered epitopes. On the other hand,
sometimes pre-existent immunity boosts anti-tumor effects of OV [63]

The poor permeability of the blood-brain barrier (BBB) is the main factors for the low
efficacy of chemotherapy for brain tumors [64]. BBB is composed from a complex mixture
of endothelium (Fig. 2), vascular and glial cells, primarily astrocytes. These tight
intercellular contacts prevent the passive transport of charged molecules weighing more
than 400 Da, transport of necessary molecules is mainly carried out by receptor-mediated
endocytosis in epithelial cells using transport proteins (for example, transferrin and
lactoferrin). Traditionally, the use of tissue-specific viral strains was considered
promising. For example, some types of rhabdoviruses and paramyxoviruses can penetrate
the BBB and infect tumor cells.

i Dying cancer cells

b \ oY
. o @
. . Cell transport
-

*.| (The blood-brain barier

Figure 2. Importance of the blood-brain barrier in oncolytic virotherapy of brain tumors.

To date, however, most of developments in this area involve intratumoral administration.
This approach seems to be the most effective for the treatment of surgically accessible


https://doi.org/10.20944/preprints202107.0064.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 July 2021 d0i:10.20944/preprints202107.0064.v1

7 of 14

neoplasms in the early stages. At the same time, it is not suitable for diffuse tumors, since
the OV predominantly affects the injection site and spreads very little further. This is due
to the high density of cell contacts in the tumor tissue and poor virus release even during
cell death. Additionally, high density prevents the infiltration of immune cells into the
tumor stroma. This limitation can be overcome by using recombinant viruses expressing
various extracellular proteases, for example elastases, which stimulate the spread of the
virus [65]. However, such a step can lead to the dissemination of cancer cells and
metastasis in the absence of their full-fledged infection, stimulating the development of
the disease. In theory, systemic delivery allows targeting cancer cells regardless of their
location, which is important for inaccessible neoplasms, for example, the central nervous
system or pancreas.

Late stages of glioma development are characterized by degradation of the blood-brain
barrier (BBB), thereby promoting efficient delivery of therapeutic molecules to their
targets. However, wherever its integrity is preserved, it protects not only the parenchyma,
but also infiltrated malignant tumor cells from the action of drugs.

8. Genomic engineering of OVs

Potentially, OVs may become extremely potent therapeutic means both due to their
ability to modulate the immune response and to a variety of mechanisms available to
control their own activity. However, at the same time, it is still obvious that we are in the
infant stage of the development OVs as conventional therapeutics [66-68]. OV
development may be compromised by genetic drift during the long-term cultivation of
the virus leading to uncontrollable changes in its useful oncolytic properties [69] [70].
Therefore, radical approaches employing genetic engineering are mandatory. Relatively
simple changes such as knockout of unwanted genes have been practiced for a long time,
for example, for several strains of poliovirus [71]. However, it is evident that without deep
modifications of their genomes, the potential of viral-based oncolytics will never be fully
achieved, remaining at the level of rare clinical trials with very limited number of patients.
Currently, the insertion of various transgenes, for example, suicidal cassettes, fusogen
proteins or growth factors, is being investigated, which will make it possible to further
increase the efficacy of viruses, especially adenoviruses [72]. Further, there is no doubt
that for practically successful OVs, it is important to select effective transgenes for
insertion into the viral genome. The most promising candidates are transgenes that
increase the likelihood of crossing the BBB, such as the ferritin heavy chain (FTH1) gene,
immune recognition of malignant cells, for example, EGF gene fragments, activation of
antitumor immunity, for example, GM-CSF [73-75] (Fig 3), suicidal cassettes such as the
HSV-TK thymidine kinase gene, and others.
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Figure 2. GM-CSF is one of the most popular transgenes for OVs.

After entering the tumor, OVs should, on the one hand, have sufficient activity for
effective replication and dissemination, and on the other, avoid premature activation of
intra- and extracellular mechanisms of the antiviral response. Such a fine balance can be
achieved by controlling the properties of viruses via modifying their genome, including
the replacement of promoter sequences with those that are active in tumors to ensure their
tumor-specific expression [76] Also, the genome of the virus can be modified by including
transgenes that enhance the antitumor immune response, for example, through the
expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor
necrosis factor alpha (TNFa) and various interleukins (for example, IL12 [77]).

A separate problem is the effective elimination of cancer cells not only by activating or
redirecting various types of immune response, but also by inducing apoptosis or virus-
mediated lysis. However, it should be noted that tumors have developed numerous
mechanisms how to inactivate the apoptotic cues. From this perspective, the viral-
mediated oncolysis appears to be a more attractive scenario. The traditional approach to
this is the use of specific serotypes of viruses, such as syncytium-forming viruses,
primarily paramyxoviruses (for example, pseudo-plague of chickens or Newcastle disease
(NDV) [56] that effectively disguise from the surveillance of the immune system. Further,
an insertion of suicidal cassettes such the herpes virus thymidine kinases into the viral
genome remains to be a popular choice in constructing OVs. The product of this gene,
thymidine kinase from the Herpes Simplex Virus (HSV), when introduced into cells, can
phosphorylate the nucleotide analogue of acyclovir and turns it into a toxic compound,
causing massive cell death. In addition, among suicidal cassettes such the herpes virus
thymidine kinase remain to be the most popular ones. The product of this gene, when
introduced into cells of the nucleotide analogue of acyclovir, phosphorylates it and turns
it into a toxic compound, causing apoptosis.

Overall, quite a number of different transgenes have been explored to boost the action of
OVs in Russia. For example, the apoptin gene from chicken anemia virus have been
reported to improve oncolytic action of vaccinia virus [78-80]. A similar approach has been
tested for adenoviruses [81]. Toxic protein NS1 have been also evaluated for this purpose
[82,83]. In principle, any variants of genomic modifications attract attention, especially for
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well-studied models such as adenoviruses [84,85]. Restoration of normal p53 with the use
of adenoviral vectors also has been explored [86].

9. Reducing side effects of virotherapy

A wealth of experimental data strongly argues for the relatively low toxicity of herpes
viruses, adenoviruses, poxviruses, and paramyxoviruses. At present, various clinical
studies have shown the safety of both intratumoral and systemic administration of OVs,
even when using high concentrations of the virus (up to 2x10'® particles) [87]. The key
factors in the development of a therapy based on OVs are the specific type of virus and
the intended route of administration

The thymidine kinase-acyclovir system additionally provides control over the spread of
the virus. Accordingly, in the event of complications, infected cells can be eliminated with
standard antiherpetic drugs such as acyclovir.

As an example of such effects, one can mention that oncolytic HSV may cause activation
of dormant herpesvirus infection, hypotension, tachycardia, pleural effusion, cerebral
edema with speech disorders and seizures. In addition, oncolytic adenovirus may cause
pleural effusion with dehydration, hypokalemia, liver malfunction. All of the
aforementioned treatments for viruses posed a threat to the health of patients who
participated in these clinical trials. Pleural effusion can lead to shortness of breath and
even asphyxiation. Fortunately, most of these severe adverse events have been resolved
after discontinuation of treatment or symptomatic treatment, rarely threatening patients'
lives [88].

10. Epidemiologic safety of OVs

Safety considerations of the practical use of any viruses play ever-increasing role in the
decision of implementing a specific type of OVs. The valid concerns that a virus may
spread from a laboratory to the production facility or patients themselves may give rise
to new aggressive and deadly infections. The creation of viruses, modified in such a way
that they become replication-deficient, should eliminate this kind of fear. But even more
promising is the assembly of clinical OVs and gene-therapeutic virus-like particles from
individual components completely in vitro, avoiding any living cells, at the final stages of
viral assembly. Such strategies aim to develop viral particles with the highest degree of
safety inherent in their design and, accordingly, cut off from hypothetical threats of the
spread of viruses from laboratories, factories and clinics into the environment and further
into the population.

12. Practical use of OVs in Russia

Much attention is being paid to combining OVs with other means, for example, the there
is hope that OVs may decrease stiffness of the tumor extracellular matrix and increase
CAR-T access [89, 90] or that dendritic cells may be used as carriers of OV [91] as well as
natural killer cell lines [92].

In the 90s a Sendai virus has been tested against various inoperable tumors. Some patients
showed a long-term remission with resorption of primary tumors and metastases [56].
However, this virotherapy was not effective for the majority of patients.

The first registered OV in Russia is Cancerolysin, a mutant variant of human Ad5, defective
in the E1B 55K protein gene, prepared at Scientific Center "Vector". Preliminary results
indicated that in patients with disseminated head and neck cancer it was well tolerated
[93].
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13. Conclusions and Future directions

Oncolytic viruses are now being tested all over the world, including Russia, and are
considered as perspective agents against the most aggressive tumors resistant to
traditional therapies. The old approach of adapting replication competent unmodified
viruses, for example, VSV [97], and repurposing vaccine strains such as the yellow fever
one still looks promising in the fight against pancreatic cancer and others [98]. However,
given the heterogeneity of the brain tissues and the BBB penetrance problem that includes
low immunity inside the brain, novel glioblastoma-specific OVs should be designed
through deep modifications of the existing OVs by enhancing their oncotropism, ability
to penetrate the BBB, and improved pharmacokinetics (including resistance to the
immune system). It is believed that only replication-deficient OVs should be used in
cancer therapy in the future. It is advisable to employ the conception of transient (i.e.,
existing only immediately after the modification of viruses) tropism, which undoubtedly
should guarantee the increased epidemiological safety of oncolytic viruses. This approach
is especially promising if certain proteins are conjugated with the virus surface that cannot
be successfully produced in the cells in which the virus is assembled. For such a
conjugation system, it is tempting to use a transglutaminase, an enzyme that cross-links
glutamic acid residues with amine groups of other amino acids [94]. The recent work [95]
indicates that this approach is more efficient in obtaining the artificial viruses with altered
specificity when compared with similar chemical approaches [96]. This opens
innumerable possibilities for virion functionalization by conjugation, for example, with
ferromagnetic nanoparticles followed by combination therapies. Importantly, this
approach is currently being actively pursued in the Institute of Poliomyelitis named after
Chumakov. Considering various trade-offs, the most promising approach for the future
OVs application are surface-modified adeno-associated viruses, armed with transgenic
enzymes that convert prodrugs into their active forms in situ. This approach attracted
relatively little attention in Russia in the past but is now set to rocket-launch at several
research institutes. In conclusion, we believe that despite limited success achieved by OVs
to date due to specific problems of OVs described above, this multidisciplinary approach
has enormous potential. Importantly, given the rich history of research in virology,
Russian virologists and molecular biologists strive to succeed in this field.
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