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Abstract: Compartmental analysis is the mathematical framework for the modelling of tracer kinetics
in dynamical Positron Emission Tomography. This paper provides a review of how compartmental
models are constructed and numerically optimized. Specific focus is given on the identifiability
and sensitivity issues and on the impact of complex physiological conditions on the mathematical
properties of the models.
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1. Introduction

Glucose plays a crucial and for a large part unexplained role in cancer metabolism
[46]. Indeed, a common feature of tumor pathological metabolism is an increased glucose
uptake, together with its fermentation to lactate, even under aerobic conditions [26]. This
behavior is known as Warburg effect [53] and the revealing of its mechanism and function
is one of the most intriguing open issues of cancer biochemistry since almost one hundred
years.

2-deoxy-2-[18F]fluoro-D-glucose (FDG) [34] is a glucose analog that is systematically
utilized as a radioactive tracer in nuclear medicine. In fact, once injected in a living
organism, FDG is carried to tissues by blood, is diffused in tissues, is transported into
cells by the same transporters (GLUTs) as glucose and is eventually trapped into cells
after phosphorylation by hexokinase (HK). Further, Warburg effects increase the FDG
consumption by cancer cells, which makes this tracer useful for cancer detection and
staging, and for the assessment of clinical therapies.

FDG Positron Emission Tomography (FDG-PET) [38] is a functional imaging modality
that utilizes FDG as a tracer in order to quantitative assess FDG metabolism in tumors
(but other pathologies are systematically investigated as well by means of this imaging
technique). FDG-PET measures the radiation emitted by the tracer injected in the organism
and these measurements encode, in a very indirect way, two kinds of information: the
localization of FDG accumulation in the body and the rate with which FDG changes its
metabolic status along time. In order to decode such sophisticated information, two inverse
problems must be solved:

1. Image reconstruction inverse problem [33]: to reconstruct the spatio-temporal dis-
tribution of FDG inside the tissue by solving the integral equation that connects the
FDG densito to the measured radiation by means of the Radon transform.

2. Compartmental inverse problem [54]: to model the tracer kinetics by solving the
non-linear time-dependent equation that connects the tracer coefficients to the recon-
structed FDG concentration.

The focus of the present review is on the compartmental inverse problem. In this
framework, on the one hand the recorded tissue activity corresponds to the superposition of

Journal Not Specified 2021, 1, 0. https://doi.org/10.3390/1010000 https://www.mdpi.com/journal/notspecified

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 June 2021                   

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com/journal/notspecified
https://www.mdpi.com
https://orcid.org/0000-0000-0000-000X
https://www.mdpi.com/article/10.3390/1010000?type=check_update&version=1
https://doi.org/10.3390/1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/1010000
https://www.mdpi.com/journal/notspecified
http://creativecommons.org/licenses/by/4.0/


Journal Not Specified 2021, 1, 0 2 of 31

the tracer signal in the blood, in the interstitial tissue, and within the cell. On the other hand,
the unknowns are the parameters associated to the kinetics of the tracer, which mimics
the kinetics of glucose. From a mathematical perspective, compartmental models rely on
the law of concentration conservation between functionally homogeneous conditions; this
leads to a Cauchy problem whose number of ordinary differential equations corresponds
to the number of compartments. In this Cauchy problem the constant coefficients provide
the rate of tracer flow between compartments and, since they are able to describe the action
of the enzymes metabolizing the tracer, they represent the unknowns of the compartmental
problem. At a more specific level, typical technical assumptions are that:

• Only one compartment is allowed to exchange tracer with the environment.
• The input function, i.e. the tracer concentration introduced into the tissue by the blood,

is known by means of either experimental measurements or mathematical modeling.
• The overall tracer concentration associated to the organ of interest (typically, the

tumor) is known as a function of time.
• Both the linearity of fluxes between compartments and vanishing initial conditions

hold.
• The kinetic coefficients are constant and homogeneous in the tissue.

Within this framework, the present review will consider just basic schemes with a
limited number of variables. For them, we will provide a description of the input data
(Section 2) and of how the compartmental models can be constructed (Section 3). A specific
focus will be given to standard graphical approaches and to the connection between
them and the more general compartmental analysis (Section 4). Further, we will discuss
the consequences of the intrinsic ill-posedness of compartmental problems, including
their lack of uniqueness and of sensitivity (Section 5). We will also illustrate some specific
compartmental models that are related to as much specific physiological conditions (Section
6). And we will briefly review some of the optimization methods that have been formulated
and implemented in order to reduce such models (Section 7). Our conclusions will be
offered in Section 8.

2. The experimental data in the compartmental game

The metabolic pattern of most solid tumors shows an increased glucose consumption,
even under aerobic conditions [51]. The mechanisms underlying this Warburg effect remain
largely elusive, but a number of studies documented a direct relationship between glucose
consumption and aggressiveness in cancer tissues. Although direct measurement of the
continuous flux of glucose molecules through lesion-populating cells is extremely difficult,
a reliable estimate was made possible by the peculiar kinetic features of the radioactive
glucose analogue 2-[18F]-2deoxy-D-glucose (FDG). Indeed, FDG is transported through
cell membranes by the same GLUT transporters as glucose, and it is trapped into the
cytosol by phosphorylation catalyzed by the same hexokinases. However, differently from
glucose-6-phosphate (G6P), FDG6P is a false substrate for downstream enzymes channeling
G6P to glycolysis or the pentose-phosphate pathway. Thus, FDG6P accumulates in cells
and tissues, and its amount is considered an accurate marker of their overall glucose
consumption [6,28,32]. Accordingly, the measured tracer content may be employed in non
invasive cancer detection and staging, and in the assessment of drug treatments.

In vivo, cancer FDG retention is dependent upon blood glucose level [44,56], drugs
[11], and overall tracer availability in blood, which in turn depends on the amount of
administered activity and the diffusion process throughout the whole body, after injection.
Tracer concentration in blood also varies with time as a consequence of physiological
factors, related to urinary elimination [11], accumulation in liver [12], absorption by brain
[47], and the different accumulation rates of the various tissues [3].

Positron emission tomography (PET) measures the radiation emitted by the target
tissue in vivo, following an intravenous administration of tracer molecules. The measuring
device is calibrated so that the activity distribution inside the tissue is reconstructed. The
output may vary from the estimate of the concentration of activity in a subregion of the
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tissue at a chosen instant, to the time course of the activity in a given time interval, where
the independent time variable t [min] measures the time interval from the tracer infusion.

In this section we recall a few essential features of the sources of data providing the
input for kinetic models of tracer dynamics. We consider first the standardized uptake
value (SUV), which approximates the tracer metabolic assessment by using a single time
frame (static imaging); next we consider (dynamic) estimates of the time course of tracer
concentration in blood (input function) and tracer concentration in the target tissue, which
are both obtained from a time series of images.

2.1. Standardized Uptake Value

Perhaps, the standardized uptake value (SUV) is the simplest parameter which is used
to quantify tracer accumulation from reconstructed PET images. First, the concentration
of tracer emitters in a region of interest (ROI) of the target tissue is recovered at a given
time, as the solution of an appropriately defined inverse problem. Next, the corresponding
normalized radioactivity concentration is estimated by the SUV, which is defined as [1]

SUV =
activity concentration per unit mass [Bq/kg]

injected activity [Bq]/ body mass [kg]
.

According to this definition, the radioactivity concentration in the ROI is normalized to
the radioactivity concentration in the body, which is estimated as the ratio between the
injected activity and the patient body mass. There are slightly different definitions available;
moreover, SUV measurements are affected by physiological and technological factors [1,3].

Overall, the SUV is an oversimplified index depending on the time interval between
injection and observation, location and dimensions of the ROI, and uptake by other tissues
[3]. Nevertheless, the localized SUV has been used to stage tumors and to assess response
to therapies.

2.2. Input function

Tissues extract the tracer from blood. Indeed, only free FDG is available for tissue
uptake, while the radioligand bound to blood cells and metabolites is firmly constrained to
remain in blood [40,41]. In the present work, the concentration Cb of the tracer available
for input to tissues is identified with the measured concentration in arterial blood, which
means in particular that the bound tracer is disregarded. Considerations about bound
tracer are discussed in [40].

Tracer is delivered to tissues via blood flow, so that the amount of tracer locally
extracted by a tissue is highly dependent on the concentration of radioactivity in blood.
Thus, the reconstruction of FDG kinetics requires the knowledge of the arterial plasma
time-activity concentration curve of the tracer, which in turn provides an estimate of the
radioactivity available for uptake. There are several ways for the determination of the
time course of concentration: serial arterial sampling, which is independent of PET data
acquisition; images of tracer concentration in blood pools [58], such as the left ventricle; a
variety of statistical reconstruction methods [52].

In the present work the arterial plasma activity concentration curve is regarded as
given and plays the role of input function (IF). We assume that the IF, as well as any other
activity curve, has been corrected for tracer decay.

2.3. Activity concentration of target tissue

The tissue selected for measuring the activity concentration CT [Bq/ml] is referred
to as the target tissue (TT). The time course of CT , also regarded as the tissue response, is
obtained from the ROI analysis of a dynamic series of images (see, e.g., [6,55]). We recall
that data are corrected for attenuation and, possibly, other systematic sources of error.
Obviously, the reconstructed value of CT is functionally dependent on the shape of IF, the
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characteristics of the target tissue, the injected dose, and the physiologic conditions of the
patient.

The activity concentration measured by a PET scanner results from superposition
of various signals emitted, e.g., by tracer molecules carried by blood partially occupying
the ROI volume, molecules dispersed in the interstitial tissue, free and phosphorylated
molecules in cells. The analysis of these PET data aims at the reconstruction of the detailed
kinetics of the tracer. In a sense, the measured signal has to be resolved into the activity per-
taining to each source. To this aim, tracer kinetics takes into account the flow of radioactive
molecules between the various sources. This is achieved by the application a mathematical
models, as described in the next section. Comparison between model predictions and
measured data leads to the determination of tracer kinetics, through solution of an inverse
problem.

3. The construction of compartmental models
3.1. Generalities

Compartmental analysis provides a mathematical model relating PET data to specific
metabolic states or chemical compounds of the tracer, while possibly taking into account
their distribution in space. The metabolic states are known as compartments, sources, or
pools. A fundamental requirement of compartmental modeling is the so-called well-mixed
assumption, which means that the tracer distribution in each compartment is spatially
homogeneous, and the tracer exchanged between compartments is instantaneously mixed.
Further conditions for applicability of compartmental analysis are described in detail in
the next subsection.

Each compartment is characterized by the related time dependent activity concentra-
tion. It is understood that different compartments, such as free and phosphorylated FDG,
may occupy the same spatial volume; conversely, if a chemical compound of the tracer
occupies volumes separated by a membrane, as occurs to free tracer in interstitial tissue and
cytosol, then the compound may be associated with two spatially distinct compartments of
possibly different concentrations.

A compartmental model (CM) is given by an interconnected set of compartments.
The number of compartments to consider depends on the chemical, physiological, and
biological properties of the tracer to model [6,25,54]. By adopting a compartmental ap-
proach, complex physiological systems are reduced to a finite number of basic constituents.
Notice that, in principle, blood should be considered as a compartment, but in the present
description it is not regarded as such because the corresponding concentration of tracer is
viewed as known through measurements [55].

The concentrations of the various pools are the state variables of the CM, their time
dependence being determined by tracer exchange. The tracer flux between compartments,
e.g. from the free to the phosphorylated pool, occurs according to mass conservation.
Usually, it is assumed that the outgoing flux depends on the concentration of the source.

The time rate of the concentration of each compartment is set equal to the difference
between the tracer that enters and leaves the compartment per unit time and unit volume.
Application of the conservation law shows that concentrations are related by a system
of ordinary differential equations (ODEs). The IF is the forcing function of the system,
providing tracer supply to the interconnected compartments. Here it is assumed that
all the initial concentrations vanish, because there is no tracer available at the beginning
of each experiment. According to this mathematical model, the state variables are the
solutions of a Cauchy problem. In fact, we consider linear ODEs with constant rate
coefficients, representing the rate of flux of tracer between compartments, say, the rate of
phosphorylation of FDG molecules. The constants are also termed transfer coefficients or
microparameters [17]. If the rate coefficients and the initial state are given, then the solution
of the Cauchy problem provides a detailed description of tracer kinetics. However, typical
problems of compartmental analysis require the determination of the rate constants such
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that the corresponding solution complies with the overall measured tissue concentration.
From the viewpoint of mathematics, this is a typical inverse problem. As a first step in the
solution of the inverse problem, it must be shown that the rate coefficients are uniquely
determined by the available data. This requirement puts severe limitations on the number
of coefficients allowed, and hence on the number of compartments/metabolic states and
the related interconnections to consider. The result is a sort of trade-off between the need
for simplification in the formal description and exhaustiveness in the representation of
reality. Here we consider models resulting from one to three compartments.

In the course of this section we first recall the basic conditions needed to ensure
the applicability of compartmental analysis. The general reference framework has been
described by the previous discussion, which also provides some motivation. Next, we
examine a few CMs, which are of rather common use, and hence are regarded as highly
significant. Particular attention is devoted to the formulation of the inverse problem
equation (IPE), which provides the starting point for the formulation of the inverse problem,
whose solution determines the kinetics of the tracer. Finally, we introduce a compact
(matrix) form of CMs, we present the formal solution of the direct problem, and we write
down the IPE in a general form.

3.2. Basic applicability conditions

In a typical PET experiment a fraction of tracer is adsorbed by tissues after injection
into blood, while some tracer is lost by tissues and poured back into blood. The previous
discussion has indicated that application of compartmental analysis allows a reliable
reconstruction of tracer kinetics, but this can be achieved only if a certain number of
conditions are satisfied in the course of the experiment [2,6,32,41,55]. The following list
describes the most common and relevant requirements.

• Tracer is administered in trace amounts. The number of injected molecules is supposed
to be sufficiently high so that diffusion may described by application of a continuous
model. However, such a number is not so high as to influence physiological processes
and molecular interactions. In particular, tracer does not affect glucose metabolism.

• During an experiment, physiologic conditions are in a steady state which is not affected
by measurement devices of tracer concentration. This holds true, in particular, for
glucose metabolism.

• The well-mixing condition holds for each compartment. In practice, this means that
equilibrium is reached in a time interval, which is rather short with respect to the time
of data acquisition. As a consequence, also the spatial homogeneity condition follows,
which implies that the tracer concentration in each compartment depends only on
time.

• Transport of tracer molecules and related composites between compartments follows
a first order kinetics, which ultimately leads to linear ODEs.

• Bound tracer in blood is disregarded, and the arterial concentration of tracer available
for tissue uptake is regarded as a valuable approximation of capillary concentration.

We have described general assumptions underlying most used compartmental models.
More specific aspects of tracer kinetics may be considered in order to generate highly real-
istic models. For example, a distinction may be introduced between free interstitial tracer
and free intracellular tracer; permeabilities of blood vessels and cellular membranes may be
considered, as well as dependence of activity on spatial variables. CMs explicitly devoted
to the modeling of particular physiologic conditions will be examined in a subsequent
section.

3.3. Examples of standard CMs

The following examples are itemized according to growing complexity. We adopt
typical notations and conventions of the nuclear medicine framework. To simplify, com-
partments and corresponding concentrations [MBq/ml] are denoted by capital letters Ca
and Ca, respectively, where the low index a identifies the specific compartment. Rate
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constants [min−1] are denoted by kb, where the low index refers to the specific function
in the set of interconnected compartments. Equal low indexes in different compartment
models correspond to the same interpretation; at each step, interpretations already dis-
cussed for the previous steps are not repeated. We recall that, unless otherwise specified,
the initial state is always considered at vanishing concentrations. In figures, compartments
are denoted as boxes; by a slight abuse, the same box notation is adopted for the blood
compartment; arrows represent flux of tracer between compartments; superposed indexed
letters identify the rate constants.

3.3.1. 1-compartment model

The 1-compartment model (1-CM) was proposed in order to quantify blood perfusion
[2,55]; recently, it has also been applied to describe tracer exchange during the flow of
blood through a capillary [31].

The 1-CM is an oversimplified model where there is only one tissue compartment C f
with state variable C f , accounting for the overall tracer content. The concentration Cb of
the IF is given. The differential equation for C f is

Ċ f = −k2 C f + k1 Cb , (1)

where k1 and k2 are the rate constants for the incoming and outgoing tracer. In other words,
k1 Cb is the rate of the incoming flow of tracer per unit volume, while k2 C f is the analogous
rate of the outgoing flow; thus, the net rate of tracer concentration per unit volume, Ċ f ,
is the difference k1Cb − k2C f , consistently with conservation of the tracer mass. Notice
explicitly that the plus and minus signs refer systematically to incoming and outgoing
flows, respectively, for the compartment considered. The case k2 = 0 corresponds to
irreversible uptake, which means that tracer cannot escape from the compartment.

The solution of equation (1) (vanishing at t = 0) is

C f = k1

∫ t

0
e−k2 (t−τ) Cb(τ) dτ. (2)

Therefore, the concentration C f is proportional to k1, which is related to the absorption
capacity of the tissue. The parameter 1/k2 is related to the asymptotic equilibrium time.
For example, in the case Cb(t) = C̄ constant, it is found that C f = h (1− e−k2 t), where
h = C̄ k1/k2 denotes the asymptotic equilibrium value. If t = 1/k2, it is found that
C f = 0.63 h, rather close to the asymptotic value.

Consider the measured activity concentration per unit volume, CT . This PET measure-
ment is set equal to the weighted sum of the free tracer activity concentration in tissue and
a contribution arising from the distributed blood and vessels, of the same concentration Cb
as that of the whole blood. Thus we have

CT = (1−Vb)C f + Vb Cb , (3)

where the dimensionless parameter Vb denotes the volume fraction of tissue occupied by
blood. Replacing (2) into (3) provides the IPE for the 1-CM for the unknown rate constants
k1 and k2.

3.3.2. 2-compartment model

Standard compartmental models have been developed under the assumption that the
intracellular processes of phosphorylation and dephosphorylation of FDG are modeled
by the use of two compartments C f and Cp, accounting for free and phosphorylated tracer,
respectively (see, e.g., [48,55] ). In 2-compartment models (2-CMs), the state variables are
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the concentrations C f and Cp. The linear system of ODEs involves four rate constants, and
is written as

Ċ f = −(k2 + k3)C f + k4 Cp + k1 Cb, (4)

Ċp = k3 C f − k4 Cp. (5)

The two equations express the conservation of tracer exchanged between the compartments
C f and Cp. Thus, the outgoing flux −k3 C f from C f in (4) corresponds to the incoming
flux k3 C f into Cp in (5). Similar remarks hold for the flux k4 Cp. The constants k3 and k4
are related to phosphorylation and dephosphorylation rates, respectively, resulting from
the action of the enzymes HK and G6Pase. Again, k1 and k2 are the rate constants for the
incoming and outgoing tracer between the compartment C f and blood.

The case k4 6= 0 is usually referred to as the reversible 2-CM, since tracer is allowed
to leave the compartment Cp. Conversely, the case k4 = 0 corresponds to the irreversible
2-CM, in the sense that dephosphorylation does not occur and hence tracer is trapped
inside Cp; as a consequence, the corresponding concentration Cp grows in time. In general,
a compartmental system is said to be irreversible if it contains at least one irreversible
compartment; otherwise, it is called reversible. The irreversible 2-CM was considered first
in a seminal paper by Sokoloff et al [48]. A great number of reconstruction of rate constants
performed over years have shown that, in general, the value of k4 is relatively small, so that
the irreversible 2-CM is often regarded as a mathematical model providing a satisfactory
approximation of tracer kinetics.

For later convenience, we observe that the solution of the system (4), (5) in the irre-
versible case (k4 = 0) takes the form

C f = k1

∫ t

0
e−(k2+k3) (t−τ) Cb(τ) dτ (6)

Cp =
k1 k3

k2 + k3

∫ t

0
Cb dτ − k3

k2 + k3
C f . (7)

The solution of the system (4), (5) in the reversible case (k4 6= 0) is given as

C f =
k1

λ1 − λ2

[
(k4 + λ1) I1 − (k4 + λ2) I2

]
(8)

Cp =
k1 k3

λ1 − λ2

[
I1 − I2

]
. (9)

where

I1 =
∫ t

0
eλ1 (t−τ) Cb(τ) dτ, I2 =

∫ t

0
eλ2 (t−τ) Cb(τ) dτ (10)

with
λ1,2 = [−(k2 + k3 + k4)±

√
∆]/2, (11)

and
∆ = (k2 + k3 + k4)

2 − 4 k2 k4 = (k2 + k3 − k4)
2 + 4 k3 k4.

In other words, the concentrations are expressed as linear combination of the integrals I1
and I2, with coefficients depending on the rate constants.

The connection between the mathematical model and the PET data is given by the IPE

CT = (1−Vb) (C f + Cp) + Vb Cb. (12)

The concentration CT in the left side of (12) refers to the total activity of the target tissue,
reconstructed from the analysis of PET images; the contribution Vb Cb in the right side comes
from tracer molecules in blood, while (1−Vb) (C f + Cp) comes from tracer molecules in
tissue cells: here Cb is given, while C f and Cp are the formal solutions of the system
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of ODE, expressed in either the irreversible form (6), (7), or the reversible form (8), (9) .
Overall, equation (12) expresses the fact that the measured tracer concentration, in the ROI
considered, results from FDG molecules in blood, and free and phosphorylated FDG in
tissue and molecules.

We point out that there are situations where the tracer content of blood may be disre-
garded, which corresponds to setting Vb = 0. Conversely, if needed, the volume fraction
Vb may be regarded as an additional unknown parameter.

3.3.3. 3-compartment model

Biochemistry arguments show that G6Pase is anchored to the endoplasmic reticulum
(ER) [14], so that its action of hydrolysis of G6P and FDG6P, resulting in the creation
of a phosphate group and free molecules of glucose and FDG, occurs after transport of
the phosphorylated forms into ER by the transmembrane protein glucose-6-phosphate
transporter (G6PT) [30]. Subsequently, free FDG in ER may be released in cytosol. Further
biochemical, pharmacological, clinical, and genetic data lead to a natural interpretation of
ER as a distinct metabolic compartment [10].

Driven by biochemical reactions involving FDG molecules, a 3-compartment model (2-
CM) has been developed, which is formed by the following compartments: C f , accounting
for free tracer in the cytosol and possibly in the interstitial space, Cp for phosphorylated
FDG in cytosol, and Cr for phosphorylated FDG in ER [44,49]. The standard compartmental
2-CM is recovered from the 3-CM under the assumption that the ER compartment is
removed.

3-CM has been applied to the reduction of data coming from in vitro [44] and in vivo
[49] experiments. Although we deal with the same set of three compartments, the resulting
models and the related approaches differ in various significant aspects. For example, the
process of data acquisition in vitro requires the use of a dedicated device (Ligand Tracer)
with a properly defined calibration process, while activities replace concentrations as state
variables [44,49]. However, the most outstanding result obtained from the mathematical
analysis of data via 3-CM, i.e. that tracer is accumulated in ER, holds both in vitro and in
vivo and this has been confirmed by the localization of fluorescent FDG analogues in the
case of in vitro experiments [44].

Coherently with the general approach of this review, in this section we restrict our
attention to applications of 3-CM to the analysis of in vivo data.

The state variables are the concentrations C f , Cp, and Cr. The system of ODEs is given
by

Ċ f = −(k2 + k3)C f + k6 Cr + k1 Cb, (13)

Ċp = k3 C f − k5 Cp, (14)

Ċr = k5 Cp − k6 Cr. (15)

The rate constant k5 is related to tracer transport across the membrane of the ER, or
the action of the transporter G6PT. The parameter k6 is related to dephosphrylation by
G6Pase; thus it may be regarded as the correspondent of k4 in the 2-CM system. Since
dephosphorylation occurs only inside ER, the parameter k4, which corresponds to a flux
from Cp to C f , is set equal to 0.

Following the previous definitions, the case k6 6= 0 is referred to as the reversible
3-CM, since tracer is allowed to leave the ER after dephosphorylation. Conversely, the case
k6 = 0 corresponds to the irreversible 3-CM: dephosphorylation does not occur and the
tracer cannot leave the ER compartment.

For later reference, we observe that the solution of the irreversible version (k6 = 0) of
the system (13)–(15) may be written as

C f = k1

∫ t

0
e−(k2+k3) (t−τ) Cb(τ) dτ, (16)
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Cp = k3

∫ t

0
e−k5 (t−τ) C f (τ) dτ, (17)

and

Cr = k5

∫ t

0
Cp(τ) dτ . (18)

The connection between the tracer concentration CT estimated over a suitable ROI
and the formal solution of the ODEs (13)-(15) is obtained as follows [49]. The volume Vtot
of the ROI is partitioned as

Vtot = Vint + Vcyt + Ver + Vblood , (19)

where Vblood and Vint denote the volume occupied by blood and interstitial fluid, respec-
tively; Vcyt and Ver denote the total volumes of cytosol and ER in tissue cells. The total
activity VtotCT in Vtot is related to the state variables and the IF by

VtotCT = VintC f + VcytC f + VcytCp + VerCr + VbloodCb . (20)

The volume fractions of blood and interstitial fluid are defined as

Vb =
Vblood
Vtot

, Vi =
Vint

Vtot
, (21)

and the further dimensionless parameter vr as

vr =
Ver

Vcyt + Ver
. (22)

Notice that vr is independent of the number of cells and may be estimated as the ratio of
the ER volume and the sum of the cytosolic and reticular volumes of any cell. It is found
that

Ver

Vtot
= vr(1−Vb −Vi) ,

Vcyt

Vtot
= (1− vr)(1−Vb −Vi) . (23)

Accordingly, equation (20) may be written in the equivalent form

CT = α1 C f + α2 Cp + α3 Cr + Vb Cb , (24)

which is the IPE of 3-CM and where the positive dimensionless constants α1, α2, and α3 are
defined as

α1 = Vi + (1− vr)(1−Vb −Vi) , (25)

α2 = (1− vr)(1−Vb −Vi) , (26)

α3 = vr(1−Vb −Vi) . (27)

Remark: As intentionally suggested by similarities in notation, 2-CM is a simplifica-
tion of 3-CM. It has already been observed that the rate constant k6 in 3-CM corresponds to
k4 in 2-CM, in that both parameters are related to the process of dephosphorylation of the
tracer molecules.

More in general, there are various possibilities of analyzing the correspondence be-
tween models from a formal viewpoint. For example, consider the system of ODE for
3-CM and suppose that Cp is almost constant. Indeed, repeated applications of 3-CM have
shown that Cp reaches a stationary value after a very short transition time [44,49]. In that
case, equation (14) reduces to k3 C f = k5 Cp (as a consequence, also C f becomes constant,
consistently with simulations). After substitution of this condition, (14) takes the form

Ċr = k3 C f − k6 Cr. (28)
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Equations (13) and (28) coincide with (4) and (5) of 2-CM, provided Cr and k6 are identified
with Cp and k4, respectively. This is also consistent with the observation that accumulation
of FDG occurs in ER, rather than cytosol [44,49]. In a sense, a stable amount of phospho-
rylated tracer remains in cytosol, providing a similarly stable flux k5 Cp = k3 C f towards
ER. A further point to consider while connecting the two models is related to the fact that
phosphorylated tracer in 2-CM occupies the volume Vcyt while Cr in 3-CM occupies the
volume Ver.

3.4. Compact formulation and general formal solution of the direct problem

We describe an alternative formulation of the ODEs for CMs which is given in matrix
form, and is used in a number of developments. This compact formulation writes

Ċ = M C + k1 Cb e (29)

In general, C is the n-dimensional column vector of state variables; M is a constant square
matrix of order n, with entries given by the rate coefficients; e is a constant n-dimensional
column vector. Addition of the initial condition C(0) = 0 gives rise to a Cauchy problem
for the unknown state vector C. We refer to its solution as the solution of the direct problem.

For 2-CM, comparison with (4), (5) shows that

M =

[
−(k2 + k3) k4

k3 −k4

]
, C =

[
C f
Cp

]
, e =

[
1
0

]
. (30)

Notice that the matrix M is singular for irreversible models; conversely, M is non-singular
with eigenvalues λ1 and λ2 from equation (11) for reversible models. Similarly, the system
(13)–(15) for 3-CM is written in the form (29) with

M =

−(k2 + k3) 0 k6
k3 −k5 0
0 k5 −k6

, C =

C f
Cp
Cr

, e =

1
0
0

. (31)

The general structure and properties of the system matrix M have been extensively
discussed, e.g. in [19,42]. We only observe that if the system is irreversible then there is at
least one compartment, say Cn, such that the tracer cannot get out. This is equivalent to
the statement that the diagonal element Mnn of the matrix M vanishes. As an immediate
consequence of (30) and (31), the system matrix of irreversible 2-CMs and 3-CMs is singular.
The result holds in general for irreversible CMs.

The solution of the direct problem may be represented as

C(t; k, Cb) = k1

∫ t

0
eM (t−τ) Cb(τ) dτ e, (32)

where k is the vector of parameters defined as k = (k1, k2, . . . , km)T , with upper T denoting
the transpose and M depending on the CM adopted. The notation gives evidence to the
dependence of C on the rate constants and the input function.

The compact form of the IPE is given by

CT = α C(t; k, Cb) + Vb Cb, (33)

where α is a constant row vector of order n, with components possibly depending on the
physiological parameters. Equation (33) reduces to (12) for 2-CM if α = [1− Vb, 1− Vb].
Similarly, we recover equation (24) for 3-CM by letting α = [α1, α2, α3].

Replacing expression (32) of C into (33) provides the IPE governing the inverse
problem for the unknown vector k, at given CT and Cb.

Remark: In the present approach we have described a rather simple and essential
formulation of compartmental analysis, which however is sufficient to deal with standard
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applications in nuclear medicine. In more general situations, tracer could be delivered from
blood to more than one compartment, with different time rate constants, which implies a
change in the definition of the vector e. Furthermore, we have assumed that the observed
activity results from the superposition of the activities of all tissue compartments, but it
may happen that more than one, say h outputs, could be observed, so that the IPE should
be replaced by a system of h equations.

4. Patlak and Logan graphical approaches

Graphical methods are essentially based on the following observation. Two appro-
priate functions of the measurements identify the parametric representation of a time
dependent plane curve which becomes linear for large time values. Application of a linear
regression method to the plot provides an estimate of a corresponding slope, which can
be given an interpretation in terms of either tracer absorption (irreversible CMs) or tracer
distribution (reversible CMs). In other words, graphical methods may be regarded as
procedures for the solution of a simplified inverse problem, yielding useful information on
the overall tracer kinetics.

Here we describe the Patlak graphical approach (PGA) and the Logan graphical
approach (LGA) which apply to irreversible and reversible CMs, respectively [27,36]. The
procedure leading to the generation of the asymptotically linear curves follows from the
properties of the specific CM, but the final parametric equation of the curve depends only
on the available data. Therefore, we first describe the algorithm for the construction of
the (asymptotically linear) curves for irreversible CMs, and we show how it works by
application to a 2-CM and a 3-CM. A general approach to reversible CMs is then proposed,
with specific examples.

4.1. PGA

PGA provides a useful consequence of the IPE holding for a family of irreversible
CMs, in that it is used to estimate the net influx rate of radiotracer at large time values.
Subsequent multiplication by the so-called lumped constant provides an estimate of the rate
of glucose uptake [44]. The general process for deriving PGA is described in the following
procedure, which is divided into three steps, for the sake of clarity. Then, applications to
2-CM and 3-CM will be described.

• First step. The vector solution C of the irreversible system of ODE (29) is substituted
into the IPE (33), which is then divided by Cb. The resulting equation takes the form

CT
Cb

= αP

∫ t
0 Cb

Cb
+ βP(t), (34)

(see the Appendix) where αP [min−1] is a constant macroparameter [17], and βP
depends on Cb and the components of C.

• Second step. In a number of relevant cases it may be shown that βP is asymptoti-
cally constant. Then, in the plane referred to Cartesian coordinates (x, y), define the
functions x(t) and y(t) by

x(t) =

∫ t
0 Cb

Cb
, y(t) =

CT
Cb

, (35)

t ∈ (0, ∞). The points (x(t), y(t)) give the parametric representation of a curve which
is known as the standard Patlak plot [62]. Comparison with equation (34) and the
condition on βP show that the curve is asymptotically linear. Thus the slope αP and
the adimensional constant intercept βP are estimated in terms of the data by linear
regression [62]. The procedure may be applied pixel-wise.

• Third step. The interpretation of αP is achieved by comparison with the stationary
solution of the system of ODEs (29), corresponding to a constant IF. It is shown that

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 June 2021                   



Journal Not Specified 2021, 1, 0 12 of 31

αP measures the rate of tracer uptake by the tissue at stationary conditions.

The general proof of the procedure is given in the Appendix. Here we show how and
why it works by considering in detail irreversible 2-CMs and 3-CMs.

4.1.1. PGA for 2-CM

Consider an irreversible 2-CM system: the concentrations C f and Cp are given by (6)
and (7), so that C f + Cp takes the form

C f + Cp =
k1 k3

k2 + k3

∫ t

0
Cb dτ +

k2

k2 + k3
C f . (36)

Replacing this expression into the IPE (12)and then dividing by Cb, leads to (34) with

αP2 = (1−Vb)
k1 k3

k2 + k3
, (37)

and

βP2(t) = (1−Vb)
k2

k2 + k3

C f

Cb
+ Vb, (38)

where the suffix P2 refers to the PGA for the 2-CM.
Following Step 2, we observe that if the ratio C f /Cb is asymptotically constant, then

the adimensional quantity βP2 is constant as well, for large t values, and the Patlak plot is
asymptotically linear. It may be shown that constancy of C f /Cb occurs in two remarkable
cases: when the IF Cb is (asymptotically) constant or exponentially decaying. The latter
condition may be regarded as typical for tracer concentration in plasma [52].

According to Step 3, the direct interpretation of αP2 is obtained as follows. Consider
the system (4), (5) in the irreversible case (k4 = 0), suppose that the IF Cb is constant, and
look for stationary solutions. Denote by an upper star the constant values. From the system
of ODES it follows that C f and Ċp assume constant values. Specifically, we find

C∗f =
k1

k2 + k3
C∗b , Ċ∗p =

k1 k3

k2 + k3
C∗b . (39)

Replacing expression (39) of Ċ∗p in the time derivative of the IPE (12), and comparing the
result with the definition of αP2 shows that

Ċ∗T = αP2 C∗i . (40)

We conclude that CT grows at the constant rate αP2 C∗i . In words, αP2 C∗i represents the
net tracer rate uptaken by the tissue in stationary conditions; it may be estimated directly
from data, without explicit knowledge of the values of the rate constants. A pixel by pixel
evaluation is also allowed. Finally, we remark that the rate of FDG uptake has been used to
estimate glucose uptake through multiplication by the lumped constant [6,44,48].

Remark: The coefficient αP is obtained by re-writing the IPE (33) in the form of the
Patlak plot. Since in general (33) depends on the volume fraction, the same holds for αP2,
as brought into evidence by definition (37). The slope coefficient αP2, which is related to
the rate of tracer uptake, comes from application of linear regression to the whole Patlak
curve, with t varying from 0 to ∞. The coefficient α2P is different from the slope of the line
asymptotically approximating the Patlak curve [62]. This remark holds independently of
the number of compartments.

Remark: A required condition for application of PGA is that k4 = 0. Nevertheless,
it is rather common to use PGA for 2-CMs in order to estimate the rate of tracer uptake.
To discuss here the feasibility of this approach, we look at IPE for small values of k4. We
show that the sum C f + Cp converges to the expression of the irreversible case (k4 = 0)
for k4 → 0. In words, the reversible model converges to the irreversible one, as to the
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formulation of IPE. Thus, the value of the accumulation rate obtained by application of the
irreversible model (which coincides with αP2) may be interpreted as an approximation of
the overall tracer uptake rate for small k4.

Suppose now that k4 6= 0. According to (8) and (9) we have

C f + Cp =
k1

λ1 − λ2

[
(k3 + k4 + λ1) I1 − (k3 + k4 + λ2) I2

]
. Further, accounting for the definitions, we find that

λ1 → 0, λ2 → −(k2 + k3), λ1 − λ2 → (k2 + k3)

,

I1 →
∫ t

0
Cb, k1 I2 → k1

∫ t

0
e−(k2+k3) (t−τ)Cb(τ) dτ = C f ,k4=0

for k4 → 0; in particular C f ,k4=0 refers to the expression (6) of C f , evaluated at k4 = 0. It
follows that

C f + Cp →
k1 k3

k2 + k3

∫ t

0
Cb dτ +

k2

k2 + k3
C f ,k4=0 (k4 → 0),

which corresponds to equation (36) and which leads to the Patlak plot. Thus the estimate of
the rate of tracer uptake αP2 by application of the PGA is taken as an approximate estimate
of the rate in the presence of a small dephosphorylation effect.

4.1.2. PGA for 3-CM

Consider now the irreversible 3-CM. To accomplish Step 1, equation (24) is re-written
in the equivalent form

CT = (α1 − α3)C f + (α2 − α3)Cp + α3(C f + Cp + Cr) + VbCb. (41)

Next, the sum of the differential equations (13), (14), and (15) is re-written as

d
dt
(C f + Cp + Cr) = −k2 C f + k1 Cb

. Evaluation of the integral from 0 to t, and substitution of the explicit expression of C f
from (16) leads to

C f + Cp + Cr =
k1 k3

k2 + k3

∫ t

0
Cb +

k2

k2 + k3
C f . (42)

Replacing the expression (42) into (41), and dividing by Cb leads to the standard equation
for the Patlak plot (34), where

αP3 = α3
k1 k3

k2 + k3
, (43)

βP3(t) = (α1 − α3 +
k2

k2 + k3
)

C f

Cb
+ (α2 − α3)

Cp

Cb
+ Vb . (44)

According to Step 2, if βP3 is asymptotically constant then an asymptotically linear
Patlak plot is obtained.

Step 3 provides the interpretation of αP3. In fact, consider the system of ODEs (13)–(
15), under the assumption of irreversibility (k6 = 0) and look for stationary solutions at
constant Cb = C∗b . It is found, in particular, that

Ċ∗r =
k1 k3

k2 + k3
C∗b .

Evaluation of the asymptotic value of the time derivative of the IPE (24) shows that
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Ċ∗T = α3 Ċ∗r . Substitution of the previous expression of Ċ∗r and comparison with the
definition of αP3 leads to

Ċ∗T = αP3 C∗b . (45)

In words, CT grows at the constant rate αP3 C∗b .
Remark: Equation (45) for 3-CM is the analog of (40) for 2-CM. This is consistent with

the general discussion of PGA for irreversible CMs of generic order n, which is given in
the Appendix.

As exemplified by equations (37) and (43), the explicit form of the equation connecting
the general slope αP to the microparameters depends on the structure of the CM. Indeed,
PGA is model-independent, but requires the use of CMs for its motivation, development,
proof.

4.2. LGA

Under suitable assumptions, LGA provides a useful consequence of IPE, which holds
for reversible CMs; specifically, we obtain the estimate of a macroparameter representing a
ratio between equilibrium concentrations. The procedure is somehow similar to that of
§4.1 for PGA; we reproduce here the main steps in the case of a general reversible CM
[27,40,54].

• Step 1. Consider the integral in time of the IPE equation in the compact form (33):

∫ t

0
CT =

∫ t

0
α C + Vb

∫ t

0
Cb. (46)

where α C is related to data through the ODE (29). Indeed, multiplication of (29) by
M−1 yields

C = M−1 Ċ− k1 M−1 e Cb.

Further multiplication by α, and integration with respect to time from 0 to t gives∫ t

0
α C(τ; k) dτ = α M−1C− k1 α M−1 e

∫ t

0
Cb dτ

Substitution into (46), followed by division by CT gives the necessary condition∫ t
0 CT

CT
= αL

∫ t
0 Cb

CT
+ βL(t) (47)

where the dimensionless constant αL and the function βL(t) [min−1] are defined as

αL = −k1 α M−1 e + Vb, (48)

βL(t) =
α M−1C

CT
. (49)

• Following the analogy with the GPA approach of §4.1, in a number of relevant cases it
may be shown that βL is asymptotically constant. In such a case, consider the functions
x(t) and y(t) defined by

x(t) =

∫ t
0 Cb

CT
, y(t) =

∫ T
0 CT

CT
, (50)

t ∈ (0, ∞). In analogy with (34) the points (x(t), y(t)) of the Cartesian plane define
a parametric representation of the standard Logan plot, which is an asymptotically
linear curve. The adimensional slope αL and the intercept βL are macroparameters
determined by the data, which are estimated by linear regression.

• The interpretation of αL follows from the equilibrium solution of the system (29) at
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constant IF C∗b . The equilibrium state C∗ is given by

C∗ = −k1 M−1 e C∗b .

According to the IPE (33), the previous equation, and the definition of αL it follows
that

C∗T = α C∗ + Vb C∗b = −k1 α M−1 e C∗b + Vb C∗b = αL C∗b (51)

Thus, the slope αL = C∗T/C∗b is the ratio between the constant equilibrium value of the
total tissue concentration and the blood concentration.

Remark: It should be noticed that C∗T takes into account the total tracer content of
a tissue volume, which means that also the contribution due to the presence of blood is
considered.

An alternative interpretation of αL in terms of volumes is obtained as follows. Suppose
VT and Vb are tissue and blood volumes containing the same amount of radioactivity at
the equilibrium concentrations. This means that

C∗T VT = C∗b Vb , (52)

whence it follows that
Vb
VT

=
C∗T
C∗b

= αL . (53)

Accordingly, αL may also be interpreted as the ratio between blood and tissue volumes
containing the same amount of tracer at equilibrium concentrations. We conclude that αL
assesses the overall capability of the tissue to concentrate or dilute tracer in equilibrium
conditions.

4.2.1. LGA for 2-CM

We consider a reversible 2-CM system (k4 6= 0). Explicit computations show that

k1 α M−1 e = −(1−Vb)
k1

k2

(
1 +

k3

k4

)
and

α M−1 C = −(1−Vb)
( k3 + k4

k2 k4
C f +

k2 + k3 + k4

k2 k4
Cm
)
.

Substitution into the definitions (54) and (55) leads to

αL2 = (1−Vb)
k1

k2

(
1 +

k3

k4

)
+ Vb, (54)

and

βL2(t) = −(1−Vb)
[ k3 + k4

k2 k4

C f

CT
+

k2 + k3 + k4

k2 k4

Cp

CT

]
, (55)

where the low index L2 refer to the Logan plot for 2-CMs.
Suppose that Vb is small enough to be negleted. Then αL2 reduces to (k1/k2) (1 +

k3/k4) = DVT , which is called the total distribution volume [2,23,40].

4.2.2. LGA for 3-CM

Consider a reversible 3-CM (k6 6= 0). Following the same procedure as §4.2.1, with M,
α, and e properly updated, it is found that∫ t

0 CT

CT
= αL3

∫ t
0 Cb

CT
+ βL3(t) (56)
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with
αL3 = α M−1 e + Vb =

k1

k2

(
α1 + α2

k3

k5
+ α3

k3

k6

)
+ Vb (57)

βL3(t) =
α M−1 C

CT
= −

(α1

k2
+

α2 k3

k2 k5
+

α3 k3

k2 k6

) C f + Cp + Cr

CT
− α2

k5

Cp

CT
− α3

k6

Cp + Cr

CT
(58)

If βL3(t) is asymptotically constant, then equation (56) provides a standard Logan plot with
slope αL3.

An analysis of the system (13)–(15) and equation (24) at constant values of C f , Cp, Cr,
and Cb shows that αL,3C coincides with C∗T/C∗b = Vb/VT such that C∗T VT = C∗b Vb.

5. Issues on the solvability of the inverse problem

The fundamental application of compartmental analysis deals with the reconstruction
of tracer kinetics via estimate of the rate constants, which cannot be measured directly.
A natural requirement is that the parameters that identify the mathematical model are
uniquely defined, up to noise in the data. This is known as the identifiability problem.
There are, at least, two reasons to asses identifiability [7]. Since the rate constants have a
kinetic meaning, we are interested in knowing whether their values can be determined
uniquely from the available experimental data. Moreover, we expect difficulties in the
estimate of parameters of a non-identifiable model. The discussion of a few aspects of
these problems is the main aim of the present section with a particular focus on linear
compartment models. The analysis of identifiability for nonlinear compartmental systems,
such as those arising when fluxes between compartments are modeled by the Michaelis-
Menten law, is still an open problem. A comparison of currently available techniques for
nonlinear model is beyond the scope of this review and can be found in [7].

5.1. Identifiability of linear CMs

In some scenarios many distinct models may exist equally fitting the recorded data
[49]. Here we assume tha a linear compartmental model has been fixed by exploiting, e.g.,
some a priori information on the biochemical process under consideration. Additionally,
we assume all the physiological parameters, such as the blood volume fraction Vb, to be
known and we investigate the identifability of the kinetic parameters k.

A standard approach to discuss the identifiability of linear CMs consists in computing
the Laplace transform of both sides of the IPE (33) and of the system of ODEs (29), leading
to, respectively,

C̃T(s) = α C̃(s) + Vb C̃b(s) , (59)

and
(s I −M) C̃(s) = k1 C̃b(s) e , (60)

where we have indicated by f̃ (s) the Laplace transform of a function f (t) and we have
assumed suitable regularity conditions.

Provided the matrix (s I −M)−1 is invertible, by computing the solution C̃(s) of the
linear system (60) and substituting it into equation (59) we obtain

C̃T(s)−Vb C̃b(s)
C̃b(s)

= k1α(s I −M)−1e = k1
Q(s, k̂)
D(s; k̂)

, (61)

where k̂ = [k2, ..., km]T , D(s; k̂) := det(s I−M) is a polynomial of degree n in the variable s
with coefficients depending on k̂, and similarly Q(s; k̂) := α adj(s I −M) e is a polynomial
of degree up to n− 1, adj(s I −M) being the adjugate of the n× n matrix (s I −M). In
the following we assume that Q(s; k̂) and D(s; k̂) are coprime and that they have leading
coefficient equal to 1.

Any alternative set h = [h1, ..., hm]T of kinetic parameters that satisfy the IPE (33) and
the system of ODEs (29) for the recorded input function Cb(t) and total concentration CT(t)
must satisfy equation (61), with k replaced by h. Since the left-side of equation (61) does
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not depends on the value of the kinetic parameters, the following necessary condition
holds

k1
Q(s, k̂)
D(s; k̂)

= h1
Q(s, ĥ)
D(s; ĥ)

. (62)

By exploiting the fact that Q(s, k̂) and D(s; k̂) have leading coefficients equal to 1, it
can be easily shown that equation (62) implies k1 = h1. Then, since Q(s, k̂) and D(s; k̂) are
coprime, from equation (62) it follows that

Q(s, ĥ) = Q(s; k̂), D(s, ĥ) = D(s; k̂). (63)

If these two equations imply ĥ = k̂, then identifiability is proved. The actual implementa-
tion of this last step depends on the particular CM under consideration and may be rather
involved when many compartments are included in the model.

As an illustrative example, we consider a reversible 2-CM. In this case

Q(s; k̂) = s + k3 + k4 (64)

and
D(s; k̂) = s2 + (k2 + k3 + k4)s + k2k4 , (65)

which do not have any common roots and have leading coefficient equal to 1. In this case,
the necessary conditions in equation (63) lead to the system

k3 + k4 = h3 + h4

k2 + k3 + k4 = h2 + h3 + h4

k2k4 = h2h4

(66)

that straightforwardly implies k̂ = ĥ.
Some additional results on the identifiability of 2-CMs and 3-CMs can be found in

[8] where also more general models are consider, including, e.g., multiple compartments
exchanging tracer with blood.

5.2. Sensitivity analysis

In the previous section we have shown how to analytically prove the identifiability of
the rate constants of a linear CM. However, in practical scenarios, this analytic result does
not guarantee that the rate constants may be effectively and reliably estimated. This may
occur when changes in one or more parameters only slightly affect the data. For this reason,
a local (or global) sensitivity analysis needs to be performed to investigate to what extent
the state of the system changes when parameter values are perturbed from a reference
value [15,16,39].

While for standard 2-CMs local sensitivity analysis shows that perturbations of the
rate constants significantly affect the system variables, the 3-CM show a poor sensitiv-
ity with respect to k5 and k6 [49]. As a consequence, even though the parameters are
identifiable, multiple configurations exist that equally fit the noisy recorded data. The
uniqueness of the solution of the inverse problem can be restored by incorporating in the
optimization procedure prior information on biologically feasible interval for the values of
such parameters [49].

6. Physiology-driven compartmental models

CMs provide a highly flexible instrument which may be adapted to the analysis of
tracer kinetics in non standard conditions. We examine here a few examples, focusing
on the essential features of each approach. Each example accounts for a set of specific
conditions and available PET data, which in turn suggest the most convenient approach to
the modelling of tracer kinetics.
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6.1. Reference tissue models

In the present formulation, reference tissue models (RTMs) result from the combination
of 1-CM, 2-CM, and a graphical approach. RTMs have been introduced to overcome
difficulties in the reconstruction of the TAC of the IF. Often, the IF is determined by
measurements of activity on a ROI which is drawn over a sufficiently large blood pool,
such as the left ventricle, but the procedure is subject to systematic errors. Possible sources
of error are given by spillover, cardiac motion, and the low resolution of PET cameras (see
[52] and the related references). Moreover, at the very beginning of the diffusion process
the arterial TAC shows a very high peak, which is difficult to estimate reliably [43]. The
essential idea of RTMs, is that the TAC of a suitably chosen reference tissue (RT) replaces
the TAC of the IF of the target tissue.

We consider an RTM which is formed by a reversible 2-CM for the TT, and a 1-CM
for the RT, as shown in figure 1. In particular, CR denotes tracer concentration in the RT,
while k1R and k2R [min−1] are the rate constants for incoming tracer flow from blood, and
outgoing flow to blood, respectively. Thus, the RTM depends on six unknown kinetic
parameters. The natural data are the time dependent radioactivity concentration CR of the
RT, and total concentration CT of the target tissue (TT). In the present formulation we also
assume that the concentration Cb of blood is known from t0 on, with t0 sufficiently large.
We show that the IPE for the unknown rate constants may be formulated in terms of these
data.

Following the approach of [43] we describe first the RT. The concentration CR solves
the Cauchy problem for the 1-CM:

ĊR = −k2R CR + k1R Cb, CR(0) = 0 . (67)

We denote by VbR the given volume fraction of RT. Then the measured total radioactivity
concentration CR is expressed as

CR = (1−VbR)CR + VbR Cb. (68)

As to the TT, this is represented as a 2-CM. Hence equation (29) applies, with M, C,
and e given by (30). It follows that

C = k1

∫ t

0
eM (t−τ) Cb(τ) dτ e , (69)

where the unknown parameters are (k1, k2, k3, k4). Notice that equation (69) is a particular
case of the general representation (32), which has been restated here for convenience. The
connection between the measured total radioactivity concentration CT of the TT and the
related state vector C of equation (69) follows from equation (33), which here takes the
form

CT = αT C + VbT Cb, αT = (1−VbT)
[
1 1

]
, (70)

where VbT is the given volume fraction of the TT.
In order to find the IPE for the RTM we proceed according to three steps.
In the first step the constant k2R is expressed in terms of k1R by the use of RT data.

This reduces the number of the unknown parameters from 6 to 5, and guarantees the
identifiability. Specifically, we set

k2R = λ k1R, (71)

where λ is a constant unknown parameter that may be estimated by a graphical approach.
Indeed, it follows from (67) and (68) that the following identity holds:∫ t

t0
CR

CR
= γ1

∫ t
t0

Cb

CR
,+γ2(t) , (72)
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Figure 1. Compartment model for the reference tissue.

where
γ1 =

1−VbR
λ

+ VbR.

Under the assumption that γ2 is asymptotically constant equation (72) provides γ1 by
linear regression, and hence λ.

In the second step Cb is expressed in terms of CR as a consequence of equations (67)
and (68) for the RT. It is found that

Cb =
CR
VbR
− (V−1

bR − 1) k1R

∫ t

0
e−γ k1R (t−τ) CR dτ . (73)

In the third step, replacement of Cb in (69) with its expression (73) yields the state
vector C in terms of CR. Subsequent substitution of C and Cb in (70) provides the IPE for
the five unknowns k1R, k1, k2, k3, k4.

Identifiability is proved by considering the Laplace transforms of equations (29) and (
70). The details can be found in [43].

We conclude this section with a few remarks. The volume fraction VbR and VbT are
often set equal to zero. The number of the unknown parameters is reduced by the assump-
tion that the distribution volumes of tracer of the two tissues are equal; this corresponds to
imposing

k1

k2
=

k1R
k2R

but application of this the assumption to tumor tissues has been subject to criticism. We
refer again to [43] for more details.

6.2. CMs for liver

In applications of compartmental analysis to the liver system there are two input
functions to consider in that blood, and hence the tracer is supplied to liver by both
the hepatic artery (HA) and the portal vein (PV), which carries to the liver the blood
outgoing from the gut. While tracer concentration in HA may be estimated by the methods
developed for standard IFs, the PV is not accessible to PET images. As observed in [12],
there have been several attempts to estimate the dual-input IFs from dynamic PET data.
According to the approach of [12], a reliable solution is provided by combination of three
compartmental models and suitable physiologic remarks.

As described in Figure 2, we developed a compartmental approach resulting from the
combination of two 2-CM subsystems for tracer kinetics in the gut and the liver, respectively,
and a 1-CM subsystem for the portal vein, regarded as a pool connecting gut and liver.
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The gut subsystem is regarded as a reversible 2-CM with arterial blood concentration
for IF, and portal vein concentration for the output function. The following system of ODEs
holds, which is simply a restatement of the ODEs for a 2-CM:

Ċ′f = −(k
′
v f + k′p f )C′f + k′f p C′p + k′f b Cb (74)

Ċ′p = k′p f C′f − k′f p C′p . (75)

Here C′f and C′p denote the tracer concentrations of the free compartment C ′f , and the
phosphorylated compartment C ′p, respectively; Cb is the arterial blood concentration. We
remark that the notation for the rate coefficients has been changed in order to take into
account the complicated structure of the model: specifically, kij denotes the rate coefficient
for tracer transfer to the target compartment Ci from the source compartment Cj. In
particular, k′v f is related to the rate of transfer to the PV from gut.

The total concentration CT,gut of the gut system and the IF Cb are accessible to mea-
surement and hence are regarded as data for the standard compartmental problem. Thus
the rate coefficients are determined by solving the IPE

CT,gut = C′f + C′p,

where a vanishing blood volume fraction is considered. The coefficients are replaced into
the system (74), (75), so that the concentrations C′f and C′p are evaluated by solving the
related Cauchy problem with vanishing initial data. In particular, the time course of C′f is
required for further developments.

The PV subsystem, denoted as Cv, provides the input concentration to liver from gut.
Tracer carried by blood leaves the free gut compartment C ′f , goes through Cv, and enters
the free liver compartment C f . While observing that the incoming and the outgoing blood
flows of Cv are constant, it is found that k′v f = k f v. Thus the ODE for the concentration Cv

takes the form
Ċv = k′v f C f − k′v f Cv;

its formal solution yields the expression of Cv in terms of C′f (t) and the rate constant k′v f .
The liver subsystem is modeled as a reversible 2-CM. The ODEs for the concentrations

C f and Cp, of free and metabolized compartments are

Ċ f = −(kp f + ks f )C f + k f p Cp + k f b Cb + k′v f Cv , (76)

Ċp = kp f C f − k f p Cp . (77)

The interpretation of the rate coefficients follows according to the general rules, with the
further remark that ks f is the rate towards the suprahepatic vein from the liver free pool C f
. The IFs Cb and Cv can now be regarded as given. The IPE takes the form

CT,liver = (1−Vb) (C f + Cp) + Vb (0.11Cb + 0.89Cv),

where CT,liver is the measured concentration in liver, while the numerical coefficients 0.11
and 0.89 refer to the rate of arterial and venous contributions to the hepatic blood content
Vb per unit volume. The unknowns are the 5 rate constants kp f , ks f , k f p, k f b, k′v f .

6.3. CMs for the renal system

Tracer subtraction from blood by the renal system, besides being of interest in itself,
may be influenced by the presence of drugs, thus leading to possible therapeutic applica-
tions [11]. A quantitative analysis of the process of renal excretion involves a compartment
anatomically represented by the bladder, which is thus to be considered in the formulation
of the renal CM. Moreover, the change of tracer concentration in tubules associated with
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Figure 2. Compartment model for liver.

re-absorption of liquid must also be considered. Insertion of these conditions makes the
CM of the renal system rather complex.

A concise description of models available in the literature can be found in [11,13]. Here
we describe the CM of [11], which is capable of accounting for a number of physiological
conditions.

We refer to Figure 3, showing that the renal CM involves four compartments, which
can be given the following interpretations:

• An extravascular compartment C f accounting for tracer outside cells, whose exchange
with blood is free.

• A compartment Cp containing the phosphorylated FDG, the FDG in the cells and
the preurine pool. In particular, following the flow of liquid, tracer is filtered in the
preurines and carried towards the proximal tubule. This compartment, has been
denoted as Cp because tracer can also be in phosphorylated form.

• A tubular compartment Ct, where tracer flows towards bladder. Here the concentration
varies (increases) because of the re-absorption of liquids through the tubular walls.

• The urinary pool Cu, anatomically identified with the bladder, where the tracer carried
by the urine is accumulated. Notice the bladder volume varies with time.

Following the standard conventions, the system of ODEs may be written as follows:

Ċ f = −(kb f + kp f )C f + k f p Cp + k f b Cb , (78)

Ċp = kp f C f − (k f p + ktp)Cp + kpbCb, (79)

Ċt = −kut Ct + ktpCp, (80)

and
d
dt
(VuCu) = FutCt. (81)

Notice that Vu denotes the time dependent volume of the bladder, so that VuCu is the
corresponding total activity content. Fut (ml min−1) denotes the bulk flow of urine from
tubules to bladder; according to the assumption of stationarity, Fut is considered constant.

The total radioactivity CK of the kidneys may be written as

CK = (1− ηb − ηt)(C f + Cp) + ηtCt + ηbCb, (82)
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where ηb and ηt denote the fractions of kidney volume VK occupied by the tubular compart-
ment and the blood compartment, respectively; they are regarded as given. The measured
data are CK, Cu, and Vu.

A rather complicated formal development (see [11]) shows that, in view of (78)-(80),
equations (82) and (81) are approximated by

AK = x1VKCb + x2

∫ t

0
AK + x3VK

∫ t

0
Cb + x4VK Au, (83)

Au = z1

∫ t

0

∫ τ

0
Ck + z2

∫ t

0

∫ τ

0
Cb + z3

∫ t

0
Au. (84)

Here AK = VKCK and Au = VuCu represent the total activities of kidneys and bladder,
respectively. They are considered as given, since they are expressed in terms of given data.
The parameters (x1, x2, x3, x4) and (z1, z2, z3) depend on the rate constants kij, the volume
fractions ηb and ηt, and the flow parameter Fut. System (83), (84) provides the starting
point for the solution of the inverse problem for the unknown rate constants.

The number of unknowns is reduced by the introduction of two physiological con-
straints.

First, the constant flux rate Fut into bladder can be estimated from the measured
bladder volumes as

Fut =
Vu(t f )−Vu(t∗)

tt − t∗

where t f is the final time, and t∗ is any intermediate time.
Second, we recall that the bulk flow of carrier fluid from Ct toward the bladder is

around two orders of magnitude smaller than the reabsorbed flow through the boundary of
Ct. Therefore, the tracer balance equation in tubule implies ktp = 102kut. Finally, it follows
from the definitions that kut ηtVK = Fut, whence kut and ktp follow.

A simplified version of this renal system proposed in [13] provides an example of
application of an inversion procedure inspired by biology. Here the bladder volume has
been regarded as constant, while the compartment Ct, which accounts for the presence of
water re-absorption in tubule, has not been considered.

The ODEs of the simplified model take the form

Ċ f = −(kb f + kp f )C f + k f p Cp + k f b Cb, (85)

Ċp = kp f C f − (k f p + kup)Cp + kpbCb, (86)

Ċu = kupCp. (87)

The formal expressions of C f (t) and Cp(t) are obtained by solving the Cauchy Problem (
85), (86) with vanishing initial conditions. Then, Cu(t) is determined by integration in time
of kupCp. The data are the total renal concentration CK, the bladder concentration C̄u, and
the IF Cp. The total renal concentration CK is related to the unknown rates by the equation

CK = (1−Vb)(C f + Cp) + VbCb (88)

while C̄u and Cu are simply related by C̄u = C̄u.

6.4. The role of the endoplasmic reticulum

In Subsection 3.3.3 we have discussed a three-compartment model that aims to account
for the crucial role played by the endoplasmic reticulum in cancer FDG metabolism. This
model relies on results obtained by means of an in vitro argument [44] and has been recently
confirmed in vivo using data recorded by means of a PET device for animal models [49]. A
scheme of the model is illustrated in Figure 4 and the corresponding equations have been
discussed in Subsection 3.3.3.
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Figure 3. Compartment model for the renal system

Figure 4. Compartment model for cell absorption
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7. Some numerics: optimization schemes

The way compartmental analysis can be actually exploited for modelling the tracer
kinetics in nuclear medicine relies on the numerical solution of the IPE equation (33).
In experimental applications, the input data is given by the time series CT = CT(t),
which is determined by computing the pixel content in Regions of Interest (ROIs) of the
reconstructed PET data at different time points; Cb = Cb(t) is the input function, which is
also determined from PET data; and the unknown is represented by the vector k whose
components are the tracer coefficients, and by Vb. By denoting the right hand side of
equation (33) as

F (k, Vb) := α C(t; k, Cb) + Vb Cb, (89)

the computational problem of compartmental analysis is therefore the one to determine, at
each time point,

(k∗, V∗b ) = arg min
k,Vb
‖CT −F (k, Vb)‖ . (90)

In this optimization equation, ‖ · ‖ denotes the topology with which the distance between
the experimental and predicted total concentrations is measured. Naive approaches to
the computational solution of equation (90) are typically characterized by three main
drawbacks:

• They typically suffer numerical instabilities related to the non-uniqueness and sensi-
tivity limitations discussed in Section 5.

• Since the operator F is clearly non linear and, further, the space where possible
minimizers can be searched for is typically big, they may suffer local minima.

• Particularly in the case of three-compartment models, the number of kinetic parame-
ters to determine is high, which implies that they are computationally demanding.

Several numerical methods have been applied for the solution of equation (90), whose
reliability and computational effectiveness depend on the choice of the topology ‖ · ‖ and
by the way possible prior information on the solution are encoded in the optimization
process. Further, the computational algorithms utilized for solving the minimization
problem typically belong to three general approaches: the deterministic, statistical, and
biology-inspired ones. In the following we will provide a sketch of the main computational
aspects of these three approaches, assuming that Vb is known thanks to either experimental
or physiological information (the generalization to the case when also Vb is an unknown
parameter is straightforward).

7.1. Deterministic approaches

Most deterministic approaches utilize numerical methods to solve the minimum
problem [18]

k∗ = arg min
k,Vb
{‖CT −F (k)‖2 + λ‖k‖p

p} , (91)

where λ is the so called regularization parameter tuning the trade-off between the fit-
ting capability of the algorithm and its numerical stability. The least-squares problem
corresponding to λ = 0 is often addressed either by means of the standard Levenberg-
Marquardt scheme [20] or by using generalized separable parameter space techniques
[21,59]. Other deterministic methods re-formulate the compartmental problem as the
non-linear zero-finding problem

FT = 0 , (92)

with
FT := CT −F (k) (93)

and apply an iterative Gauss-Newton approach for its solution [44,45]. Finally, more
recently a regularized affine-scaling trust-region optimization methods has been introduced
to solve the compartmental method in a rapid fashion, so that applications to parametric
imaging are possible and computationally effective [9].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 June 2021                   



Journal Not Specified 2021, 1, 0 25 of 31

7.2. Statistical approaches

The general framework where statistical approaches are formulated is the Bayes
theorem, which, in this context, can be written as

π(k|CT) =
π(CT |k)π(k)

π(CT)
. (94)

In this equation π(CT |k) is the likelihood distribution depending onF and on the statistical
properties of the noise affecting the measurements (which is Poissonian); π(k) is the prior
distribution encoding all the a priori information at disposal on the solution; π(CT) is a nor-
malization factor. The posterior distribution π(k|CT) is the solution of the compartmental
inverse problem, which can be utilized to compute k via either the maximum a posteriori

kmap = arg max
k

π(k|CT) , (95)

or the conditional mean
kCM =

∫
π(k|CT)dCT . (96)

If the prior distribution is just concerned with the positivity of the solution, it is well-
established that kmap can be determined by means of the expectation maximization iter-
ative scheme [5,11,50]. Encoding more sophisticated prior information in the Bayesian
framework requires the implementation of more sophisticated Monte Carlo schemes for
the computation of the posterior distribution [4,22,29,37,60,61].

7.3. Biology-inspired approaches

Some recent approaches to the computational solution of tracer kinetics problems
exploit optimization schemes that rely on biological inspiration. An example of how this
perspective may be helpful in compartmental analysis is illustrated in [13], where an
optimization scheme inspired by ant colony behavior is utilized to determine the kinetic
parameters. However, most optimization algorithms belonging to this group of methods
rely on neural networks that are formulated within the framework of machine and deep
learning theory [24,35,57]

In order to show how some of these methods behave in action, Figure 5 summarizes
some results obtained in the literature by using experimental measurements recorded by
means of a PET scanner for small animals. TThese results refer to the four CMs discussed
in Section 6. Specifically, in this figure the parameter values obtained in panel A refer to
the reference tissue model in Figure 1 and have been obtained by means of a deterministic
Gauss-Newton scheme [43]. An analogous deterministic algorithm has been utilized in
panel B [12] to compute the parameter of the liver physiology illustrated in Figure 2. Panel
C and Panel D refer to the renal physiology modelled in Figure 3 and the parameters have
been computed by means the biology inspired Ant Colony Optimization algorithm [13]
and by the statistical Expectation Maximization iterative scheme [11], respectively. Finally,
panel E contains the tracer parameters provided by a regularized Gauss-Newton method
[49] in the case of the model including the endoplasmic reticulum illustrated in Figure 4.
Just a few comments on these results: most standard errors are rather small, which shows
the stability effects related to the introduction of regularization in the optimization process;
the small value of kp f in panel B confirms the fact that metformin leave this parameter
essentially unaltered (indeed, these results have been obtained in the case of six tumor
models treated with metformin); panel C and panel D show the effect of metformin on kb f ;
panel E shows that the analogous parameter for the model accounting for the role of the
endoplasmic reticulum (i.e., k2) significantly decreases with respect to the case when the
reticulum is neglected.
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Figure 5. (A) Kinetic parameters estimated for the reference tissue CM with a deterministic approach
(B) Kinetic parameters estimated for the liver CM with a deterministic approach (C) Kinetic param-
eters for a simplified CM for the renal system estimated with ant colony optimization, (D) Kinetic
parameters for the CM of the renal system estimated with a statistical approach (D) Kinetic parame-
ters of the CM including the endoplasmic reticulum estimated with a regularized Gauss-Newton
approach.
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8. Conclusions

Compartmental analysis is a well-established approach to the interpretation of dynam-
ical FDG-PET data and this review paper has aimed to point out the fact that numerical
algorithms for the reduction of compartmental models play a crucial role for the compre-
hension of cancer glucose metabolism from a quantitative viewpoint. Yet, some technical
issues are still open, whose solution would imply a further significant improvement in the
comprehension of glucose dynamics in cancerous tissues.

First, the approaches illustrated in this review all rely on an indirect perspective, in
which the compartmental analysis is performed on the reconstructed PET images. However,
direct parametric imaging [23, 46] can be realized by using as input the raw PET sinograms
and then by solving the inverse problem relating the kinetic parameters to such sinograms.
These one-shot approaches are not currently employed for the systematic analysis of FDG-
PET data, mainly because they would have to account for the intertwining of temporal
and spatial correlations, which might increase the complexity of the optimization process.
However, they certainly present significant potential advantages, since they may exploit
the use of input data characterized by a well-established statistical distribution and a higher
signal-to-noise ratio.

Second, image processing could improve the numerical solution of the compartmental
equations by introducing morphological information that can be exploited in the com-
putation of the total concentration. More specifically, a possible scheme would rely on
a segmentation step applied on the co-registered CT image that automatically identify
the voxels corresponding to the organ (namely, the tumor) and by the generation of a
binary map that is multiplied against the FDG-PET reconstructed map in order to allow an
accurate computation of the total concentration.

Finally, all methods described in this review explicitly assume that the tracer concen-
tration in blood at the beginning of the compartmental experiment is zero. This is reflected
into a vanishing initial condition in the Cauchy problem that significantly simplifies the
computation. However, in clinical applications the initial concentration is not zero and a
significant improvement of the reliability of the compartmental models would be gained
by dealing with a non-vanishing Cauchy condition as a further unknown in the differential
problem.

Appendix

We show the main steps of the procedure leading to eq (34) for the Patlak plot.
Consider an irreversible CM with n compartments, and suppose that Cn is the irreversible
compartment where accumulation of tracer occurs. In principle, Cn acquires tracer from C1,
... Cn−1 with rates h1, ..., hn−1; no compartment receives tracer from Cn. As in the rest of the
paper, C1 is the compartment which exchanges tracer with the exterior environment.

The original n-dimensional system (29) is decomposed into a reduced (n− 1)-dimensional
system for Ĉ = [C1, . . . , Cn−1]

T and a single differential equation for Cn. To this aim, denote
as h the n− 1 row vector of components h1, ... , hn−1 and consider the block decomposition

M =

[
M̂ 0
h 0

]
, C =

[
Ĉ
Cn

]
, (A97)

where M̂ is a non-singular square matrix of order n− 1, and 0 is the (n− 1)-column vector
of vanishing components. The system (29) is equivalent to the ODEs

dĈ
dt

= M̂ Ĉ + k1 Cb ê,

Ċn = h Ĉ,

where ê is the (n− 1)-column vector of vanishing components with exception of the first,
of value 1.
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It is found by integration of the two differential equations that

Ĉ = k1

∫ t

0
eM̂ (t−τ) Cb(τ) dτ ê, (A98)

Cn = h
∫ t

0
Ĉ(σ) dσ. (A99)

Substitution of (A98) into (A99) leads to

Cn = h
∫ t

0
k1

∫ σ

0
eM̂ (σ−τ) Cb(τ) dτ dσ ê.

Partial integration provides an alternative expression of Cn as

Cn = h M̂−1
[
k1

∫ t

0
eM̂ (t−τ) Cb(τ) dτ − k1

∫ t

0
Cb(τ) dτ

]
ê (A100)

The vector C = [Ĉ, Cn]T is recovered by substitution of (A98) and (A100). Further
insertion of C into the IPE (33) and division by Cb leads to eq (34). Precisely, consider eq (
33) in the form

CT = α̂Ĉ + αn Cn + Vb Cb,

where α has been decomposed according as α = [α̂, αn]. Division by Cb and substitution of
Cn leads to

CT
Cb

= −αn h M̂−1 ê k1

∫ t
0 Cb

Cb
+ αn h M̂−1 k1

∫ t
0 eM̂ (t−τ) Cb(τ) dτ

Cb
ê + α̂

Ĉ
Cb

+ Vb

that is,
CT
Cb

= αP

∫ t
0 Cb

Cb
+ βP(t),

where, in particular,
αP = −αn h M̂−1 ê k1.

For example, in the case of a 3-CM the expression of αP reduces to the form (43), as expected.

To find the interpretation of αP, consider the case of a constant IF C∗b . The correspond-
ing equilibrium value of Ĉ is given by

Ĉ∗ = −k1 M̂−1ê C∗b .

Substitution shows that the rate Ċn is constant and is expressed as

Ċ∗n = h Ĉ∗ = −k1 h M̂−1ê C∗b

Finally, evaluation of the time derivative of (33) under the above conditions shows that

Ċ∗T = αn Ċ∗n = −αn k1 h M̂−1ê C∗b = αP C∗b

We conclude that αP represents the rate of tracer accumulation at constant IF, namely,
αP = Ċ∗T/C∗b .

Author Contributions: Conceptualization, S.S., G.C., G.S. and M.P.; methodology, S.S., G.C. and M.
P; software, not applicable; validation, not applicable; formal analysis, not applicable; investigation,
S.S., G.C., G.S. and M.P.; resources, not applicable; data curation, not applicable; writing—original
draft preparation, S.S., G.C. and M.P.; writing—review and editing, S.S., G.C. and M.P.; visualization,
S.S.; supervision, G.C., G.S. and M.P; project administration, G.S. and M.P; funding acquisition, G.S.
and M.P.; all authors have read and agreed to the published version of the manuscript.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 June 2021                   



Journal Not Specified 2021, 1, 0 29 of 31

Funding: This research was funded by the Italian AIRC, grant number IG 230201.

Institutional Review Board Statement: This is a review paper that has not required any approval
from our Institutional Review Board.

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Acknowledgments: The Italian AIRC grant number IG 230201, is kindly acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Adams, M.C.; Turkington, T.G.; Wilson, J.M.; Wong, T.Z. A systematic review of the factors affecting accuracy of SUV measure-

ments. AJR Am. J. Roentgenol. 2010, 195, 310–320.
2. Bertoldo, A.; Rizzo, G.; Veronese, M. Deriving physiological information from PET images: from SUV to compartmental

modelling. Clin. Transl. Imaging 2014, 2, 239–251.
3. Büsing, K.A.; Schönberg, S.O.; Brade, J.; Wasser, K. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake

values in tumors and healthy organs on 18F-FDG PET/CT. Nucl. Med. Biol. 2013, 40, 206–213.
4. Castellaro, M.; Rizzo, G.; Tonietto, M.; Veronese, M.; Turkheimer, F.E.; Chappell, M.A.; Bertoldo, A. A Variational Bayesian

inference method for parametric imaging of PET data. NeuroImage 2017, 150, 136–149.
5. Cheng, X.; Li, Z.; Liu, Z.; Navab, N.; Huang, S.C.; Keller, U.; Ziegler, S.I.; Shi, K. Direct parametric image reconstruction in

reduced parameter space for rapid multi-tracer PET imaging. IEEE Trans. Med. Imaging. 2015, 34, 1498–1512.
6. Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in nuclear medicine; Elsevier Health Sciences, 2012.
7. Chis, O.T.; Banga, J.R.; Balsa-Canto, E. Structural identifiability of systems biology models: a critical comparison of methods.

PloS one 2011, 6, e27755.
8. Cobelli, C.; Foster, D.; Toffolo, G. Tracer Kinetics in Biomedical Research; Kluwer Academic Publishers New York, 2002.
9. Crisci, S.; Piana, M.; Ruggiero, V.; Scussolini, M. A Regularized Affine-Scaling Trust-Region Method for Parametric Imaging of

Dynamic PET Data. SIAM J. Imaging Sci. 2021, 14, 418–439.
10. Csala, M.; Marcolongo, P.; Lizák, B.; Senesi, S.; Margittai, É.; Fulceri, R.; Magyar, J.É.; Benedetti, A.; Bánhegyi, G. Transport and

transporters in the endoplasmic reticulum. Biochim Biophys Acta Biomembr 2007, 1768, 1325–1341.
11. Garbarino, S.; Caviglia, G.; Sambuceti, G.; Benvenuto, F.; Piana, M. A novel description of FDG excretion in the renal system:

application to metformin-treated models. Phys. Med. Biol. 2014, 59, 2469.
12. Garbarino, S.; Vivaldi, V.; Delbary, F.; Caviglia, G.; Piana, M.; Marini, C.; Capitanio, S.; Calamia, I.; Buschiazzo, A.; Sambuceti, G.

A new compartmental method for the analysis of liver FDG kinetics in small animal models. EJNMMI Res. 2015, 5, 35.
13. Garbarino, S.; Caviglia, G.; Brignone, M.; Massollo, M.; Sambuceti, G.; Piana, M. Estimate of FDG excretion by means of

compartmental analysis and ant colony optimization of nuclear medicine data. Comput. Math. Methods Med. 2013, 2013.
14. Ghosh, A.; Shieh, J.J.; Pan, C.J.; Sun, M.S.; Chou, J.Y. The catalytic center of glucose-6-phosphatase. HIS176 is the nucleophile

forming the phosphohistidine-enzyme intermediate during catalysis. J. Biol. Chem. 2002, 277, 32837–32842.
15. Gonnet, P.; Dimopoulos, S.; Widmer, L.; Stelling, J. A specialized ODE integrator for the efficient computation of parameter

sensitivities. BMC Syst. Biol. 2012, 6, 1–13.
16. Goulet, D. Modeling, simulating, and parameter fitting of biochemical kinetic experiments. SIAM Rev. 2016, 58, 331–353.
17. Gunn, R.N.; Gunn, S.R.; Cunningham, V.J. Positron emission tomography compartmental models. J. Cer. Blood Flow Metab. 2001,

21, 635–652.
18. Gunn, R.N.; Gunn, S.R.; Turkheimer, F.E.; Aston, J.A.; Cunningham, V.J. Positron emission tomography compartmental models: a

basis pursuit strategy for kinetic modeling. J. Cer. Blood Flow. Metab. 2002, 22, 1425–1439.
19. Hearon, J.Z. Theorems on linear systems. Ann. NY Acad. Sci. 1963, 108, 36–68.
20. Hong, Y.T.; Fryer, T.D. Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma

input function: general principle and application to [18F] fluorodeoxyglucose positron emission tomography. Neuroimage 2010,
51, 164–172.

21. Kadrmas, D.J.; Oktay, M.B. Generalized separable parameter space techniques for fitting 1K-5K serial compartment models. Nucl.
Med. Phys. 2013, 40, 072502.

22. Kamasak, M.E.; Bouman, C.A.; Morris, E.D.; Sauer, K. Direct reconstruction of kinetic parameter images from dynamic PET data.
IEEE Trans. Med. Imag. 2005, 24, 636–650.

23. Kimura, Y.; Naganawa, M.; Shidahara, M.; Ikoma, Y.; Watabe, H. PET kinetic analysis—pitfalls and a solution for the Logan plot.
Ann. Nucl. Med. 2007, 21, 1–8.

24. Kuttner, S.; Wickstrøm, K.K.; Lubberink, M.; Tolf, A.; Burman, J.; Sundset, R.; Jenssen, R.; Appel, L.; Axelsson, J. Cerebral blood
flow measurements with 15O-water PET using a non-invasive machine-learning-derived arterial input function. J. Cereb. Blood
Flow Metab. 2021, p. 0271678X21991393.

25. Lawson, R.S. Application of mathematical methods in dynamic nuclear medicine studies. Phys. Med. Biol. 1999, 44, R57–R98.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 June 2021                   



Journal Not Specified 2021, 1, 0 30 of 31

26. Liberti, M.V.; Locasale, J.W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 2016, 41, 211–218.
27. Logan, J.; Fowler, J.S.; Volkow, N.D.; Wolf, A.P.; Dewey, S.L.; Schlyer, D.J.; MacGregor, R.R.; Hitzemann, R.; Bendriem, B.; Gatley,

S.J.; others. Graphical analysis of reversible radioligand binding from time–activity measurements applied to [N-11C-methyl]-(–)-
cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 1990, 10, 740–747.

28. Maddalena, F.; Lettini, G.; Gallicchio, R.; Sisinni, L.; Simeon, V.; Nardelli, A.; Venetucci, A.A.; Storto, G.; Landriscina, M.
Evaluation of glucose uptake in normal and cancer cell lines by positron emission tomography. Mol. Imag. 2015, 14, 7290–2015.

29. Malave, P.; Sitek, A. Bayesian analysis of a one-compartment kinetic model used in medical imaging. J. Appl. Stat. 2015,
42, 98–113.

30. Marini, C.; Ravera, S.; Buschiazzo, A.; Bianchi, G.; Orengo, A.M.; Bruno, S.; Bottoni, G.; Emionite, L.; Pastorino, F.; Monteverde,
E.; others. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose
phosphate shunt. Sci. Rep. 2016, 6, 1–13.

31. Munk, O.L.; Keiding, S.; Baker, C.; Bass, L. A microvascular compartment model validated using 11C-methylglucose liver PET in
pigs. Phys. Med. Biol. 2017, 63, 015032.

32. Muzi, M.; Freeman, S.D.; Burrows, R.C.; Wiseman, R.W.; Link, J.M.; Krohn, K.A.; Graham, M.M.; Spence, A.M. Kinetic
characterization of hexokinase isoenzymes from glioma cells: implications for FDG imaging of human brain tumors. Nucl. Med.
Biol. 2001, 28, 107–116.

33. Ollinger, J.M.; Fessler, J.A. Positron-emission tomography. IEEE Sign. Proc. Mag. 1997, 14, 43–55.
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