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This paper gives both the solutions to the puzzles of quantum gravity and a general theory
of quantum gravity, and discovers their relations reflecting symmetric propertis of the standard
nonlinear gravitational Lagrangian., which are not relevant to any concrete metric models. This
paper concretely shows the general commutation relations of the general gravitational field operators
and their zeroth, first, second and third style, respectively, of high order canonical momentum
operators for the general nonlinear system of the standard gravitational Lagrangian, and then has
finished all the four styles of the quantization of the standard gravity. No needing, as usual, to solve
the Euler-Lagrange equation to complete the whole process of the quantization of the standard
gravitational fields, namely, this paper novelly simplifies all the current quantization theories of
the standard gravitational fields. So lots of the complex calculations of quantum gravitational field
theories up to now can be omitted to make the physical picture clearer, simpler and more easily
understanding. Therefore, the solutions to puzzles of quantum gravity are given. Consequently,
this paper opens a door to study and give a general theory of the quantum gravitational field don’t
depending on any concrete metric models.
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I. INTRODUCTION

Quantum gravity is a domain of theoretical physics for
exploring to describe gravity on the basis of principles of
quantum mechanics [1], when near compact astrophysical
objects, there are the strong effects of gravity.

The current gravitational theory is based on Einsteini-
an general relativity in classical physics, and the oth-
er three physical fundamental forces are represented in
quantum field theory, they are very different formalisms
for explaining different physical phenomena [2]. Quan-
tum gravity is necessary when people’s studies are from
classical physics to quantum physics [3-6].

Quantum gravity may reconcile general relativity with
quantum mechanics, there exist difficulties when quan-
tum field theory is used to gravitational theory by gravi-
ton bosons [7], and the deduced theory is not renormaliz-
able (e.g., the theory shows infinite values of observable
quantities, for instance, the masses of particles). There-
fore, theorists have done a lot of research works in order
to overcome the problems of quantum gravity. Super-
string theory unifying gravity with the other three funda-
mental forces and loop quantum gravity no such attempt
are the good candidates for overcoming the problems of
quantum gravity [8], and both superstring theory and
loop quantum gravity all quantize the gravitational field-
S.

Quantum gravity shows the quantum behavior of the
gravitational field, and gravitational quantum field the-
ory of unifying a grand unified theory may be viewed as
a theory of everything. The investigations of quantum
gravity are domains having different approaches for the
unification.

Up to now, no less, at least, than 16 major interesting
approaches for quantum gravity have been shown in the
literature [9] in alphabetical order as follows:

Affine quantum gravity [10]; Asymptotic quantization
[11, 12]; Canonical quantum gravity [13-16]; Condensed-
matter view [17]; Manifestly covariant quantization [18-
24]; Euclidean quantum gravity [25, 26]; Lattice formu-
lation [27, 28]; Loop space representation [29, 30]; Non-
commutative geometry [31]; Quantum topology [32], [33];
Renormalization group and asymptotic safety [34, 35]; R-
squared gravity [36]; String and brane theory [37-40]; Su-
pergravity [41, 42]; Triangulations [43-45] and null-strut
calculus [46]; Twistor theory [47, 48].

Quantum gravitational effects evidently show at scales
near the Planck scale and equivalently far larger energy,
which is far larger than that of current high energy parti-
cle accelerators. Consequently, there are not experimen-
tal data distinguishing the proposed competing theories,
but thought experimental methods are presented as the
testing methods of the competing theories [49-51].

The quantization of gravity, up to now, remains a
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formidable problem for physicists. Although superstring
theory has made some progress in quantizing gravity,
many profound questions still remain unanswered [52].

Meshing all these theories at all energy scales is rele-
vant to the different assumptions how the universe work-
s. General relativity shows that ”spacetime tells matter
how to move; matter tells spacetime how to curve.”[53].
Quantum field theory is formulated according to special
relativity in the flat spacetime. When treating gravita-
tion as a simple quantum field, which will result in that
the theory is not renormalizable [7]. Quantizing gravity
becomes key challenges, and is no longer applicable in
flat spacetime [54].

Quantum gravitational theory is widely hoped to un-
derstand the origin of the universe and the behaviors of
black holes [55]. Some different quantum physics systems
are investigated [56], and Minimal area surfaces dual to
Wilson loops are studied [57].

The appearance of singularity of infinite large of space-
time curvature in general relativity (meaning its struc-
ture has a microscopic scale) requires the establishment
of a complete theory of quantum gravity. The quantum
gravitational theory needs to be able to describe the con-
ditions inside black holes and in the very early universe,
where gravity and the related spacetime geometry need
to be described in quantized formulism. Despite lots of
efforts by physicists and the developments of some po-
tential candidate theories, humans have yet to come up
with a complete and self-consistent theory of quantum
gravity. This paper wants to solve the problems in order
to give a complete and self-consistent general theory of
quantum gravity.

The arrangement of this paper is: Sect. 2 gives canon-
ical conjugate momentum opretors corresponding gravi-
tational field operators, Sect. 3 studies energy of gravita-
tional field of the standard gravtational Lagrangian, Sec-
t.4 shows further investigations of quantization of quan-
tum gravitational fields, Sect.5 investigates commutation
relation for gravitational fields and the first style of mo-
menta, Sect. 6 shows commutation relation for gravita-
tional fields and the second style of momenta, Sect. 7
studies commutation relation for graviational fields and
the third style of momenta, and Sect.8 is summary and
conclusions.

II. CANONICAL CONJUGATE MOMENTUM
OPRETORS CORRESPONDING
GRAVITATIONAL FIELD OPERATORS

We generally consider granvitational field operators

ﬁ;w(f) = gu,u(ir)nuﬂ v = 0; ]-7 2737 (21)

thus there are ten independent components.
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We need to specially stress that our investigations in
this paper are very general for the standard gravitational
field Lagrangian that has gotten the huge successes in
classical physics, and are not dependent on any concrete
metric model through the whole paper. Thus, the studies
of this paper is of the general theory of quantum gravity.

When we generalize coordinate operators and canoni-
cal momentum operators of finite degrees of freedom to
gravity field operators and its canonical conjugate mo-
menta of infinite degrees of freedom, physics consistence
requires us to generalize commutation relation of coor-
dinate operators and momentum operators in the first
quantization to commutation relation of gravity field op-
erators and its canonical conjugate momenta

(G (x,), 70 (X ) ]impr = IAGDS(x — X'), (2.2)
where Afjf is a general operator function decided by sat-
isfying some conditions of this system, the corresponding
canonical momentum is

oL oL
124 t) = M THY )= ——
™) = ) T ) BB D)
(2.3
L = kR = kg*’ Rap, (2.4)

where £, R and k are the standard Lagrangian density of
general relativity [58], the scalar curvature and the cou-
pling constant of the general gravity system, respectively.

Generally taking the standard Lagrangian density (2.4)
of this system and using eq.(2.3), we get

oL ORus
(x,t) = ————— = kg ——2 (25
( ) aatg,uu (X7 t) aatg;w (Xv t) ( )
Putting
Rap =10, 5 =10, + 1950, —T9,T7 (2.6)

into eq.(2.5), it follows that

O, 5~ 1%, , + 19,00, —T7,T7 )

af,o pot aff

pv — 0B
™ (x,t) = kg D0rgm (%, 1)

(2.7)

Using connection

1
o8 = igm(gv&p + 97,8 — 9pBi)s (2.8)

eq.(2.7) can be rewritten as

0

tuyr — af
) = R 1)
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1 1 1 ,
igfrﬂ’y(g’yma + Jav,c — gao‘,’y) - iggyv(g’yﬁ,a + Ja~,p — gaﬁﬂ) +Zgr)\gp‘9guxgaﬁgowgp’y ((5;5565 + 55555: — (5;5562)(

1 1 1
+§9M(gﬂfﬁ,p t 9pv,8 — gpﬁ,w)igpw(gw,a + garv,0 = Gao,y) 9v'o.a t Jay' o — Gaoy') T Z(gvﬁ,p + 9pv.8 — 9pBy
)Gerguo G 9”97 g" (5T6",67 + 6761V, — 67,01 5Y)

a’~y'Yo oYay vy Ya%c

1 afB o s v T v T v
_Zg'r/\qugqu Bg ’ng’y (5p(5'l;5<7 + 505557 - 6’}/5550
1

(2.9) )Gy 8,0 + Gay',8 = Japy') — Z(gvo,p + 9pv,0 — 9po,y

1 1
_§goy (g’ya,p +gp'y,a - gpcr,’y) igPV (g’yﬁ,oz + Jav,B — gaﬂ,’y)]'

Using formulae

gal“gu&p = —g:;l“gu,g,ga“g“&pgﬁa = —gf;)/“‘gpﬂgﬁa = —gz)a, )gT/\gLLQ.gl/Xgaﬁga’ygp’y (5;55/65 + 55555};’ - 6;’6565)]
(2.10) (212)

eq.(2.9) can be reexpressed as
Using eq.(2.12), we finally achieve

-1
tuy _ aff oT St SISV EY
T (x,t) = Kg* [—=977 6530202 6°7 (9vo,0 + Jary.0 — Gao, -3
( ) ) [ 9 BYT Y% ( Yo, ay,o ao ’Y) 7T)\Ox(xa t) :gT)\gﬂegyxﬂruu(x’t) _ K[ 5 GroA

1 oT EY(St S sU t Sl SV t Spsv 1 3
59" 97,97 (060505 + 050507 = 9,06.05) +900.x T 590Tinp T 5900905 — 9oxThn

1 2 2
+5907536¢559m(gvﬁ,a + gav,8 = Gap,y)
77 e g™ (,6010% + 656167 — BLORSY) + g7 (0855 — L g 07 g s =D 0rag P G+ g™
+§9 Gre,09" " (05,0505 + 0308 0% — 0.,080%) + 19 (6,0505 I GaB.6— 1 9N09 gaﬁ,x+§gexg GaB,n)- (2.13)

/ 1
+650488 — 6L6105) 9" (9y/o.0 + Jar' .o — Jao) + 19”( where the detail calculations see appendix A in supplied

o7 (st si sv ¢ sp s t s net material.
Gv8.0 t 9.8 — 9pBr)9 (5a6'y’60' + 5g5a57/ — 57/50460)—

, III. ENERGY OF GRAVITATIONAL FIELD OF
/ THE STANDARD GRAVITATIONAL
1977 (0,8505+340505 =82 0405)9”" (98,0 Gary' 5= Garp ') > LAC}‘?RA%IC{;IXN ©

1. , , , i} . . o
e (10,0t 9pv.0=9po,1 )97 (5355/554'5%5557/—52/65516)], Usmg action (2.4) (?f gravitational field of the standard
(2.11) gravtational Lagrangian

For convenience and simplicity and no losing generali- 4 4
ty, we transform eq.(2.11) as coveriant 3-order tensor A= /‘C V—gdr® = /HRV —gda”, (3.1)

we get the energy of gravitational field of the standard
Taox (X, 1) = Graguoginm ™ (x,t) = gravtational Lagrangian

H = [ (6 (%, Ogelx.8) ~ £V =g =
K[?QTAQ#OQVXgaﬁgGT 555:‘,65957(57707& + Javy,oc — gom,'y)

“POR
g af 4
9 9 (x,1) — R)/—gda®. 3.2
1 [ s e, t) ~ BV g, (32)
afB, ot EV (ST SISV T S SV T SISV

—59rA9uo9vx9 9 Gr'e,pY (5045 60 +6a'5a5 -0 6(150)
2 X = 7 T Eq.(3.2) means that if taking

1 « O'TI T 1%
+§gr)\gu09uxg ﬂg 555¢/65 ga’y(g'yﬁ,oz + Jary,B — ga/)’,’y)
1 « (TT/ T 14 T 1 T v g = 78£ = — 78R
5 mr0u0g™ 07 e s G015, + SRS, — STaNGY) ™06 O] = Gp s = kg s (33)


https://doi.org/10.20944/preprints202107.0054.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 July 2021

d0i:10.20944/preprints202107.0054.v1

then the canonical momentum needs not to differenti-
ate \/—g in eq.(3.3), consequently, taking eq.(2.5) as the
canonical momentum is consistent and the most econom-
ic, or all momenta will be with /=g througth the whole

paper.
Using eq.(2.13), we deduce three order contravariant

tensor

YA a0 B'x

TP (x,t) = g% g7 Xmagy (%, 1) = 6797 097 Xgr\gp0-

3 r et B x

G (x,t) = 7P (x, ) = K] 5979 9 X a+
’ / 1 / ’ 3 ’ /
979" 9" X gt 5079 9" Xanany+ 597 9" 97 X908,
’ ’ ]_ ’ ’
-9 9" 9% Xgor g3, — Zg“g‘”‘ 9P X 939" gap0
3 A a0 B'x,  af Lo o0 8'x, op
197797 797 X909 Japxt59779" 79" *goxg GaB,\] = K[—
3 ﬂ/a/"/ ,ya/ ﬂ/ 1 a'0 ’Yﬂ/ o 3 ﬂ/X 'Yal @ 7)\ alﬁ/ a
DT s A o A A A R S A W
]. 7 ’ 3 ’ ’ ]_ 1l
71975 gaﬁg(’xaﬂ _ Zg’ya gocﬁgfﬁ + 5goz B gaﬁgzzﬁ]. (34)

Because the index ~ is relevant to the time derivative,
we take v as t in eq.(3.4), then we get the two order
contravariant tensor

-3
ﬂ—MV(X’ t) = WtHV(X, t) = 5(79/“/7t 4 gtu,u

2

1 3
+50"°9" g5 + 597998 — 979" 95—
ltu af 1 St,u af v 1,u1/ af ,t
1979 905 = 1919 ap + 5979 g0p). (3:5)
Substituting eq.(3.5) into eq.(3.2), we deduce
H= /(W””(X,t)gw,t(xt) — L)y/—gda" =
H = K,[(;3 vt + tHv”_*_} po tv 70‘_1_
= 59 g 599" 90
3 1 3
5975995 — 99" g5 — 1979 9l — 1997 9l
1
+59"97°9,5)) 1 (%, ) = 9°7 Raply/=gda’.  (3.6)

It is very easy to calculate the standard gravitational
system energy eq.(3.6) when substituting concrete metric
models into eq.(3.6).

IV. FURTHER INVESTIGATIONS OF
QUANTIZATION OF QUANTUM
GRAVITATIONAL FIELDS

Because commutation relations of different fields and
their canonical momenta play very key role in quantiza-
tion theory, we now study the commutation relations.

For convenience and no losing generality, using e-
q.(3.5), we can define

o (x,t) = O (x, 1) + 7/ O (x, 1) + 7/ P (x, 1)
+r' O (x 1) = 7B (x 1) = 7O (x, 1)+

W(Q)MV(X7 t) _ 71_/(3);“/ (X, t) + 7_‘_I(Q)LW(X7 t) + ,R-(I)HV (X, t),

(4.1)
where
(0) v _ 3wt
T (Xv t) - R?.g " (42)
/W (x 1) = kgt (4.3)

B (x,t) = K59 9" gy + 599" 95— 979" 90,

2
(4.4)
'(3)W(X t) _K(l v jap it _1 tv af 1 _§ tp o3 v
m 1) = k(59" 9% 95— 19" 9" 9l =19 9" 905)-
(4.5)

For [§,,(x,1), 7% (x',#')];—y/, we may define
0

A (0)pv -
T X,1) = =i , 4.6
(x,1) CR) (4.6)

then the classical Poisson bracket for any operators needs
to be taken as

{X(Xv t): Y(X/a t/)}Pb,t:t/ =

oX(x) Y (') B oX(x) oY (')
gy (y) OO (y) - OF O (y) DGy (y)

)pb,t:t’ dY7

K
(4.7)

so that we can obtain the consistent theory between oper-
ator commutation relations and classical Poisson brack-
ets.

Therefore, we naturally have commutation relation of
field operator and its canonical conjugate momentum in
the quantization for infinite degrees of freedom

1. o 1
E[Q#,,(X,t),ﬂ'(o) B(Xlat/)]t:t/ = Z[Quu(xa t)v - )]t:t’

7:7
8§a5(x’, t
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=69905(x —x') = A (x — x') = =G (%, t) =——+
/ ( ) I ( ) 2 ( )agaﬁ?(X, t) ) .
B [glw (X, t)v ﬁ(l)aﬁ (X/, t/)]t:t’ == [glw (X, t)? ﬁ(O)aﬂ (xla tl)]t:t’
(2 (2
. Guv (x,t) /
v(X, 1) 5= ~ =
Guw )agag(x, ) " Dgas(x,t) ( )

0G0 (%, 1) O (0eap (x', )
0Gpo(y)  Ox(Oro(y)

_ 8@;“/ (X, t) aﬁ(o)aﬁ (XI7 tl)
0707 (1)) Do (y)

)pb,t:t/:tydy = {ﬁuu(X, t)7ﬁ(o)aﬁ(xl7t,)}pb,t=t’a (4.8)

where {g,, (x,1), 7O (x/,#')} 411 is classical Poisson
bracket for infinite degrees of freedom.

For infinite degrees of freedom and similar to investi-
gations on Eq.(4.8), we have

1

. . 1. .
Z[Q/JV(Xa t)vgaﬂ(xlat)]t=t’ = g[guu(xvt)gaﬁ(x/at)_

. R a4 U(X, t) 8§a5(xl,t/)
a " )G =y =0 = - o
s (. s (. Dy = 0 = [ (L) LB

0uv(x,t) 0gap(x',t")
0% (y)  0Gpo (y)

(4.9)

1
)

_ﬁ(O)aﬁ(XCt/)ﬁ.(O)MV(X’ t)]t:t’ —0= /(

ORI (x,1) 9FOB (' ¥') DR OW (x,1) 97O (', ¥)
0pa(y)  0FOW7(y) OO (y)  Dgpa(y)

Vpbst—ti—t, dy = {7 (x,1), # OB (' #')} .
(4.10)
Using the investigations of this section, we can give
many important investigations. In terms of the detailed
argument in this section, we do find that, for the com-
mutative relations of operators, people can do exact cal-
culations directly with the classical Poisson’s bracket of
operators because they are completely equivalent by the
relations above.

V. COMMUTATION RELATION FOR
GRAVITATIONAL FIELDS AND THE FIRST
STYLE OF MOMENTA

We further consider the commutation relation for

gravitational fields and the first style of momenta
,ﬁ.(l)aﬁ(XI’tl)

1
f[fr(o)“”(x,t),fr(o)aﬂ(x’,t’)]t:tf _ E[ﬁ_(o)uu(X7 t)ﬁ_(o)aﬁ(xl’t/)

1
+- [g,ul/(xv t)ﬂ ﬁ-/(l)aﬁ (X,7 t/)]t:t/ = = [gp.l/(xa t)v ﬁ(O)aﬁ(xlv t,)
(3 (3

1. 1., .
]t:t'—i_{[glﬂf()g t>7 K’gtawﬁ]t:t’ = g[gll«l/(xv t)a 7-‘-(O)Oéﬁ(xl7 tl)]t:t’+

/(5‘@”()(, t) O(rg"?)  Bgu(x,t) 7' DF(x' 1)
09ps(y) (k72 gr7t)  07Oro(y)  0gps(y)

)pb,t:t’:tydy = {g,ul/(xa t):ﬁ(l)aﬁ(xlyt/)}pb,t:t“ (5~1)

Thus we can further deduce

1

=[G (x, 1), 7 )] = 651678(x — x)
2

2

5 [ GR3z30x 9180850750 ) ) phemrr—r, dy

)pb,t:t’:ty dy = {guu (X» t), gaﬁ (X/, t/) }pb,t:t’

25t 5os(x — x')57

= 67005(x — x') 20,0

« 2 « 1o
= (6700 — gafjay )o(x —x') = ADP5(x — %), (5.2)

where the first term and the second term on right side
of eq.(5.2) are linear terms, which shows the only linear
property of the standard gravitational Lagrangian, the
nonlinear property will be shown in the following higher
order term studies.

VI. COMMUTATION RELATION FOR
GRAVITATIONAL FIELDS AND THE SECOND
STYLE OF MOMENTA

We now consider the commutation relation for grav-

itational fields and the second style of momenta
7AT(2)aB(X',t')

1 o 1 N
E[g,u/u’(xv t),,]r@)/i (X/,t/)]t:t’ = g[gu’v/(xa t)ﬂr(l)ﬂ (X/,t/)

1 1
]t:t/_‘_;[gﬂ/’// ()(7 t)’ 7?‘./(2)#'1/()(/7 tl)]t:t/ = ;[g,u/y/ (X, t)’ ﬁ(l)ﬂu(

1, 1 3
X ) emer =[G (5,1), 5(59" 9" 9+ 597 9" 928 — 9" 9" 0,
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1 6A Tyl X,t ]‘ ~ A v o’
Nemtr = =[G (%, 8), 7O (X )]s + /(%7”_ )5(y = %) = =[G (x, 1), 7O (X ) 1= + (80,65 5(

) 89;)0(9) v

1 3
55(%9“99t”gwgae,y + %guxgtugowgaxﬁ _ gt)\guugavg)\aﬁ) §gtu(_gaa(5;55,5f‘) + 5gtH(_gm, Z Z,(sf‘)_
eErey
. 9 (040707 9ra))0(x — ') = 7|
)pb,t:t’:tydy = {Qwu’ (X»t)aﬁ@)w(xlatl)}pb,t:t’ = Z[ t
~ ¢ A~ (D) pv (! t 1 tv SH 3 im 5Y
(9§M/V/(X,t) b g,/,/(X, )aﬂ' (X’ )]t:t’+((§g (_gtu’ V/)+§9 (_gtu’ I/')

gu/y/(xvt))ﬁ(l)“y(xl7t/)]t=t/+/dy( agp (y) 8(5;391)0',75)&
o 2

1., .
1 0 tv o 3 Ut o A o _guy(_dz’gV't))(s(X_Xl) = ;[gu’u’(xvt)aW(l)uu(x/7t/)]t:t’
S99 97 9004+ 5979 9 Gar =9 9" 9 Gray ) t=t =t -

2 2
: (6.1) 1 3
Using +((=5000) = 56000 = 9" guw)d(x = x). (64)
ou . _ou o _ ) —
QWW'%W%ﬂww—%M%W%% Putting eq.(5.2) into eq.(6.4), it follows that

we can have
1 2
P ~(2)pv (1 4! _(SHsv_ Lsu cp o
O 1) = (gt g g+ Sgggrgn g 000 F I = (§500 =5 8,0)60x = X)
5 2 af, 2 ax,

sy Bgn s _ g X —
gt)\guuga'yg/\aﬂ» _ K(%guf)gtvgav(_gagggyu'gule)_*_%guxgtp‘gav(_+(( 25u/51/’) 2(5#/51,/ g gl/u’)(s(x X ) = (
op g g (— u'a (Lo 15” o z5“ Vg g )8(x — x) = APP§(x — %!
Jaa 9y 9ux) =97 9" 9% (=9 957 9oa)) = K(59" 9™ ( 500 + G0y 0 9" 911 )8 )= By o );
(6.5)
where the first term and the second term on right side of
gaggau/7agw0) + §g”"gt”(—gagg‘m/’agwx) _ gtkglw(_ eq.(6.5) are linear terms, the third term is nonlinear ter-
2 m, which shows the nonlinear property of the nonlinear
system of the standard gravitational Lagrangian.
g)\;ﬂgulg’agoa)) = H(%gtu(_gaagou,a)_’_;gtu(_gaagau,a)_guu(_gta,agaa)).
(6.3) VII. COMMUTATION RELATION FOR
Putting eq.(6.3) into eq.(6.1), we have GRAVIATIONAL FIELDS AND THE THIRD

STYLE OF MOMENTA

1 1
G (%, 1), T (X ) s = =[G (%, 1), T (x! )] ;=» We now consider the commutation relation for gravita-
! ! tional fields and the third style of momenta 78 (x’ t')
69 /y/(X t) 0
+k [ d ad ’ — (=g (—gaog™H™ 1., (3w 1., (D
[ R g Caond™) Sl (5,0, 7, Y omr = <[ O, ), 7 (1)
+§ tu(_ ou,a) _ /u/(_ to,a )) 1 ~ ~1(B) v (o 4l 1 “ ~ (2)pv
29 Gacd g g Yoo ) )pbt=t'=t, ]t:t/“‘;[g/ﬂu’ (X, t), T (X , T )]t:t’ = E[gulyl (X, t), T (
1

N N v o' 1. 1 1
[gﬂl,/(x, t), A#(Dp (X’, t/)]t:t' + /dy(éz,é,,, (5(X — y)( le tl)]t:t’ + 2[gﬂ/u/(x7 t), H(igﬂygaﬂg(fﬂ N thugaﬂg;ltﬂ

i

1 v o « 3 oSV S v o S 3 @ sV ]‘ ~ - v
5gt (_gaa5p(5g,(5t )"’_igtu(—gaa' o 0’515 )_g“ (—5:’7 0’5t goa) _thll«g Bgaﬁ)}t:ﬂ = g[gy‘/l,/(x,t),']'('(Q)M (letl)]t:t’+
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1 _tv

19 gaﬂgfg - %gt“ g*? ggxy,g)charactors just reflect the symmetric property A
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(3)ap _
o=

m/(ag“/”’ (x,1) 0(39" 9P g5 —
9955 (y) (k52 grot)

Jpbit—tr=t, dy = {Gurv (%, £), 7O (X' )by e, (7.1)
Using eq.(4.5), we have

/O (x, 1) = r(59" gaﬂgiﬁ_igt gaﬁgéuﬁ_igwgaﬁgfﬁ)'

1 1
= K(59"9°7 9" (~ 90097 925) — 79" 9"

3
=59"9"°9" (=90097 925))

= r(59" (—gﬁa’tgea)—zgt (—958’“955)—19t“(—gﬂ8’ 9ep))-

(7.2)
Putting eq.(7.2) into eq.(7.1), we deduce

1 1
n [gu'l" (X7 t)7 ﬁ(g)uy(xl’ t,)]t:t’ == [gu'V' (X’ t)? ﬁ(Q)uy(le t/)
1 (3

0, (%,1) 0 1
o g ( Q9w (X, g (— gty
]tft +/ Y( agpa(y) 8(/4:_73gp0-’t) K:(2g ( g g ﬂ)

1

3
—29" (=9""925) — S0 (=97 9e5)pbt=v=t,

1

i

By (5, ), 5P (! Yoy + / dy (87,6%,5(x — y)-

2 1 1
(59" (5505019:5)+ 9" (=07 501 9ep)+ 5.9 (=0,0507 gp)

)pb,t:t’:ty =3

2 17 1 v 1 v
(ggu gu’u/+69“ (‘.%%’)"’59 H(_gv/u’))pb,t=t/=ty5(X/_Y)

1

1
_(55;,55,%55,55, +" g )3(x = x') =AS5(x — x').
(7.3)
It is interesting that eq.(7.3) has nothing to do with
#/G(x’ 1), and is only relevant to #(P#¥(x’, '), these

9" (=90 9% 9ep)

1
Gy (6, £), 7O (< )] / dy(5(x — y)

1., ~ (2) v
[gll/y’ (X7 t)? 71-(2)/"' (X/7 t/)]t:t/+(6(x - X/)'(O))pb»t:t,:ty =

A,(fl,)aﬂ of the nonlinear system of the standard gravita-

tional Lagrangian.

Using eq.(7.3) and taking (u/, ') = (u, v), we have

1 ~ ~ v 1 v 7 v v
Z[guu(xat)m(?’)” (X', t)]e=r = —(§5u55+6555u+9“ Gvp
) N (2 424y N =ABmr s !
)(X—X)——(§+ )o(x —x') =AM 8 (x — )

(7.4)
When the repeating indexes don’t sum up, eq.(7.4) is

1. (3 1., 1
{[gm/(xat)ﬂr(?))u (xlatl)}t:t’ = _(56;1455 + 6

+2)8(x — x') =APM5(x — x') (7.5)

Eqs.(7.3)-(7.5) mean that the cananical momenta of
the general metric tensor operators §,,(x,t) are the
total momenta 7 (x' ¢'), the different coefficients
—(%5;5,’/‘ + %555,‘/’ + 9" gyu) show their different commu-
tation relations.

VIII. SUMMARY AND CONCLUSIONS

This paper studies the puzzles of quantum gravity, and
gives a novel general theory of quantum gravity, no rele-
vant to any concrete metric models, as well as the solu-
tions to the puzzles.

This paper deduces general commutation relations of
the general gravitational field operators and their differ-
ent styles of high order canonical momentum operators
for this general nonlinear system of the standard gravi-
tational Lagrangian.

This paper concretely show the general commutation
relations of the general gravitational field operators and
their zeroth, first, second and third style, respectively, of
high order canonical mementum operators for this gen-
eral nonlinear system of the standard gravitatioal La-
grangian, and then have finished all the four styles of
quantization of the standard gravity. Especially, the nov-
el equations (6.4) and (6.5) are deduced for the first time,
which reflect the nonlinear structure properties of the
commutation relations for the standard gravitatioal La-
grangian, i.e., this paper discovers AS,ZQB (i=0,1,2,3)
and their relations reflecting symmetric propertis of the
standard nonlinear gravitational Lagrangian.

In this paper, we present a new quantization method
of gravitation fields of the standard gravitational La-
grangian: the general operator expression of the gravi-
tational field is taken, further the canonical momenta of
the gravitational fields are given out by the Lagrangian.
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Therefore, people, no as usual, really needn’t to solve
the Euler-Lagrange equation to fulfill the whole process
of the quantization of the standard gravitational fields.
Because there also are the unsolvable cases, but this pa-
per shows exact solutions. So a new simple and effective
quantization method of gravitational field is presented.
So much of the complex calculations of quantum gravita-
tional field theory up to now can be omitted to make the
physical picture clearer and simpler, namely, this paper
novelly simplifies all the current quantization theories of
the standard gravitational field Lagrangian, i.e., novelly
gives the quantum gravitational field theory, which make
the quantum gravitational field theory more easily under-
standing and the length shorter of the textbook with key
physics formulism and so on. Since quantum gravitation-
al field theory is the very important foundational theory
for studying different gravitational field theories. Final-
ly, the conclusions are completely consistent with the ex-
isting quantum gravitational field theories. The other
processings for the quantization are similar to the usual
quantization processings, thus we don’t repeat here.

So far as is known to all, the ultimate form of quan-
tum gravity is what all people don’t know. This paper
presents a general theory of quantum gravity that does
not depend on the metric, which provides a general the-
ory for finding the final theory of quantum gravity. Be-
cause the quantum gravity theory without dependence of
the metric in this paper is the most general, which meet
the requirements of the ultimate quantum gravity.

Therefore, this paper opens a door to study and give a
simpler, direct physical and easily understandable novel
general theory of the quantum gravitational theory don’t
depending on any concrete metric models. Following this
paper, lots of works can be done.
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