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Comparison Between Tailor-Made-ANN Techniques and
Fuzzy c-Mean Clustering Technique in Industrial Laborers'
Accident-Rates Prediction Modelling Based on Human

Factors
Muhammad M.A.S. Mahmoud — Independent Researcher

Abstract This paper attempts to compare two different approaches to solve the problem of accident rates prediction based on
human factors for industrial workers. One of the methods has already been done using Fuzzy c-Means Clustering and proved to
be working with decent results. The second method which will be covered in this paper is using Artificial Neural Networks. The
primary goal of this work is to insure that ANN will work efficiently in such prediction problem. The second goal is to reveal the
fact that which one of the two selected methodologies is better at defining the estimation of accident rates among people who
work in different industrial fields. The purpose has been achieved when the outcome of the ANN was obtained and compared
accordingly with the output of the research previously carried out with Fuzzy c-means clustering method. Comparing the
outcomes of these two different methods gave an immense insight on which features are more important than others when it
comes to laborers properties with completely different background such as varying levels of health, knowledge, experience,
training and physical properties. At the end of the research, it becomes clear that accident rates estimation for laborers with
properly trained Artificial Neural Network gives better results when it is compared with Fuzzy c-Means Clustering method.
Standard deviation method was used to calculate the validity of ANN technique. The result was compared with Fuzzy c-mean
clustering technique. Impressive improvement of 8.8% in the accident rate prediction was achieved using Tailored-Made-ANN.

Index Terms— Industrial Laborers, Accident rate, Artificial neural network, Human factor, Predictive models.

I. INTRODUCTION

Nowaday an increasing number of industrial work areas creates more job opportunities than it has ever done. Many people
occupy these kinds of labor-oriented jobs in which there is a very high chance of getting hurt or damaged. This also can be
associated with lethal injuries or disabilities which will lead to the end of work of many people. It is not only undesirable for
individuals but also for their companies as their reputation is also on the line. These types of accidents happen every day in large-
scale industrial projects. Despite all the precautions which are usually taken by the authorities it is still impossible to predict and
prevent not only the accidents occurrence but also the severity level and its cost implications (Evanoff B, 2002) (Handley W,
1977) (Ashok Kumar Bansal, 2016) (Choi, S.D. ,2006) (T.A Yusuf,2015).

The main problem here is the inability of forecasting the details of accidents beforehand. Information such as date, location,
which laborers might possibly be damaged, which characteristics of a person plays a more important role in an accident, financial
cost of an accident, etc. is what we need to have for evaluating the situation and making decisions. Unfortunately, the majority of
these data will not be available any time before the accident happens. However, it is possible to build a system that can predict
and approximately estimate the rate of accidents which can happen due to human factor and gross errors. In addition, the data
available on construction site accidents are neither accurate nor complete, due to the absence of a reliable accident reporting and
recording system.

The majority of the work accident happens due to human factors according to several kinds of research and case studies. For
example, human ignorance and arrogance are well-known drivers of job accidents. If these human factors, and other effective
factors, are taken into consideration, a mathematical model can be obtained for the labors to represent relation between the most
effective properties in accidents and the expected rate of accidents. (Strong, 1987) (Wilson, H.A, 1989) (Mohamed MAS
Mahmoud, 2012) (Jesis Domech Mor¢, 2007) (Hidetake Sakuma, 2002) (Douglas A. Wiegmann, 2001) (Douglas A. Wiegmann,
2005) (Kay Yong,2007)

There is only a few number of researches that are done to find a solution and build a system to predict accident rates in industry
and they are offering an incredibly little amount of resources to work on. The industry really is in the big need of such work to
optimize their safety standards and help to utilize the resource as best as they can. Talking about the gap in the literature, it is also
helpful to consider creating an electronic platform to make the resources and the data, that are used in such researches all over the
world, available for those who desire to make different comparisons with different techniques wishing to find a better solution.
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The importance of such researches is not only brings more safety to workers, but also it guides us to enlighten our understanding
of regulations, rules and break our misconceptions and myths about safety [8], (Mohamed MAS Mahmoud, 2012) (Eunsuk
ChoiEunsuk, 2019) (A. J.-P. Tixier, 2016) (Youhee Choi, 2018) (Sobhan SarkarSobhan, 2016) ( P. Hdméléinen, 2006).

As previously mentioned, the obvious solution is to build a mathematical model which can predict accident rates accordingly
with previously supplied data. It might sound easy, however, taking into consideration that many have tried to accomplish but
they got few concrete results, which raises the question that how possible is to generate such a model and what are the
methodologies that are need to be implemented to improve the existing models to achieve better results. (A. Lukacova, 2014) (F.
Pereira, 2013).

Fuzzy (multi)measures are used in many problems such as decision making (Grabish, 1995), accident rate in the predictions of
osteoporotic fractures (Pham, 2008) or image processing (Costarelli, 2020). In (Mohammed MAS Mahmoud, 2012), fuzzy
measures are used to build a human model in accident rate estimation in construction market by a fuzzy clustering technique.

In this paper, we selected one research from the few published researches that has tried to solve the problem of accident rate
prediction for laborers using a model based on fuzzy clustering c-mean technique. That paper provided reasonable validity for the
results. However, the achieved results were satisfactory as initial stage only in that research. But, still there is room for results
improvement. In this paper, we will try to obtain better results but by using Artificial Neural network. (Manar M. Sabry, 2002)

Artificial neural network technique was used in many researches to analyze and predict the accidents related to traffic.
However, the problem of accident rates estimation that is specifically related to laborers, was never been tried to be solve with
ANN method, which raises the question of how efficient it will be for such a different type of problems. Looking at the previous
experiences of problems that solved using ANN, this technique is good in case adapt the model to specific training data is
required. However, one may still doubt that it is the proper method for problems with high nonlinearity. The new ANN model
might not give the result 100%, but the useful thing is that it can be retrained with techniques like reinforcement learning to
upgrade the model to a new level [24-30]. (A. P. Akgilingér, 2009) (Mohd Zakwan Bin Ramli, 2001) (Abbas, M., 2010) (F.
Rezaie, 2011)( Borja Garcia, 2018) ( Khair S. Jadaan, 2014).

In Section II, brief review for Accident Rates Estimation Modelling Based on Human Factors Using Fuzzy c-Means Clustering
Algorithm is provided to obtain the input data, and hence the feature matrix, that required for the proposed ANN model. In
Section 111, prototype model for ANN is used to estimate the accident rate and to evaluate the satisfaction of the results. Then,
Section IV explains in steps the structure for ANN modules to create framework. In Section V, ANN Tailor-made framework is
used to estimate the accident rates. The results and the conclusion are given in Section VI and VII respectively

II. DATA COLLECTION AND FEATURE MATRIX

One of the most challenging tasks of doing scientific research is to obtain solid, consistent and verified data. It can easily be
said that the primary resource of the paper is the data.

It is required deep research and intensive analysis to find out which features play the most important role in accident rates.
According to the studies made previously on the topic, it has been found a reference table which contains the most influential
factors that should be taken into consideration when designing a model for accident rate estimation for labors (Manar M. Sabry,
2002).

In Table I, main features are illustrated. As it is clearly shown, the data collection process focused on the laborer, himself, and
his accident rates during his years of work experience as an expert source of data. The way that the data collected, as mentioned
in the same reference, was by survey method constructed based on these main features. A reputable industrial construction
company has accepted to carry out such a survey among the workers so that they can get more detailed information about safety
preparation level. It is also worth to mention that the survey had been carried out anonymously.

The data collected was used to construct the Feature Matrix (FM) which is one of the most important parts of the study since
we can convert human factors and properties to digital variables using this matrix. By this way, we can easily deal with the data
to be used in any arterial neural network model. The columns in the FM matrix represent the property variables that were obtain
from the survey. The rows in matrix reflect the different features of the employees who were chosen for the survey interview.
Each linguistic feature in the matrix was presented by 1-5 scale to convert the linguistic meanings of the feature used in the
survey into respective number presenting the weight of each worker-feature. Table II illustrates sample of feature the matrix.
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TABLEI TABLE II
MAIN FEATURES AFFECTING THE LABORERS’ ACCIDENT RATE SAMPLE FEATURE MATRIX

Feature Description Feature Description o N?ture Fl " F3 F4 FS F6 F7 F8
F2 Weight/Height F13 Need for Safety Gear
F3 Optical status F14 Indoor Work S1 /12 71/160 6/18 5 5 4 5 2
F4 Hearing Ability F15 Office Work 2 5/12  77/170 6/60 5 4 3 5 3
F5 General Health F16 Outdoor Work $3 121 90175 6/6 4 5 5 5 5
F6 Adherence t.o Safety F17 Level of Borf:dom s4 0/8  54/165 6/60 4 5 2 5 20
F7 Education F18 Salary on time
F8 Overtime work F19 Level of Training S5 6/3.5 68/187 636 3 4 3 5 0
F9 Mental work F20 Level of Safety S6 10/11 85177 6/6 4 4 3 5 10
F10 Manual work F21 Noise level S7 2/19  76/173 6/60 4 5 5 5 14
F11 Work type F22 live with family S8 18/25 72/170 6/18 3 4 4 4 4
F12 Hazard level F23  Communication language S9 45/14 80/176 6/6 4 4 3 4 8

FW1 Accident rate/ labor experience years S10 320 81/174 6/6 4 4 5 4 1

III. USING ANN ROTOTYPING MODELLING FOR ACCIDENT RATES ESTIMATION

Initially, an investigation was necessary to find out whether it is possible to predict accident rate using artificial neural
networks, and wither will be opportunity to improve the results?

To check the possibility of doing such a prediction in ANN, a prototype version of ANN by using readymade machine learning
libraryKeras with TensorFlow is used. The initial code is written in Python shown in (Fig. 1) PEYTON, R. X, 2019)

train_df = pd.read_csv("main_data.csv")

train_df.head()

train_X = train_df.drop(columns=["'FW1'])

train_X.head()

train_y = train_df[['FW1']]

train_y.head()

model = Sequential()

n_cols = train_X.shape[1]

model.add(Dense(20, activation='relu', input_shape=(n_cols,)))
model.add(Dense(20, activation='relu'))
model.add(Dense(1))

model.compile(optimizer="'adam', loss='mean_squared_error')

early_stopping_monitor = EarlyStopping(patience=5)
model.fit(train_X, train_y, validation_split=0.1, epochs=50,
callbacks=[early_stopping_monitor])

test_X = pd.read_csv("test.csv")
test_y_predictions = model.predict(test_X)
print(test_y_predictions)

Fig. I. Prototype Python Code for ANN model

The algorithm starts with reading the input data from the spreadsheet file. Header columns are removed and input and output
separated from each other using “drop()” function. Model is created using a single class structure called “Sequential()”. Then
layers with a number of neurons and activation functions are added to the ANN model. As a learning method, ADAM and cost
function mean squared error is selected. Keras framework also provides the training stage with a neat function called
“EarlyStopping” which is used for delaying the finish of the training phase and causing much better convergence in the neural
network model.

After all the training testing, all it takes to test the model and predict real results is just one line of code which is done using
“predict()” function.

Prototype neural network model gave fair results from the first time. However, there was room for improvement showing that
better results for the estimation of accident rates can be obtained by using ANN.

In this stage using prototyping tools are end, it was decided to start implementing the similar steps using the custom-made
neural network framework.
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IV. DESIGN OF ARTIFICIAL NEURAL NETWORKS FRAMEWORK

In order to build a neural network model based on some dataset, firstly, we need a tool to create the structure of it. Taking into
consideration that the tool should also allow visualizing the neural network so that we can troubleshoot any kind of problem while
updating its parts. It is a hard task to create fully functioning neural network with properly working features.

To make this chapter more understandable, simple task will be assigned to try to solve it using the neural network framework
as we build it. The task is solving four input XOR. The input will be four digits of which value can only be either one or zero, and
as output, the neural network should return either one or zero.

Building the custom artificial neural network builder and visualizer tool was not enough on its own. The process of calculation,
training, and testing requires a live analysis of the data processed in the network. There is no direct way of adjusting different
variables like the learning rate, number of hidden layers, and the number of neurons in each layer. Therefore, we also need a
graph tool to visualize the figures with time or sample cases. Hence, the creation of a simple graphical interface tool is necessary
(Amirasln Bakhshil Muhammad M.A.S. Mahmoud,2019)

Following are the steps and structure of modules to create this enormous framework:

A)Base neural network structure

B)Machine learning in ANN

C)Dataset format

D) Neural network visualizer

E)Custom graph tool

F)User interface framework

G) End-user implementation in code

H) Result

A. Base Neural Network Structure

The foundation of the framework required some early investigation of similar tools available on the market. The research
showed that the tools currently available for similar applications are divided into two groups in term of their internal structure.
The first group takes a shortcut approach and uses linear algebra methods to resolve the neural network calculations. Creating
multidimensional matrixes and multiplying them takes very little time. This is a great advantage. On the other hand, it has one
major drawback that this method keeps the neural network operations as a black box. It means we cannot understand thousands of
the gibberish figures inside a grand matrix. This is not useful to build the framework. It also brings some challenges when
visualizing the state of the neural network as we cannot directly identify which figure stands for which weight. Hence, as the
designer of the framework, the decision was taken to create framework using the second option which is the object-oriented
approach. In this approach, instead of multiplying matrices using linear algebra, the matrices calculations are solved using
programming tools called loops. It is a little bit of time-consuming operation though. In return, we get readable and
understandable data and figures stored in the logical data structure.

Each data structure is named properly in the code which is also shown in the UML diagram below so that even an individual
who is not aware of programming principles can understand which class is responsible for which actions (Fig. IT)
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Fig. II. UML Diagram of Base ANN
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As it is clearly seen from the diagram, the core class for the ANN is Neural Network class. It contains layers and all the tools
for accessing them. It is also full of methods which will help the end user to apply certain learning methods, cost calculation
functions, and testing methods. Layer, as its name suggests, is just a virtual container for neurons and it also contains all the
necessary functions to satisfy the requirement of encapsulation.

Neuron class is the second most important class in the whole framework. It does implement lots of functionalities including the
calculation of activation function, adding bias and multiplying weights. It also stores a pair of vectors of weight pointers. One is
for incoming weights and the other one is for outgoing ones; and finally, Weight class is the simplest yet the most influential class
in the project. What all the neural network is that is a bunch of weights and biases collected in a data container. Any neural
network model can sufficiently be recreated with this data. Objects created from Weight class contains three important properties.
From which class it is coming. To which class it is going, and what is the value it is holding.

B. Machine Learning in ANN

After introducing the basic structure behind artificial neural networks, we can now discuss how the process of training can be
realized using programming principles. But first some decisions must be taken such as; which learning method and cost function
will be applied, what type of activation functions should be available.

After making the decisions, it was the time to build the classes one by one. Starting with the activation function, I created an
abstract class name "Squishification" class, which is the ancestry base class for all activation functions. I gave it this name
because its primary aim is to map a wide range of numbers into very narrow and squished interval.

In the framework, two different activation function instances have been implemented. The first one is the "Sigmoid" activation
function and the second one is "ReLU" activation function. Although they called function, however they are created as a class in
the framework. The inheritance relationship can clearly be seen from Fig. III illustrated.
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ig. llI. UML Diagram of Machine Learning Implementation

Each activation function class derivative contains three main functions. One of them is the primary constructor of the class.
The other two are the "squish()" and "derivative()" functions which are the virtual abstract methods from the "Squishification"
class.

"CostFunction" plays a crucial role during the convergence period of training. For using one of the principles of object-
oriented programming called polymorphism, "CostFunction” class was created as an abstract one and derived more specific cost
function which is "Mean Squared Error" method (MSE).

The most important driver of the machine learning in artificial neural networks is the learning algorithm. There are many types
of learning algorithms, but the most suitable one for the training was selected. It is "GradientDescen" method which uses
"backpropagation" to redistribute the expected values to each neuron and updating the weights and biases accordingly. The
amount of change applied to each weight and bias is calculated reference to the value obtained from the cost function set for the
learning method.
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C. Dataset Format

As we build our own custom ANN tool, we also need to create a custom dataset standard and a tool for reading data from a
given resource and apply it into the ANN automatically. To implement that two classes were created called "DataSet" and
"Sample". The internal structure, fields, and methods can be seen in Fig. I'V.

( DataSet A f Sample A |
Class Class
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@ getDataSet D getlnput
@ getRandomSa... @ getOQutput
@, readFromFile @  pushTolnput
z © pushToOutput
@ Sample
@  setOutput
@ splitinputAndO...

Fig. IV. UML Diagram of Dataset Format Implementation

As we declared in the introduction, we have set a task to solve with this framework. So, if we take look at the dataset prepared
for this XOR solving network (Fig. V), we can see several rows. Some of the rows are hidden intentionally. Each row represents
one case for the neural network and according to our condition, we have four input values and one expected output values for
each case. So, the number of digits in each case is five meaning the first four is for input values and the rest is for the output
value.

poo00

00011

11101
1111680

Fig. V. Dataset Format Example

D. Neural Network Visualizer

Up to this point, the most important functional parts of our framework; properly data taking, training, testing and predicting
artificial neural network is ready. Now we will focus on the design of the visualizing module.

As it can be seen from Fig.VI illustrated below, all the elements from the base structure of the neural network have been
duplicated for their visual version. These duplicates are only for representing a visual image of real neurons, layers, and weights.
Properties and methods are all about the visual features of the neural network such as the diameter of a neuron, colors, gaps
between horizontally and vertically spaced weights and neurons, margins, paddings, texts, text colors, etc. During the
initialization process, one of the important steps is to map the mathematical state of the artificial neural network to the visual
version of it. To implement this kind of logic, it needs to start with a base class called “VisualObject” and it is an abstract class.
Then create the other classes namely “VisualNeruon” for “Neuron”, “VisualWeight” for “Weight” and “VisualLayer” for “Layer”
class. The visual versions of those classes are all derived from the “VisualObject” class as it can clearly be seen from Fig. VI
shown below. It is mandatory to implement the “draw()” abstract virtual method. Without it, there would be no way to draw the
object in every cycle of the loop.
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Fig. VI. UML Diagram of ANN Visualizer Module

E. Custom Graph Tool

After creating the tool for representing the state of the artificial neural network visually, another visual interface for
representing the cost function of the neural network need to be built. As it was mentioned in the beginning, there is no way of
evaluating the progress and optimizing the variables without properly monitoring the cost values of the network. The best way to
visualize a vector depending on case number is to use a graph tool. Therefore, as a part of the framework, custom graph tool is
needed to be built. It does not include many features as other graph interfaces do but it does the job with consuming as minimum
memory as possible while fitting the framework much more smoothly.

Fig. VII illustrates the graph module with main driver class named "Graph" class. The axis of the graph is represented with the
base class called Axis class and it is an abstract one to derive both of "X Axis" and "Y_ Axis" from it. In that case, it is not
required to replicate the same code throughout two classes.

Since the numbers attached to the X and Y axis will dynamically be updated, A new class called "AxisNumber" was generated
to monitor the value of the numbers on the axis. This new class also helps to animate the values in the graph much more easily.
Another problem was to have a data container for the graph. It is better to have an isolated data container so the module can be

mobilized and abstract.
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Fig. VII. UML Diagram of Custom Graph Tool
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The only thing left was to decide what logic we want from our graph to work. There were two options. The first one was to
build it in such a way that old values that have already shown on the graph would be pushed into left, then new values would also
come from the right side of the graph. This functionality was implemented in framework "LastNRange" class as shown in Fig.
VIII. The second method was to keep all the values in the visual sight and stack them on top of each other horizontally, from left
to right; and this functionality was implemented on "FullRange class".
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Fig. VIII. UML Diagram of Graph Style Implementation

Both of these functionality classes are derived from "GraphRangeStyle" base class which in itself have"renderGraph()"
abstract method.

Another important point was to create a tool to tell the current value and stage of the neural network working completely
independent of the graph that is working in the background. To create this type of feature, “ScreenMessage" class is need to be
created which was a text message container stacked on the left top corner of the screen demonstrating the live values of the cost
function and representing the stage of the progress of the neural network. The stages that can be shown in the screen message are
the following:

e Created

o [Initialized

e Training started
e Training...

e Training ended
e Testing started

e Testing...

e Testing ended

Fig. IX illustrates the last N range style graph representation. Notice the range shown on the X axis as it starts from 4150 and
goes up to 4470. As the progress continues to improve the number are updated keeping the same range interval. This type of
graph is especially useful when working with huge datasets and the importance of the very old and initial values are ignorable.
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Fig. IX. Last N Range Graph
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Fig. X demonstrates the second type of graph which is full range type. As it can see from the origin point, the x-axis starts from
the value of 0. This means that even the old values are included in the result. This style is preferred when the overall performance
of the network is needed to be measured. Usually, for detecting the slope of the convergence we use full range graph. However,
the major drawback of this type of graph style is that it takes too much space in memory due to the storage of all the numbers at
once and adds some delay to the visual renderer as it increases the number of dots to be drawn on the screen.
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Fig. X. Full Range Graph

F. User Interface Framework

After completing the graph visualizer and neural network visualizer modules, it is required to put these modules in the
framework to show them on the computer screen. The framework called "SFML" would be very useful for such an application.
"SFML" is a graphical multimedia framework designed in C++ programming language to create interactive applications. A class
named "Window" class is created to add some sort of customization to the framework Fig XI.

The class will provide a list of adapters which can be used to render any module we have designed so far. However, in order to
add the modules to the "Window class", a pattern called "adapters" is designed. Since we have two modules to draw, two
adapters are need to be created; one for neural network visualizer and the other one for graph visualizer. When those adapters
passed into a "Window" class using "addAdapter()" method and "startWindow()" method, the window appears on the screen
showing both of those visualizer modules perfectly.

( Window A ( Visualizable A)
Class Class
4 Fields 4 Methods

@, adapters @ draw

LA © init

@, screenHeight \ v

@, screenWidth

‘e screenXPos

@, screenYPos public public

:° YAl NNVisualAdapter # | | NNGraphAdapter A

s Window Class Class
@, windowTitle b Visualizable = Visualizable
4 Methods - .

@ addAdapter 4 Fields 4 Fields

®, drawNetwork ©, drawableObjects @, graph

® getRenderWind... @ m @ m

@, init @, renderWindow ?‘ renderWindow

® startWindow @, visuallayers @, screenMessage

© Window (+ 2 0... @ visualWeights 4 Methods

S 4 Methods @ draw

@, arrangeVisually @ init
@, createVisualNN @ NNGraphAdapt...
@ draw —
@ it
@ NNVisualAdapter

Fig. XI. UML Diagram of User Interface Framework Implementation
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G. End-User Implementation in Code

One of the basic objective to this paper is to create a tool to build, calculate, train, test and visualize a neural network. Taking
into consideration that there are many means of implementing such a complex architecture to be used in the application of this
paper. However, it is important to insure which method is the best for creating this tool, and that is deciding the end-user
implementation.

End-user implementation is the code that we decide how the users will call the APIs of our tool. End-user implementation code
is given in Fig XII.

First, the user starts with building the neural network. To do that, with previously created builder design pattern, user can call
all the necessary addition methods by chaining them in a sequence. In each part of the sequence, they can add layers and each
layer can be injected with a dependency of the activation function. Adding activation function to each layer changes the default
activation function of the neurons in that same layer. In the end, the last chain learning method can be added with proper cost
function instance. In our case, it is Gradient Descent learning with MSE cost function.

After adding the datasets to the code, we can create the two adapters for visualizers. In this specific implementation, two
separate windows for demonstrating actions in a neater way are created. Whenever we start the windows, there are three various
threads run independently. First one is for background ANN calculations, te second is for ANN visualizer tool, and the the third
one is for graph visualizer tool.

int numberOfInputs = 4;

int numberOfHiddenLayerNodes = 8;

int numberOfHiddenLayerNodes2 = §;

int numberOfOutputs = 1;

NeuralNetwork* nn = (new NeuralNetwork::Builder())
->addLayer(new Layer(numberOflnputs))
->addLayer(new Layer(numberOfHiddenLayerNodes, new ReLU()))
->addLayer(new Layer(numberOfHiddenLayerNodes2, new ReLU()))
->addLayer(new Layer(numberOfOutputs, new Rel.U()))
->setLearningMethod(new GradientDescent(new MSE()))

->build();
DataSet* trainingDataSet = new DataSet(
"data4.data",
numberOfInputs,

numberOfOutputs

);

DataSet* testingDataSet = new DataSet(
"data4Test.data",
numberOfInputs,
numberOfOutputs

);
NNVisual Adapter* nnVisualAdapter = new NNVisual Adapter(nn);
NNGraphAdapter* graphAdapter = new NNGraphAdapter(nn, new

FullRange(170));

Window* nnWindow = new Window(

sf::Vector2i(700, 600),

sfi:Vector2i(20, 50),

"Neural Network Structure"

);
nnWindow->addAdapter(nnVisual Adapter);
Window* graphWindow = new Window(

sf::Vector2i(800, 600),

sfi:Vector2i(720, 50),

"Cost Graph"

);
graphWindow->addAdapter(graphAdapter);
// Starts new view threads!
nnWindow->startWindow();
graphWindow->startWindow();
double learningRate = 0.03014;
int numberOflterations = 4500;
nn->train(

trainingDataSet,
learningRate,
numberOfiterations

5
nn->test(testingDataSet);

Fig. XII. End-User Implementation Code
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The moment the training is started, both visualizers start to replicate the state of the original neural network and try to catch up
with the speed of background thread without causing any delay or lag. The final step in the implementation was to start testing
which can be done easily using the test"datasetInstance" command.

H. Testing

In the end, the framework product is compiled as an executable file with a data file containing training and testing data. When
the file is run, it will be able to see two windows in one of which illustrated the animated version of the neural network (Fig. XIII)
and the other one contained the graph showing the convergence of the network as the time goes and training finishes.

After training finished, the testing phase completed with 100% correct result showing that have completed the task with great
success. As an answer to the initially given problem, we can say 2 hidden layers with 8 neurons in each with ReLU activation
function is the best configuration for solving the problem.

Fig. XIII. XOR Solving ANN Structure Captured from Animation

V. ANN AT ACCIDENT RATES ESTIMATION MODELLING USING CUTOMER MADE FRAMEWORK

Custom neural network framework is already discussed in details in Section IV and it is time to use it. This section
concentrates on the properties of the accident rates estimation predicting neural network which is more about the core objective
for this paper than how the network itself works.

After many trial and errors, the conclusion was that the best configuration for the neural network in this application of accident
rate prediction is to have two hidden layers with sixteen neurons in each.

Since we are trying to find out “Rate of Accident" which is single digit, the output will only consist of single neuron whereas
the input layer contains twenty-three neurons — one for each feature. Fig. XIV demonstrates the state of the ANN model during
the training session. All those links connecting neurons are the weights, and are shown in different gradient colors between red
and green. More red means the value is more negative and greener means the value is more positive.

Training of such a huge neural network took more than 8 hours with the "core i7" hardware. The number of iterations was close
to million. Another important parameter was the learning rate. After several trials, it was found that the network performs the best
when it is set to 0.03.

Convergence pattern was a little bit different than initial expectation. During the training process, first few thousands iterations
did not show any inclination to the convergence, as cost function value should be closer to zero. However, after 250,000
iterations we start to see some progress towards zero. In Fig. VX, it clearly shows that a trend starts to emerge toward down. It is
important to highlight about the chart shown in the figure that each value in the x-axis stands for 220 samples in the training
process.

The interesting part was what happened after approximately 800,000 cases which are shown from approximately 3600 in the
chart. As you can see after almost definite convergence the networks start to deviate and nearly forgot all the training information
and act completely randomly for a few thousand samples. But eventually, it rapidly converges and diminishes the cost function
result to almost 0.
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VI. RESULTS AND DISRUPTION

According to the research done on ARE using Fuzzy c-Means Clustering used 8 cases were used to test and validate the model.
The same test cases are used in this paper. After all output data is collect for accident rate prediction using ANN, standard
deviation was used also to determine the validity of the technique. Using simple comparison, it is easy to recognize which
technique is more efficient.

Table III represents the results from final test cases, which is the primary goal of the research. The aim was to predict the
accident rates estimation with ANN model as accurately as possible.

From Table III, it can be seen clearly see that the average standard deviation of the error in Fuzzy c-Means Clustering method
is %28.68 which gives validity of %71.32 for the given 8 test cases. Whereas artificial neural networks perform with %77.60

validity. TABLE IIL
STANDARD DEVIATION COMPARISON BETWEEN ANN AND FCM
CLUSTERING METHODS
Case Standard deviation
number ANN Method FCM Clustering

1 0.1891 0.3536
2 0.3115 0.2828
3 01609 0.4243
4 0.2530 0.7071
5 0.1228 0.1414
6 01364 0.1414
7 0.3913 0.2121
8 0.2273 0.0318

Average 0.2240 0.2868

From what we have seen during the comparison, we can summarize that Artificial Neural Network method is proved to be
performed better than Fuzzy c-Means Clustering method for the given dataset and test cases wish represent very difficult and
complicated nonlinear problem. Since the difference between them is not that much high, one can expect that with different
dataset, ANN framework will return drastically distinct results. But, if we take into consideration the successful obtained results
and the uncertainty of the collected data with the extremely high non-linearity nature of the problem, the results can be improved
if the survey questioner is improved and the survey cover higher number of workers with different calibers.
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FWwW2 Fw3 Fw4 Fw19 FWi4 FW15 FW16
Weight/Height Optical status  Hearing Ability Level of Training Indoor Work Office Work Outdoor Work
Minimum 0.53617 0.785854 0.756116 0.864666 F— 0364731 0.703141 0476297
Maximum 0.72715 0.4851 0.516099 0.437153 Maximum 0.800742 0.550991 0.719604
Diff -0.19098 0.300754 0.240017 0.427513 Diff 0.436011 0.15715 0.243307
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Hearing Ability
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Weight/Height Indoor Work

0 01 02 03 04 05 05 07 08 09 0 01 02 03 04 05 06 07 08 08
B Maximum B Minimum o Maximum  ® Minimum
Fig. XVL Correlation Among Multiple Features in One Case Fig. XVIL Correlation Between Work Location Features

Running the different cases one by one usually does not make a lot of sense to us, however, keeping multiple variable constant
and adjusting only one of them gives us very interesting results. It is a great use case for the artificial neural network model.
Although its design purpose is to predict what the accident rate will be for an individual, we can virtually create a human model
and try to identify which features plays the most important role at accident rates. Fig. XVI below demonstrates one example of
such an analysis.

This is a small presentation of what happens in case all the features are kept constant and only one variable is adjusted to its
minimum and maximum. I took one case and repeated the same action for all the features and the grouped them according to their
category. As the figure demonstrates clearly, for this specific virtual case, the level of training causes an enormous reduction in
the rate of accidents from proximally 0.86 to 0.43 to. Features like hearing ability, optical status, weight/height ratio also affect
the accident rates quite considerably as shown from the results. Another interesting observation, and it makes sense too, that
overweigh increases the rate of accident for this virtual case.

Different chart can be obtained and illustrated in Fig. XVII. This time the study examines the changes in accident rate for the
virtual case with respect to three different work locations.

The outcome results show that when indoor work is set to the maximum value the accident rate drops drastically from
approximately 0.8 to 0.35, this reduction is more than half. Although outdoor work has a similar effect on accident rate estimate,
the ratio of the change is less than the what obtained in indoor work. On the other hand, the results obtained for office work give
the reverse effect as minimum accident rate can achieved for this virtual case if this person works only at office, and vice-versa.

Eventually, this is the result achieved from only one case. Further research can improve the results and help to find many
realistic values. Having so many correlations for such non-linear model brings lots of surprising results. Thanks to the results of
this paper, future researches can obtain much more interesting topic.

VII. CONCLUSION

To summarize, making investigations about the differences between various methods to solve the same problem opens new
doors for further research topics. The paper tried to create an artificial neural network model trained with backpropagation
gradient descent method using mean squared error cost function with rectified linear unit activation function to solve high
nonlinear problem called accident rates estimation. The mentioned problem has already been solved in only one of the previous
prior studies using fuzzy c-means clustering method to some extent. The question asked in this paper was which one of these
technique would perform better if we gave them the same initial conditions which are, in this case, the dataset for training and
testing.
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To achieve the goal, fully functioning neural network framework was created with advanced visualizing tools to train the
model. Then to ensure that the network adapts to the model and predicts reasonable results, the framework was tested with simple
task. After solving the task, the ANN tool was ready for solving the accident rates estimation problem.

Creation of the neural network completed after trial and errors process to find the optimum configuration for it. Resulted
network passed through nearly a million iterations of training sample cases to reach convergence. When it was ready, given test
cases were introduced to the trained neural network for prediction. Results were impressive, taking into consideration that validity
obtained by ANN was equal to %77.6 whereas the validity using fuzzy c-means clustering method was equal to %71.32. That is
mean %6.28 percent more accurate result achieved by the artificial neural network over fuzzy c-means clustering.

The successful approach discussed in this paper can be used widely in insurance companies, and their clients too, as a good
indicator for better estimate the insurance fees depending on actual prediction of accidents for laborers based on direct factors
related to the laborers themselves instead of using historical data that, i believe, would not be valid for the future accident
estimations as the laborers may not be working in the same company at the time of accident when happen. Another practical
application for this paper can be in industrial companies and construction contractor companies to provide safer working
conditions for laborers by focusing on the human factors and the effective features causing accidents to improve it in order to
insure maximum decreasing in the accident rate of labors without wasting efforts and with minimum possible cost. Hopefully,
further research will reveal much more efficient methods to solve the to reduce the accident rate for better safety for workers.
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