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Abstract: Spatially explicit, fine-grained datasets describing historical urban extents are rarely avail-
able prior to the era of operational remote sensing. However, such data are necessary to better un-
derstand long-term urbanization and land development processes and for the assessment of cou-
pled nature-human systems, e.g., the dynamics of the wildland-urban interface. Herein, we propose 
a framework that jointly uses remote sensing derived human settlement data (i.e., the Global Hu-
man Settlement Layer, GHSL) and scanned, georeferenced historical maps to automatically generate 
historical urban extents for the early 20th century. By applying unsupervised color segmentation to 
the historical maps, spatially constrained to the urban extents derived from the GHSL, our approach 
generates historical settlement extents for seamless integration with the multi-temporal GHSL. We 
apply our method to study areas in countries across four continents, and evaluate our approach for 
two U.S. study sites against historical settlement extents derived from the Historical Settlement Data 
Compilation for the US, HISDAC-US, achieving Area-under-the-Curve values >0.9. Our results are 
largely in agreement with model-based urban areas from the HYDE database, and demonstrate that 
the integration of remote sensing derived observations and historical cartographic data sources 
opens up new, promising avenues for assessing urbanization, and long-term land cover change in 
countries where historical maps are available. 

Keywords: urbanization; long-term settlement patterns; built-up land data; global human settle-
ment layer; historical maps; topographic map processing; data integration. 
 

1. Introduction 
By 2050, 68% of the human population is projected to live in urban areas [1]. The 

increasing urbanization and related processes such as rural-urban migration, socio-eco-
nomic changes, and land consumption are drivers of issues such as transportation con-
gestion and increasing pollution, posing unprecedented challenges for urban planners 
and policy makers. In order to make our cities more sustainable, efficient, and resilient to 
increasingly occurring extreme weather events, natural hazards, as well as climate-change 
related phenomena, a thorough understanding of the long-term development trajectories 
of urban areas is indispensable. However, spatially explicit data on the size and structure 
of urban areas (and their changes over time) are typically derived from remote-sensing 
based earth observation data and thus, rarely available prior to the 1970s. This shortcom-
ing severely limits our knowledge of historical urban-spatial development, and forces re-
searchers to rely on an observational window of approximately 40 years for retrospective 
assessments [2-4] and to establish future projections of urban land [5]. Hence, researchers 
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studying long-term historical (urban) land development either rely on model-based ap-
proaches (e.g. [6,7]), on alternative data sources such as property data [8-11], or on the use 
of historical maps [12-16] that are mostly constrained to relatively small areas, such as 
specific cities, regions, or countries, often involving manual digitization work. This re-
search explores the use of historical maps more specifically, as many countries have some 
form of historical map series and are able to derive knowledge related to urban areas prior 
to the 1970s. Integrating such spatial knowledge with existing global remote sensing-
based settlement layers facilitates building temporally extended depictions of historical 
urban development for any region in the world for which such map archives have been 
established. This kind of integration framework is presented herein. 

Recent advances in automated georeferencing [17,18], cloud-based data storage tech-
nologies and map acquisition methods have catalyzed the availability of large historical 
topographic map collections to the public, often holding thousands of (georeferenced), 
digital raster datasets, such as in the US [19,20], the UK [21], Switzerland [22], or interna-
tional collections [23-26]. Moreover, advances in the automated processing of historical 
maps have opened new avenues for the efficient acquisition [27] and mining of large vol-
umes of historical maps, and for the detection, recognition, and conversion of historical 
map content into digital, machine-readable data formats [28-31]. 

Such recent efforts include the mining of (historical) map collections by their content 
or associated metadata [32-37], automated georeferencing [18,38-40] and alignment 
[41,42], text detection and recognition [43-45], or the extraction of thematic map content, 
often involving (deep) machine learning methods, focusing on specific geographic fea-
tures such as forest [46], railroads [33,47], road network intersections [48,49] and road 
types [50], archeological content [51] and mining features [52], cadastral parcels bounda-
ries [53,54], wetlands and other hydrographic features [55,56], linear features in general 
[57], land cover / land use [58], urban street networks and city blocks [34], building foot-
prints [13,59,60] and historical human settlement patterns [61-63]. Other approaches use 
deep learning based computer vision for generic segmentation of historical maps [64,65], 
generative machine learning approaches for map style transfer [66,67] or attempt to mimic 
historical overhead imagery based on historical maps [68]. 

Many of these approaches have been tested on maps dating back to the late 1800s or 
even earlier, but are commonly evaluated on relatively small spatial extents only. Thus, it 
remains unknown how such methods perform for large-scale information extraction from 
large volumes of historical maps, covering large spatial extents, stretching across different 
time periods, cartographic designs or map scales. As a consequence, researchers have be-
gun to develop historical map processing frameworks for large-scale data mining and ex-
traction of heterogeneous information in a robust, feasible, and efficient manner [33]. 

Herein, we propose such a framework, applied to the extraction of historical urban 
extents. Our approach generalizes the map content by computing low-level image de-
scriptors within spatially aggregated grid cells. A similar grid-based approach has been 
proposed in [33] and allows for a straightforward integration with other gridded data 
sources. More specifically, we use urban extents from the Global Human Settlement Layer 
(GHSL) [69] to narrow down the regions in which urban areas in the historical maps likely 
occur. 

The GHSL (v2018) is the first, high-resolution settlement layer (i.e., on a 30x30m grid) 
consistently enumerated at a global scale for the time period from 1975 to 2014 [70]. While 
the GHSL, which is derived from multispectral imagery acquired by the Landsat plat-
forms, has opened up new opportunities to study urbanization and land development on 
a global scale over almost 40 years (e.g. [2,3,5]), it does not provide information on built-
up areas over extended periods of time. The framework presented herein combines his-
torical maps with remote-sensing derived settlement layers in order to extend the GHSL 
retrospectively and is, to our knowledge, the first study that analytically combines signals 
obtained from historical maps with remote sensing derived data for urban change analy-
sis. 
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Our method makes use of a back-casting strategy that spatially constrains extraction 
results from historical maps to built-up areas derived from the GHSL in 1975. This strat-
egy of constraining earlier urban extents to be within the more recent and presumably 
more reliable area depictions [70] is commonly used in multi-temporal urban monitoring 
[71-74]. However, such an approach only evaluates urban growth, not shrinkage. The ex-
traction of historical urban areas is based on 100x100m tiles and makes use of an unsuper-
vised RGB-color clustering approach. We applied our method to six cities in four conti-
nents and thus four map products, dated between 1890 and 1960. We used historical built-
up property data from the Historical Settlement Data Compilation for the US (HISDAC-
US) [8,76] as well as urban areas from the History Database of the Global Environment 
(HYDE) [6] to evaluate and cross-compare our results.  

The extracted historical urban extents are largely in agreement with the evaluation 
data used, and demonstrate how multi-temporal urban extents from the GHSL can be 
back-casted efficiently and effectively through the integration with historical maps, an 
approach applicable to many countries. 

2. Materials and Methods 
2.1. Data and study areas 
2.1.1. Global human settlement layer 

We used the GHSL Landsat version 2018 (GHS_BUILT_LDSMT_GLOBE_R2018A) 
which is derived from Landsat imagery and maps built-up areas in a global grid of 
30x30m, on a global grid referenced in a spherical Mercator projection (EPSG:3857), in 
1975, 1990, 2000, and 2014 [69,70]. 
2.1.2. Historical maps 

As the GHSL is a globally available product, we chose six study areas in four different 
countries, where digital historical maps were available. Two study areas are located in the 
United States (i.e., Boston and Atlanta metropolitan areas) and cover different map scales, 
time periods, and map designs i.e., 3-color print in Boston (approx. 1900, scale 1:62,500), 
and 5-color print in Atlanta (approx. 1960, scale 1:24,000). These historical maps were ac-
quired from the United States Geological Survey (USGS) historical topographic map col-
lection (HTMC), which is a digital archive of >190,000 scanned and georeferenced topo-
graphic maps created between 1884 and 2006 [19]. The HTMC is available via the Amazon 
Web Services (AWS) S3 cloud data storage infrastructure. The USGS-HTMC maps used 
herein consist of a composite of individual map sheets (see Section 2.2.1) (Fig. 1a-d). 

We also chose two study areas in the United Kingdom, (i.e., Greater Birmingham and 
London, see Fig. 2e-g), for which the National Library of Scotland provides georeferenced, 
seamless composites of historical Ordnance Survey topographic maps [78,79]. These maps 
are typically 3-color maps and exhibit different map designs than the USGS HTMC maps. 
For example, they depict urban settlements as blocks (Fig. 1f), whereas USGS-HTMC 
maps use individual building outlines (Fig. 1d), or red-colored urban areas in maps cre-
ated after 1950 (Fig. 1c). Like in the US, the Ordnance Survey maps were produced at 
different scales: the Birmingham maps (approx. 1900) are of scale 1:10,560 (“six-inch to the 
mile”), whereas the London map (1896) is at a scale of 1:63,360 (“one-inch to the mile”). 
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Figure 1. Input data for the study areas in the US and in the UK: (a) GHSL-based built up area in 
2014 and 1975 in Atlanta metro area (US), and (b) in the Boston metro area (US); (c) 1:24,000 historical 
map composite for the Atlanta metro area from approximately 1960, and (d) historical map compo-
site for the Boston metro area at scale 1.62,500 from approximately 1900; (e) GHSL-based built up 
area in 2014 in the greater Birmingham area (UK), (f) historical Ordnance Survey topographic map 
composite from approximately 1900 (approximate scale: 1:10,000), with an enlargement of a part of 
the Birmingham downtown area, and (g) historical Ordnance Survey topographic map composite 
from 1896 for the London area (UK; approximate scale: 1:63,000), overlaid on the GHSL 2014 built-
up areas (grey). 

Finally, we use a historical topographic map covering the region southeast of the city 
of Sao Paulo (Brazil), at scale 1:100,000 from 1906 (Fig. 2a,b), and a map covering the La-
hore-Amritsar region (Pakistan/India) at scale 1:254,440 from 1943 (Fig. 2c,d). Table 1 sum-
marizes the historical maps used in this study, and Fig. A1 shows the original maps for 
four out of the six study areas. 
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Figure 2. Input data for the study areas in South America and Asia: (a) GHSL built-up areas in 
2014 and 1975 for the greater Sao Paulo area (Brazil), including the coastal city of Santos, (b) his-
torical topographic map from 1906 (scale: 1:100,000) covering the same area, (c) GHSL built-up 
areas in 2014 and 1975 for the Lahore (Pakistan) and Amritsar (India) region, and (d) historical 
topographic map from 1943 (approximate scale: 1:250,000). 

Table 1. Six historical maps / map composites used in this study. 

City Country Map type Map resolution [m] Scale Reference year Print colors Data source 

Atlanta USA Composite 2 1:24,000 1954-1969 5 [77]  

Boston USA Composite 5.3 1:62,500 1885-1918 3 [77] 

Birmingham UK Composite 2.4 1:10,560 1888-1913 2 [78]  

London UK Composite 12 1:63,360 1896 3 [79] 

Sao Paulo Brazil Single map sheet 9.3 1:100,000 1906 2 [80]  

Lahore Pakistan / India Single map sheet 36.7 1:254,440 1943 2 [81]  

 

2.1.4. HISDAC-US 
Empirical data on historical urban extents are generally sparse, as remotely sensed 

data are typically not available prior to the 1970s. However, novel data sources such as 
the industry-generated property database ZTRAX (Zillow Transaction and Assessment 
Dataset [82]), assembled from heterogeneous county-level assessor data, holds the year-
built information for large parts of the US building stock and has recently been leveraged 
to generate the Historical Settlement Data Compilation for the US (HISDAC-US). HIS-
DAC-US is a fine-grained, historical settlement database for the conterminous US, com-
posed of gridded surfaces consistently enumerated in a grid of 250x250m, measuring e.g., 
the number of built-up properties per grid cell from 1810 to 2016 [9,76] (Fig. 3a,b). 

 
2.1.4. HYDE database 

While the HISDAC-US data are only available for the US, we also used gridded sur-
faces from the HYDE 3.2 database [6], containing a global model of the fraction of urban 
area per 5’ grid cell, over very long time periods from 10,000 BC to 2010 (Fig. 3c,d). Due 
to the model-based nature and the coarse spatial resolution, urban areas derived from 
HYDE are only of limited spatial compatibility when compared to the urban areas ex-
tracted at a resolution of 100x100m, however, they represent the only data source consist-
ently available for all six study areas. 
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Figure 3. Evaluation data. Historical settlement data compilation for the US (HISDAC-US) built-
up properties (BUPR) for (a) 1900 and (b) 2010, and urban area fractions per grid cell from the his-
tory database of the global environment (HYDE 3.2) for (c) 1900 and (d) 2010, all shown for the 
Boston metropolitan area. 

2.2. Methods 
2.2.1. Preprocessing 

Based on metadata for the USGS-HTMC (available from https://thor-
f5.er.usgs.gov/ngtoc/metadata/misc/), the geographic footprints of each map sheet con-
tained in the archive can be obtained, allowing for reconstructing the grid (the so-called 
graticule) in which the USGS-HTMC map sheets are organized. For each quadrangle (i.e., 
grid cell of the graticule), we identified the earliest available map sheet and its scale within 
the boundaries of the Boston and Atlanta metropolitan statistical areas in 2010 [83] and 
automatically downloaded these maps from the AWS S3 archive [77]. By doing so, we 
obtained 33 maps for the Boston metro area, and 180 maps for the Atlanta metro area. 
Based on the corner coordinates available for each map sheet, we removed the map collars 
and generated a seamless mosaic of the maps per study area (see Fig. 1c,d). 

For the study areas in the UK, we obtained the historical maps from [78,79] and mo-
saicked them and, in case of the London study area, georeferenced them. Individual map 
sheets for the Sao Paulo and Lahore study areas were manually georeferenced. All maps 
and map composites were then spatially aggregated by computing the RGB averages, sep-
arately per channel, within blocks of 100x100m (RGB100). This 100x100m grid represents 
the analytical unit for the subsequent analyses. Such a spatial aggregation allows for the 
fast processing of large amounts of maps and facilitates the integration with other gridded 
data. The GHSL built-up land surface as well as the HYDE urban area raster data were 
both clipped to the historical map extent of each study area, and resampled to create a 
100x100m grid that is consistent with the aggregated map data (Fig. 4a). The effect of spa-
tially aggregating RGB information found in the historical maps to create the RGB100 layers 
can be seen in Fig. 4b and c. 
2.2.2. Urban area extraction 

We applied a simple, unsupervised method to extract the urban areas from the spa-
tially aggregated RGB100 surfaces. We performed k-means clustering [84] on these surfaces, 
for a range of k ϵ [2,10]. For map composites (mosaics of individually scanned map sheets) 
such as in the Boston and Atlanta study areas (Fig. 1c and d), we conducted a separate 
clustering analysis for each map sheet (Fig. 4d), in order to account for potential differ-
ences in contrast or color tone (see Fig. 4b,c). Moreover, we used the Elbow method [85] 
to identify the optimum number of clusters per study area.  

As a first extraction approach, we used a simple decision rule to determine which of 
the obtained color clusters represents the urban areas contained in the historical maps. To 
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do so, we calculated the area proportion of each detected cluster within the built-up areas 
reported in the GHSL in 1975, aggregated to 100x100m grid cells. Assuming that the urban 
areas in the historical map (dated earlier than 1975) are contained within the 1975 built-
up areas from the GHSL (BUA1975), we identified the cluster of the highest area proportion 
within the BUA1975 as the cluster likely to represent the urban areas in the historical maps. 
Moreover, we tested whether the average R, G and B values of the RGB100 cells within that 
cluster were less than a given threshold value (e.g., <200). Since urban areas in historical 
maps are typically depicted in dark or saturated colors (black, grey, red), the use of such 
a simple brightness-based criterion helps to robustly identify the correct target cluster (i.e., 
the cluster identified as urban area). 

 The target cluster may still contain a considerable number of false positives, e.g., 
dark text elements or major roads (Fig.4e). These artefacts can easily be reduced by ex-
cluding grid cells of the target cluster located outside of the BUA1975 extents (Fig. 4f), given 
that this approach only detects urban growth, not urban shrinkage which is consistent 
with the implemented GHSL modeling strategy [69]. 

Moreover, we implemented a morphological post-processing strategy, removing fur-
ther segments of the target cluster that are below a specific area threshold t ϵ (10, 50, 100 
pixels). This is based on the assumption that settlements require a minimum size to be 
mapped at all. Moreover, it is unlikely that the signals of small settlements depicted in the 
original historical map are still detected correctly after applying the spatial aggregation to 
RGB100. Thus, small segments of the target cluster are likely to be false positives. As can 
be seen in Fig. 4g, this method removes artefacts and retains the densely built-up urban 
cores of the settlements depicted in the historical map. Lastly, the grid cells identified as 
urban in the aggregated map layer are merged with the multi-temporal labels from the 
GHSL to create a temporally extended set of historical built up land layers (Fig. 4h). 

 

Figure 4. Illustrating the historical urban area extraction method using historical maps and the GHSL. (a) GHSL multi-temporal 
built-up areas (resampled to 100x100m), (b) original historical map sheets from approximately 1900, (c) generated 100x100m RGB 
aggregates (averages per channel), (d) color clustering results for k=4, (e) target clusters likely representing urban areas, identified 

by a rule-based decision mechanism taking into account the GHSL areal proportions per cluster and the cluster brightness, (f) 
target clusters within GHSL 1975 built-up areas only, (g) post-processed target cluster areas, and (h) extracted historical urban 

areas integrated with the GHSL multi-temporal built-up areas. 

2.2.3. Spatial evaluation 
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As described previously, a spatially explicit evaluation of the extracted historical ur-
ban extents is difficult due to the lack of reference data. The historical built-up property 
records (BUPR) surfaces from the HISDAC-US provide an estimate of the historical build-
ing density distributions across space in urban, but also in rural areas, and are available 
at a half-decadal temporal resolution. As our urban area extraction approach is assumed 
to be responsive to densely built-up urban areas only, a direct (i.e., binary) comparison of 
urban grid cells extracted from the historical map with any built-up reference grid cell 
(i.e., containing at least one structure) is not suitable, as it would underestimate the accu-
racy of our approach. Thus, we decided to carry out Receiver-Operator-Characteristic 
(ROC) analysis [86], to test whether there is a building density threshold in the BUPR 
surfaces that successfully reproduces the urban/non-urban labels extracted from the his-
torical maps. This threshold may possibly vary between maps and study areas. 

We conducted such an analysis for the US study areas where HISDAC-US is availa-
ble. As these historical map composites consist of individual maps produced in slightly 
different years (see Table 1) we created a BUPR composite that reflects the BUPR distri-
bution in each map quadrangle in the production year of the underlying historical map. 
For example, if a map sheet was created in 1898, we used the BUPR estimates in 1900 for 
the grid cells within the area covered by the map sheet. 
2.2.4. Temporal plausibility analysis 

While the method described in Section 2.2.3 evaluates our results in the spatial do-
main, we also assessed how the hind-casted trajectories of urban area (i.e., the urban area 
reported in GHSL and the urban area extracted from the historical maps) agree with the 
trajectories extracted from the HYDE urban area dataset. 

3. Results 

3.1. ROC analysis against historical HISDAC-US building densities 
The ROC analysis of extracted historical urban / non-urban labels and the historical 

building densities from the HISDAC-US BUPR dataset for the US study areas reveals no-
table effects of spatial constraining and post-processing the areas of the identified target 
clusters likely to represent urban areas (Fig. 5). When detecting urban areas without spa-
tially constraining them to the GHSL BUA1975, Area-under-the-Curve (AUC) values are 
low (Fig. 5a,d), but increase to up to 0.88 when including the spatial constraints (Fig. 5b,e). 
The post-processing step (i.e., removing small segments of <50 pixels) further increases 
the AUC to values >0.9 in both study areas. Generally, the agreement between the ex-
tracted urban areas and the BUPR estimates is higher in Boston than in Atlanta, probably 
due to the higher complexity of the information contained in the Atlanta maps (i.e., 
smaller map scale, higher number of colors and individual map sheets). The choice of the 
number of clusters k heavily affects the results in Atlanta, but less so in the Boston study 
area, where the improvement stagnates when using a k>5 (Fig. 5c). This is in line with the 
results of the elbow analysis, based on the inertia of the detected clusters in RGB100 space, 
suggesting that most maps (in spatially aggregated form) consist of approximately 3 to 5 
main clusters (Fig. A2). Herein, we use a threshold of 50 pixels for the segment removal 
during the post-processing step; higher thresholds do not improve the results (Fig. A3). 
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Figure 5. Evaluation of the map-extracted historical urban areas in the US study areas against HIS-
DAC-US built-up property densities. (a) Receiver-operator-characteristic (ROC) plots for each 
clustering scenario (k from 2 to 10) without spatial constraints using GHSL 1975 built-up areas, (b) 
after applying the spatial constraints, and (c) after post-processing the extracted areas by removing 
small segments (<50px) in Boston (BOS). Panels (d) – (f) show the ROC plots for the same scenarios 
in the Atlanta (ATL) study area, respectively. 

3.2. Clustering analysis 
While the results in the Atlanta study area seem to yield best results for a k=10, we 

use a k=4 for the subsequently discussed extractions, since most maps are 3-color prints 
and thus, are expected to perform in a similar way like the Boston study area. Thus, a 
granularity of k=4 is expected to be sufficient for urban area extraction, which is shown in 
Fig. 6a-d. However, the “mixed pixel” effects produced by the spatial aggregation of RGB 
information in the historical maps may cause a higher number of clusters to better char-
acterize the density variations of specific colors (features) in the original map. For exam-
ple, the clustering results using a k=10 show increasing homogeneity across individual 
map sheets (in the case of the Boston mosaic, Fig. 6a,e), or even allow to detect subtle 
scanner- or paper-induced color variations in the historical map (Fig. 6f). Moreover, a 
higher number of clusters may even be useful to extract mountainous terrain, due to the 
specific RGB average values produced by densely spaced contour lines (shown in pink 
color in Fig. 6g, cf. Fig A1b). An integrated illustration of the effects of spatial constraints, 
number of clusters, and post-processing thresholds can be seen in Fig. A4. 
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Figure 6. Raw clustering results illustrating the effect of the number of clusters k on the spatial and semantic output granularity 
shown for a low k for (a) Boston, (b) Lahore, (c) Sao Paulo, and (d) the London study areas, and for a high k in (e) – (h). 

3.3. Historical settlement extents 
Finally, we show the extraction results (using a k=4, and a post-processing threshold 

of 50 pixels) for the six study areas in Fig. 7. The extracted historical urban areas are mostly 
located in the center of the 1975 urban extents, which seems geographically logical, as-
suming concentric growth over the long-term given there are no topographic constraints. 
These results illustrate the robustness of the decision-based identification of the urban 
cluster, and the effectiveness of constraining the resulting segmentation to the built-up 
areas from the GHSL. The visualizations in Fig. 7 depict the process of urbanization that 
occurred prior to the remote sensing era and demonstrate the benefit of integrating remote 
sensing derived urban footprints from contemporary built-up land data and signals ex-
tracted from historical maps. 
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Figure 7. Extracted historical urban extents for all study areas. (a) Boston metro area, (b) Atlanta metro area, (c) London (dashed 
rectangle shows the study area extent), (d) Birmingham and surroundings, (e) South-east part of greater Sao Paulo area, and (f) 

Lahore-Amritsar area with an inset map of Lahore. 

3.4. Cross-comparison to HYDE and hind-casted GSHL trajectories 
While the extraction results seem to be geographically plausible, how do they com-

pare with the GHSL and HYDE-based trajectories of urban areas over time? Fig. 8 suggests 
that the extracted urban areas are largely in agreement with the urban area estimated by 
the HYDE model, especially in the Birmingham and Sao Paulo study areas. We observe 
higher levels of dispersion of the extracted urban areas in London, where the extracted 
areas seem to be highly sensitive to the chosen post-processing parameters. Results for 
Lahore show higher levels of systematic deviation from the HYDE area estimate, in par-
ticular for the scenarios involving spatial constraints. This could be attributed to lower 
levels of quality of the GHSL in 1975, in this area, resulting in higher levels of omission of 
built-up areas, as compared to HYDE. 
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Figure 8. Cross-comparison to HYDE urban areas. Box-and-whisker plots illustrating the distribu-
tion of built-up areas extracted from the historical maps for all clustering scenarios, per constraint 
& post-processing scenario, overlaid with the urban area extracted from the HYDE 3.2 database 
for the respective study areas. 

Lastly, we visualized the hind-casted GHSL trajectories of built-up area and overlaid 
them with the HYDE trajectories extracted for the same areas. Fig. 9 suggests that for most 
cities, the hind-casted trajectory exhibits high levels of steadiness, except in the London 
study area. A higher temporal density of historical maps would probably mitigate this 
effect and produce a smoother curve. Importantly, the uncertainty of these hind-casted 
trajectories due to the different post-processing parameters is relatively small, and ap-
pears to be smallest in the Lahore study area (Fig. 9, yellow bands). As a side note, we 
observe high levels of discrepancies between the GHSL built-up area and HYDE urban 
area estimates in some study areas, such as Birmingham. This is likely an effect of different 
definitions, as the GHSL includes all detected settlements (including rural settlements), 
whereas the urban areas in HYDE are likely to exclude those areas, but can also be at-
tributed to the general difficulty of global models such as HYDE to estimate historical land 
use patterns at the regional or local level [87]. In the specific case of the London study 
area, this discrepancy could also be the result of edge effects due to the small study area 
in relation to the HYDE grid cells (i.e., 5’), which may exclude partially overlapping grid 
cells from the study area. 

 

Figure 9. Hind-casted GHSL urban growth trajectories (extracted historical urban areas are GHSL-
constraint, k=4, averaged across any post-processing scenario) and their deviation, overlaid with 
HYDE 3.2 urban area trajectories. 
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4. Conclusions 
The work presented herein is a first attempt to create a framework that combines 

signals obtained from scanned, georeferenced historical maps with remote sensing data 
products in an integrated analytical environment. We applied this framework to the ex-
traction and assessment of urban areas over long time periods and demonstrated how 
such an approach can create spatial-historical data that describe trends of long-term ur-
ban-spatial development prior to the era of remote sensing and enhance our understand-
ing of the underlying urbanization processes. The spatial aggregation performed on the 
historical maps facilitates the seamless integration with other gridded surfaces in general, 
and effectively reduces the spatial data volume to be processed. Thus, given the availabil-
ity of georeferenced historical maps in numerous countries, this framework could be ap-
plied to back-cast the Global Human Settlement Layer, or other settlement data products, 
at a country-scale. The presented framework represents an effective way to harvest his-
torical maps and thus, preserve valuable knowledge that can only be found in such ar-
chival documents. 

From a methodological point of view, we followed the principle of parsimony and 
implemented a simplistic, rule-based color clustering method to extract the features of 
interest, and observed satisfactory levels of performance (i.e., high levels of receptiveness 
with respect to historical building densities - AUC>0.9; and consistency with model-based 
estimates of historical urban area). Future work will include the use of more advanced 
extraction methods, taking into account textural characteristics, or more complex rule-
based systems, potentially able to distinguish between high-density and low-density ur-
ban / built-up areas. The concept of contemporary spatial constraints such as delineating 
the results to the 1975 GHSL built-up areas, could also be incorporated into an automated 
training data collection procedure, which could then be used for a supervised, deep-learn-
ing approach to extract urban areas and human settlement patterns at finer spatial gran-
ularity (cf. [61]). 

Ultimately, such efforts create new data and insights that can inform long-term, spa-
tially explicit land use models such as HYDE, and can be used to improve future projec-
tions of urban land, and thus, enable more informed urban planning and decision making. 
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Appendix 

 

Figure A1. Four of the six scanned historical maps and map mosaics used as in this study. (a) London 1896, (b) Sao Paulo 1908, (c) 
Lahore/Amritsar 1946, and (d) Boston metropolitan area approximately 1900. 
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Figure A2. Cluster analysis results. Elbow curves based on the cluster inertia for the RGB values of the historical map raster 
datasets for the six study areas. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 July 2021                   doi:10.20944/preprints202107.0046.v1

https://doi.org/10.20944/preprints202107.0046.v1


 

 

 

Figure A3. Extended ROC analysis of extracted urban / non-urban labels against the HISDAC-US BUPR estimates. 
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Figure A4. Illustrating the effects of spatially constraining the extraction results to the GHSL built-up areas in 1975, the different 
clustering granularity k, and the threshold used for post-processing. 
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