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Featured Application: The CAPT tool, ASR technology and procedure described in this work1

can be successfully applied to support typical learning paces for Spanish as a foreign language2

for Japanese people. With small changes, the application can be tailored to different target3

L2, if the set of minimal pairs used for the discrimination, pronunciation and mixed-mode4

activities is adapted to the specific L1-L2 pair.5

Abstract: General–purpose automatic speech recognition (ASR) systems have improved their6

quality and are being used for pronunciation assessment. However, the assessment of isolated7

short utterances, as words in minimal pairs for segmental approaches, remains an important8

challenge, even more for non-native speakers. In this work, we compare the performance of9

our own tailored ASR system (kASR) with the one of Google ASR (gASR) for the assessment of10

Spanish minimal pair words produced by 33 native Japanese speakers in a computer-assisted11

pronunciation training (CAPT) scenario. Participants of a pre/post-test training experiment12

spanning four weeks were split into three groups: experimental, in-classroom, and placebo.13

Experimental group used the CAPT tool described in the paper, which we specially designed for14

autonomous pronunciation training. Statistically significant improvement for experimental and15

in-classroom groups is revealed, and moderate correlation values between gASR and kASR results16

were obtained, beside strong correlations between the post-test scores of both ASR systems with17

the CAPT application scores found at the final stages of application use. These results suggest18

that both ASR alternatives are valid for assessing minimal pairs in CAPT tools, in the current19

configuration. Discussion on possible ways to improve our system and possibilities for future20

research are included.21

Keywords: automatic speech recognition (ASR); automatic assessment tools; foreign language pro-22

nunciation; pronunciation training; computer-assisted pronunciation training (CAPT); automatic23

pronunciation assessment; learning environments; minimal pairs24

1. Introduction25

Recent advances in automatic speech recognition (ASR) have made this technology26

a potential solution for transcribing audio input for computer-assisted pronunciation27

training (CAPT) tools [1,2]. Available ASR technology, properly adapted, might help28

human instructors with pronunciation assessment tasks, freeing them from hours of29

tedious works, allowing for the simultaneous and fast assessment of several students,30

and providing a form of assessment that is not affected by subjectivity, emotion, fatigue,31

or accidental lack of concentration [3]. Thus, ASR systems can help in the assessment32

and feedback on learner productions, reducing human costs [4,5]. Although most of the33
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scarce empirical studies which include ASR technology in CAPT tools assess sentences34

in large portions of either reading or spontaneous speech [6,7], the assessment of words35

in isolation remains a substantial challenge [8,9].36

General–purpose off-the-shelf ASR systems like Google ASR1 (gASR) are becoming37

progressively popular each day due to their easy accessibility, scalability, and most impor-38

tantly, effectiveness [10,11]. These services provide accurate speech-to-text capabilities39

to companies and academics who might not have the possibility of training, developing40

and maintaining a specific–purpose ASR system. However, despite the advantages41

of these systems (e.g., they are trained on large datasets and span different domains)42

there is an obvious need for improving their performance when used on in-domain43

data specific scenarios, such as segmental approaches in CAPT for non-native speakers.44

Concerning the existing ASR toolkits, Kaldi has shown its leading role in recent years45

with its advantages of having flexible and modern code that is easy to understand,46

modify, and extend [12], becoming a highly matured development tool for almost any47

language [13,14].48

English is the most frequently addressed L2 in CAPT experiments [6] and in com-49

mercial language learning applications, such as Duolingo2 or Babbel3. However, there50

are scarce empirical experiments in the state-of-the-art which focus on pronunciation51

instruction and assessment for native Japanese learners of Spanish as foreign language,52

and as far as we are concerned, no one includes ASR technology. For instance, 144053

utterances of Japanese learners of Spanish as a foreign language (A1-A2) were analyzed54

manually with Praat by phonetics experts in [15]. Students performed different per-55

ception and production tasks with an instructor, and they achieved positive significant56

differences (at the segmental level) between the pre-test and post-test values. A pilot57

study on perception of Spanish stress by Japanese learners of Spanish was reported in58

[16]. Native and non-native participants listened to natural speech recorded by a native59

Spanish speaker and were asked to mark one of three possibilities (the same word with60

three stress variants) of an answer sheet. Non-native speech was manually transcribed61

with Praat by phonetic experts in [17], in an attempt to establish rule-based strategies62

for labeling intermediate realizations, helping to detect both canonical and erroneous63

realizations in a potential error detection system. Different perception tasks were carried64

out in [18]. It was reported how the speakers of native language (L1) Japanese tend to65

perceive Spanish /y/ when it is pronounced by native speakers of Spanish; and how66

the L1 Spanish and L1 Japanese listeners evaluate and accept various consonants as67

allophones of Spanish /y/, comparing both groups.68

In previous work, we presented the development and the first pilot test of a CAPT69

application with ASR and text-to-speech (TTS) technology, Japañol, through a training70

protocol [19,20]. This learning application for smart devices includes a specific exposure–71

perception-production cycle of training activities with minimal pairs which are presented72

to students in lessons of the most difficult Spanish contrasts for native Japanese speakers.73

We were able to empirically measure statistically significant improvement between the74

pre and post-test values of 8 native Japanese speakers in a single experimental group.75

The students’ utterances were assessed by experts in phonetics and by gASR system,76

obtaining strong correlations between human and machine values. After this first pilot77

test, we wanted to take a step further and to find pronunciation mistakes associated78

with key features of proficiency level characterization of more participants (33) and79

different groups (3). However, assessing such a quantity of utterances by human raters80

derived to a problem of time and resources. Furthermore, gASR pricing policy and its81

limited black-box functionalities also motivated us to look for alternatives to assess all82

the utterances, developing a specific ASR system for Spanish from scratch, using Kaldi83

1 https://cloud.google.com/speech-to-text
2 https://www.duolingo.com/
3 https://www.babbel.com/
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(kASR). In this work, we analyze the audio utterances of the pre-test and post-test of 3384

Japanese learners of Spanish as foreign language with two different ASR systems (gASR85

and kASR) to address the research question on how these general and specific–purpose86

ASR systems compete for the assessment of short isolated words used as challenges in a87

learning application for CAPT.88

This paper is organized as follows. The experimental procedure is described in89

section 2, which includes the participants and protocol definition, a description of the90

CAPT tool, a brief description about the process for elaborating the kASR system, and91

the collection of metrics and instruments for collecting the necessary data. Results92

section presents, on one hand, the results of the training of the users that worked93

with the CAPT tool and on the other hand the performance of the two versions of the94

ASR systems: the word error rate (WER) values of the kASR system developed, the95

pronunciation assessment of the participants at the beginning and at the end of the96

experiment, including intra and inter-group differences, and the ASR scores’ correlation97

of both ASR systems. Then, we discuss about the user interaction with the CAPT tool,98

the performance of both state-of-the-art ASR systems in CAPT and we shed light on99

lines of future work. Finally, we end this paper with the main conclusions.100

2. Experimental Procedure101

Figure 1 shows the experimental procedure followed in this work. At the bottom,102

we see that a set of recordings of native speakers is used to train a kASR of Spanish103

words. On the upper part of the diagram, we see that a group of non-native speakers104

are evaluated in a pre- and post-tests in order to measure improvements after training.105

Speakers are separated into three different groups (placebo, in-classroom and experimen-106

tal) to compare different conditions. Both, the utterances of the pre- and post-tests, and107

the interaction with software tool (experimental group) are recorded, so that a corpus of108

non-native speech is collected. The non-native audio files are then evaluated with both109

the gASR and the kASR systems, so that the students’ performance during training can110

be analyzed.111

PRE-Test
Google ASR
PRE/POST
Test Scores

POST-Test

TRAIN (3 sessions)

Placebo

Google
ASR

Specific
ASR

Log-Files

Specific ASR
PRE/POST
Test Scores

Audio
Files

In-Classroom Experimental

Audio
Files

Audio
Files

Native
corpus

ASR Training 
(Kaldi)

Non-native

Native

Phonetician
Scores

Analysis

RESULTS

NATIVE PRONUNCIATION MODEL TRAINING

PRONUNCIATION TRAINING EXPERIMENT

Figure 1. Scheme of the experimental procedure.

The whole procedure can be compared with the one used in previous experiments112

[19,20] where human based scores (provided by expert phoneticians) were used. Section113

2.1 describes the set of the informants that participated in the evaluation and audio114

recordings. Section 2.2 describes the protocol of the training sessions, including details115
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of the pre and post tests. Section 2.5 shows the training of kASR system. Section 2.6116

presents the instruments and metrics used for the evaluation of the experiment.117

2.1. Participants118

A total of 33 native Japanese speakers aged between 18 and 26 years participated119

voluntarily in the evaluation of the experimental prototype. Participants came from two120

different locations: 8 students (5 female, 3 male) were registered in a Spanish intensive121

course lectured at the Language Center of the University of Valladolid and had recently122

arrived to Spain from Japan in order to start the L2 Spanish course; on the other hand 25123

female students of the Spanish philology degree from the University of Seisen, Japan.124

The results of the first location (Valladolid) allowed us to verify that there were no125

particularly differentiating aspects in the results analyzed by gender [19]. Therefore, we126

did not expect to have a significant impact on the results the fact that all participants127

were female in the location. All of them declared a low level of Spanish as foreign128

language with no previous training in Spanish phonetics. None of them stayed in any129

Spanish speaking country for more than 3 months. Besides, they were requested not130

to do any extra work in Spanish (e.g., conversation exchanges with natives or extra131

phonetics research) while the experiment was still active.132

Participants were randomly divided into three groups: (1) experimental group,133

18 students (15 female, 3 male) who trained their Spanish pronunciation with Japañol,134

during three sessions of 60 minutes; (2) in-classroom group, 8 female students who135

attended three 60-minutes pronunciation teaching sessions within the Spanish course,136

with their usual instructor, making no use of any computer-assisted interactive tools; and137

(3) placebo group, 7 female students who only took the pre-test and post-test. They did138

not attend neither the classroom nor the laboratory for Spanish phonetics instruction.139

2.2. Protocol Description140

We followed a four-week protocol which included a pre-test, three training sessions,141

and a post-test for the non-native participants (see Appendix A to see the content of the142

tests). Native speakers recorded the speech training corpus for the kASR system. At143

the beginning, the non-native subjects took part in the pre-test session individually in144

a quiet testing room. The utterances were recorded with a microphone and an audio145

recorder (the procedure was the same for the post-test). All the students took the pre-test146

under the sole supervision of a member of the research team. They were asked to read147

aloud the 28 minimal pairs administered via a sheet of paper with no time limitation4.148

The pairs came from 7 contrasts of the most difficult to perceive and produce Spanish149

consonant sounds by native Japanese speakers (see more details in [19]): [T]–[f], [T]–[s],150

[fu]–[xu], [l]–[R], [l]–[r], [R]–[rr], and [fl]–[fR]. Students were free to repeat each contrast as151

many times as they want if they thought they might have mispronounced them.152

From the same 7 contrasts, a total of 84 minimal pairs4 were presented to the153

experimental and in-classroom group participants in 7 lessons along three training154

sessions. The minimal pairs were carefully selected by experts taking into account the155

gASR limitations (homophones, word-frequency, very short words, and out-of-context156

words, in a similar process as in [8]). The lessons were included in the CAPT tool for the157

experimental group and during the class sessions for the in-classroom group (12 minimal158

pairs per lesson, 2 lessons per session, except for the last session that included 3 lessons,159

see more details about the training activities in [19]). The training protocol sessions were160

carried out during students course lectures at the classroom, in which a minimal pair161

was practiced in each lesson (blocked practice) and most phonemes were retaken in later162

sessions (spaced practice). Regarding the sounds practiced in each session, in the first163

one, sounds [fu]–[xu] and [l]–[R] were contrasted, then [l]–[r] and [R]–[rr], and the last164

session involved the sounds [fl]–[fR], [T]–[f], and [T]–[s]. Finally, subjects of the placebo165

4 https://github.com/eca-simm/minimal-pairs- japanol-eses- jpjp
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group did not participate in the training sessions. They were supposed to take the pre-166

test and post-test and obtain results without significant differences. All participants were167

awarded with a diploma and a reward after completing all stages of the experiment.168

2.3. Description of the CAPT Mobile Application169

To carry out all the experiments, we built a mobile app, Japañol, starting from a170

previous prototype app designed for self-directed trained of English as an L2 [8]. Figure171

2 shows the regular sequence of steps in order to complete a lesson in Japañol. After172

user’s authentication in (step 1), seven lessons are presented at the main menu of the173

application (step 2). Each lesson includes a pair of Spanish sound contrasts and users174

achieve a particular score, expressed in percentage. Lessons are divided in five main175

training modes: Theory, Exposure, Discrimination, Pronunciation and Mixed modes176

(step 3) in which each one proposes several task-types with a fixed number of mandatory177

task-tokens. The final lesson score is the mean score of the last three modes. Users178

are guided by the system in order to complete all training modes of a lesson. When179

reaching a score below 60% in Discrimination, Pronunciation or Mixed modes, users are180

recommended to go back to exposure mode as a feedback resource and then return to181

the failed mode. Besides, next lesson is enabled when users reach a minimum score of182

60%.183

Figure 2. Standard flow to complete a lesson in Japañol.

The first training mode is Theory (step 4). A brief and simple video describing184

the target contrast of the lesson is presented to the user as a first contact with feedback.185

At the end of the video, next mode becomes available; but users may choose to review186

the material as many times as they want. Exposure (step 5) is the second mode. Users187

strengthen the lesson contrast experience previously introduced in Theory mode, in188

order to support their assimilation. Three minimal pairs are displayed to the user. In189

each one of them, both words are synthetically produced by Google TTS for five times190

(highlighting the current word), alternately and slowly. After that, users must record191

themselves at least one time per word and listen to their own and system’s sound.192

Words are represented with their orthographic and phonemic forms. A replay button193

allows to listen to the specified word again. Synthetic output is produced by Google’s194

offline Text-To-Speech tool for Android. After all previous required events per minimal195

pair (listen-record-compare), participants were allowed to remain in this mode for as196

long as they wished, listening, recording and comparing at will, before returning to197

the Modes menu. Step 6 refers to Discrimination mode, in which ten minimal pairs198

are presented to the user consecutively. In each one of them, one of the words is199

synthetically produced, randomly. The challenge of this mode consists on identifying200

which word is produced. As feedback elements, words have their orthographic and201
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phonetic transcription representations. Users can also request listen to the target word202

again with a replay button. Speed varies alternately between slow and normal speed203

rates. Finally, the system changes word color to green (success) or red (failure) with204

a chime sound. Pronunciation is the fourth mode (step 7) which aim is to produce as205

well as possible, both words, separately, of the five minimal pairs presented with their206

phonetic transcription. gASR determines automatically and in real time acceptable or207

non-acceptable inputs. In each production attempt the tool displays a text message with208

the recognized speech, plays a right/wrong sound and changes word’s color to green or209

red. The maximum number of attempts per word is five in order not to discourage users.210

However, after three consecutive failures, the system offers to the user the possibility211

of request a word synthesis as an explicit feedback as many times as they want with a212

replay button. Mixed mode is the last mode of each lesson (step 8). Nine production213

and perception tasks alternate at random in order to further consolidate obtained skills214

and knowledge. Regarding listening tasks with the TTS, mandatory listenings are those215

which are associated to mandatory activities with the tool and non-mandatory listenings216

are those which are freely undertaken by the user whenever she has doubts about the217

pronunciation of a given word.218

2.4. Native corpus preparation219

A group of 10 native Spanish speakers from the theater company Pie Izquierdo220

of Valladolid (5 women and 5 men) participated in the recording of a total of 41,000221

utterances (7.1 hours of speech data) for the training corpus of the kASR system for222

assessing the students’ utterances gathered during the experimentation.223

Each one of the native speakers recorded individually 164 words4 for 25 times224

(41,000 utterances in total) presented randomly in five-hour sessions, for elaborating the225

training corpus for the kASR system. The average, minimum, maximum, and standard226

deviation of the words length were: 4.29, 2, 8, and 1.07, respectively. The phoneme227

frequency (%) was: [a]: 16.9, [o]: 11.3, [r]: 9.0, [e]: 7.8, [f]: 5.3, [s]: 5.0, [R]: 4.8, [l]: 4.5, [t]:228

3.6, [k]: 3.6, [u]: 3.2, [i]: 3.2, [T]: 3.2, [n]: 2.8, [m]: 2.3, [G]: 1.8, [j]: 1.4, [D]: 1.5, [x]: 1.3, [b]:229

1.3, [p]: 1.1, [d]: 1.1, [B]: 0.9, [w]: 0.9, [N]: 0.7, [g]: 0.3, [Ã]: 0.2, and [z]: 0.1.230

The recording sessions were carried out in an anechoic chamber of the University231

of Valladolid with the help of a member of the ECA-SIMM research group. The machine232

configuration on which the kASR system was installed was CentOS 8 (64-bit operating233

system), Intel(R) Core(TM) i7-8700K CPU (12 cores) processor with 3.70 GHz.234

2.5. Developing an ASR System with Kaldi235

We analyzed the pre/post-test utterances of the participants with kASR and gASR236

systems. We did not have access to enough human resources to carry out the perceptual237

assessment of such a quantity of audio files, and gASR system just offered a limited238

black-box functionality and specification, so that, we developed our in–house kASR239

system. In order to do so, different phoneme-level train models were tested in the240

kASR system with the audio dataset recorded with native speakers before assessing the241

non-native test utterances.242

In particular, the ASR pipeline that we implemented for the kASR system uses a243

standard context-dependent triphone system with a simple GMM–HMM model [21],244

adapted from existing Kaldi recipes [22]. After collecting and preparing the speech245

data for training and testing, the first step is to extract acoustic features from the audio246

utterances and training monophone models. These features are Mel frequency cepstral247

coefficients (MFCCs) with per-speaker cepstral mean and variance statistics. Since Kaldi248

underlies on a finite-state transducer-based framework to build language models from249

the raw text, we use the SRILM toolkit for building a 4-gram language model [23].250

To train a model, monophone GMMs are first iteratively trained and used to gener-251

ate a basic alignment. Triphone GMMs are then trained to take surrounding phonetic252

context into account, in addition to clustering of triphones to combat sparsity. The tri-253
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phone models are used to generate alignments, which are then used for learning acoustic254

feature transforms on a per-speaker basis in order to make them more suited to speakers255

in other datasets [24]. In our case, we re-aligned and re-trained these models four times256

(tri4). In particular, in the first triphone pass we used MFCCs, delta and delta–delta257

features, in the second triphone pass we included linear discriminant analysis (LDA)258

and Maximum Likelihood Linear Transform (MLLT); the third triphone pass combined259

LDA and MLLT and the final step (tri4) included LDA, MLLT and speaker adaptive260

training (SAT).261

2.6. Instruments and Metrics262

We gathered data from five different sources: (1) a registration form with student’s263

demographic information, (2) pre-test utterances, (3) log files and (4) utterances of user’s264

interaction with Japañol, and (5) post-test utterances. Personal information included265

name, age, gender, L1, academic level, and final consent to analyze all gathered data.266

Log files gathered all low-level interaction events with the CAPT tool and monitored267

all user activities with timestamps. From these files we computed a CAPT score per268

speaker which refers to the final performance at the end of the experiment. It includes269

the number of correct answers in both perception and production (in which we used270

gASR) tasks while training with Japañol [19]. Pre/post-test utterances consisted in oral271

productions of the minimal pairs lists provided to the students.272

A set of experimental variables was computed: (1) WER values of the train/test273

set models for the specific–purpose kASR system developed in a [0, 100] scale; (2) the274

student’s pronunciation improvement at the segmental level comparing the difference275

between the number of correct words at the beginning (pre-test) and at the end (post-test)276

of the experiment in a [0, 10] scale. We used this scale for helping teachers to understand277

the score as they use it in the course’s exams. This value consists on the mean of correct278

productions in relation to the total of utterances. Finally, (3) the correlation values279

between gASR and kASR systems of the pre/post-test utterances and between the CAPT280

score and both ASR systems at the end of the experiment (post-test) in a [0, 1] scale.281

By way of statistical metrics and indexes, Wilcoxon signed–rank tests have been282

used to compare the differences between the pre/post-test utterances of each group (intra-283

group), Mann–Whitney U tests have been used to compare the differences between the284

groups (inter-group), and Pearson correlations have been used to explain the statistical285

relationship between the values of the ASR systems and the final CAPT scores.286

3. Results287

3.1. User Interaction with the CAPT Tool288

Table 1 displays the results related to the user interaction with the CAPT system289

(experimental group, 18 participants). Columns n, m, and M are the mean, minimum and290

maximum values, respectively. Time (min) row stands for the time spent (minutes) per291

learner in each training mode in the three sessions of the experiment. #Tries represents292

the number of times a mode was executed by each user. The symbol - stands for ’not293

applicable’. Mand. and Req. mean mandatory and requested listenings (see section 2.3).294

The TTS system was used in both listening types; whereas the ASR was only used in the295

#Productions row.296

Table 1 shows that there are important differences in the level of use of the tool297

depending on the user. For instance, the fastest learner performing pronunciation298

activities spent 22.43 minutes; whereas the slowest one took 72.85 minutes. This contrast299

can also be observed in the time spent on the rest of the training modes and in the300

number of times learners practice each one of them (row #Tries). A 85.25% of the time301

was consumed by carrying out interactive training modes (Exposure, Discrimination,302

Pronunciation, and Mixed modes). The inter-user differences affected both the number303

of times the users made use of the ASR (154 minimum vs. 537 maximum) and the304

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 June 2021                   doi:10.20944/preprints202106.0687.v1

https://doi.org/10.20944/preprints202106.0687.v1


Version June 27, 2021 submitted to Appl. Sci. 8 of 16

Table 1: User’s training activities with the CAPT system

Theory Exposure Discrimination Pronunciation Mixed

n m M n m M n m M n m M n m M

Time (min) 14.80 8.7 20.8 19.7 12.8 21.9 7.1 4.1 13.8 43.6 22.4 72.9 17.0 7.6 30.5
#Tries 7.8 6 10 10.6 7 16 8.5 7 15 10.1 7 14 6.7 3 10
#Mand.List. - - - 287.8 210 390 91.7 70 134 - - - 20.2 9 30
#Req.List. - - - 99.3 53 157 33.0 0 153 54.9 0 127 25.6 6 60
#Discriminations - - - - - - 91.7 70 134 - - - 20.2 9 30
#Productions - - - - - - - - - 208.8 116 356 82.9 38 181
#Recordings - - - 62.4 42 81 - - - - - - - - -

number of times they requested the use of TTS (59 vs. 497 times), reaching a rate of 9.0305

uses of the speech technologies per minute.306

Tables 2 and 3 show the confusion matrices between the sounds of the minimal307

pairs in perception and production events, since the sounds were presented in pairs308

in each lesson. In both tables the rows are the phonemes expected by the tool and309

the columns are the phonemes selected (discrimination training mode) or produced310

(production training mod) by the user. These produced phonemes are derived from the311

word recognized by the gASR, not because we look directly at the phoneme recognized,312

since gASR does not provide us with phoneme-level segmentation. TPR is the true313

positive rate or recall. The symbol - stands for ’not applicable’. #Lis is the number of314

requested (e.g., non-mandatory) listenings of the word in the minimal pair including the315

sound of the phoneme in each row.

Table 2: Confusion matrix of discrimination tasks (diagonal: right discrimination tasks).

Discrimination tasks

#Lis [fl] [fR] [l] [R] [rr] [s] [T] [f] [fu] [xu] TPR (%)

65 [fl] 123 64 - - - - - - - - 65.8%
52 [fR] 69 115 - - - - - - - - 62.5%
139 [l] - - 239 56 19 - - - - - 76.1%
115 [R] - - 71 217 16 - - - - - 71.4%
51 [rr] - - 15 21 215 - - - - - 85.7%
45 [s] - - - - - 95 32 - - - 74.8%
45 [T] - - - - - 15 214 11 - - 89.2%
16 [f] - - - - - - 4 104 - - 96.3%
89 [fu] - - - - - - - - 115 34 77.2%
103 [xu] - - - - - - - - 39 111 74.0%

316

As shown in Tables 2 and 3, the most confused pairs in discrimination tasks were317

[l]–[R], both individually (56 and 71, 127 times) and preceded by the sound [f] (69 and318

64, 133 times). Besides, the number of requested listenings related to these sounds was319

the highest one (65 and 139, 204 times for [l] and 167 (52 and 115) for [R]). The least320

confused pair in discrimination was [T]–[f] (11 and 4, 15 times). The sounds with the321

lowest discrimination TPR rate were [fl] and [fR] (both < 66.0%), and those with the322

highest discrimination TPR rate were [T] and [f] (both > 89%), corresponding also to the323

lowest number of requested listenings (45 and 16, respectively).324

Table 3 shows the results related to production events per word utterance. #Lis is325

the number of requested listenings of the corresponding sound row at (first|last) attempt.326

A positive improvement from first to last attempt was observed (TPR column), being327

the highest ones [fl] (33.2%) and [fR] (21.1%) sounds. In particular, these two sounds328

constituted the most confused pair in first attempt production tasks (73 and 79, 152329

times), where the least confused one was [l]–[rr] (37 and 22, 59 times). The sounds330

with the lowest production TPR rate were [fl] and [s] (both < 47%), and those with the331
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Table 3: Confusion matrix of production tasks at first and last attempt per word sequence
(diagonal: right production tasks at first and last attempt per word sequence).

Production tasks (first attempt | last attempt)

#Lis [fl] [fR] [l] [R] [rr] [s] [T] [f] [fu] [xu] TPR (%)

13|128 [fl] 65|170 79|47 - - - - - - - - 45.1%|78.3%
3|125 [fR] 73|64 65|137 - - - - - - - - 47.1%|68.2%
9|105 [l] - - 177|253 45|31 37|14 - - - - - 68.3%|84.9%
8|103 [R] - - 33|21 209|289 42|14 - - - - - 73.6%|89.2%
3|70 [rr] - - 22|9 44|22 189|252 - - - - - 74.1%|89.0%
6|146 [s] - - - - - 58|134 66|67 - - - 46.8%|66.7%
2|202 [T] - - - - - 79|96 142|226 38|12 - - 54.8%|67.7%
0|29 [f] - - - - - - 38|19 97|116 - - 71.9%|85.9%
4|240 [fu] - - - - - - - - 62|138 62|106 50.0%|56.6%
5|186 [xu] - - - - - - - - 59|91 63|140 51.6%|60.6%

highest production TPR rates were [R] and [rr] (both > 73%). On the other hand, the332

most confused pair at last attempt production tasks was [fu]–[xu] (91 and 106, 197 times),333

reaching the lowest production TPR rates (56.6% and 60.6%, respectively). Besides,334

the number of requested listenings was the highest one in both cases (240 and 186,335

respectively). The least confused pair was [l]–[rr] (9 and 14, 23 times), reaching TPR rate336

values higher than 85%.337

3.2. ASR performance338

We tested the speech utterances of the pre/post-tests with two different ASR sys-339

tems. The general-purpose gASR and a specific-purpose ASR created from scratch with340

Kaldi (kASR). Table 4 shows the WER values obtained by both ASR systems used in341

the experimentation with two different sources of speech data (native and non-native).342

Regarding the native models, the All model included 41,000 utterances of the native343

speakers in the train set. The Female model included 20,500 utterances of the 5 female344

native speakers in the train set. The Male model included 20,500 utterances of the 5345

male native speakers in the train set. The Best1, Best2, and Best3 models included 32,800346

utterances (80%) of the total of native speakers (4 females and 4 males) in the train set.347

These last three models were obtained by comparing the WER values of all possible348

80%/20% combinations (train/test sets) of the native speakers (e.g., 4 female and 4349

male native speakers for training: 80%, and 1 female and 1 male for testing: 20%), and350

choosing the best three WER values (the lowest ones). On the other hand, the non-native351

test model consisted of 3,696 utterances (33 participants x 28 minimal pairs x 2 words352

per minimal pair x 2 tests).

Table 4: WER values (%) of the experiment’s ASR systems.

Train model

gASR kASR

All Female Male Best1 Best2 Best3

Native 5.0 0.0024 3.10 1.55 0.14 0.14 0.23

Non-native 30.0 44.22 55.91 64.12 46.40 46.98 48.08

353

The 5.0% WER value reported by Google for their English ASR system for native354

speech [10] corresponds to our WER value for native speech data. Google training355

techniques are applied also for their ASR in other majority languages, such as Spanish.356

Regarding our kASR system, we achieved values lower than 5.0% for native speech for357

the specific battery of minimal pairs introduced in Section 2 (e.g., All model: 0.0024%). On358

the other hand, we tested the non-native minimal pairs utterances with gASR obtaining359

a 30.0% WER (16.0% non-recognized words). In the case of the kASR, as expected, the360
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All model reported the best test results (44.22%) for the non-native speech. The Female361

train model derived into a better WER value for the non-native test model (55.91%) than362

the Male one (64.12%) since 30 out of 33 participants were female speakers.363

Table 5: Pre/post-test scores.

Pre-test Post-test ∆ (Post-test - Pre-test)

gASR kASR gASR kASR gASR kASR

Group n N n N n N n N ∆ p-value Z ∆ p-value Z

Experimental 3.0 560 4.1 560 3.7 560 5.2 560 0.7 < 0.001 -13.784 1.1 < 0.001 -5.448
In-classroom 3.5 448 5.2 448 4.1 448 6.1 448 0.6 < 0.001 -2.888 0.9 < 0.001 -3.992

Placebo 3.0 392 3.1 392 3.2 392 3.5 392 0.2 0.002 -3.154 0.4 0.059 -1.891

Table 5 displays the average scores assigned by the gASR and kASR systems to the364

3,696 utterances of the pre/post-tests classified by the three groups of participants, in a [0,365

10] scale. n, N, and ∆ refer to mean score of the correct pre/post-test utterances, number366

of utterances, and difference between the post and pre-test mean scores, respectively. The367

students who trained with the tool (experimental group) achieved the best pronunciation368

improvement values in both gASR (0.7) and kASR (1.1) systems. Nevertheless, the in-369

classroom group achieved better results in both tests and with both ASR systems (4.1 and370

6.1 in the post-test; and 3.5 and 5.2 in the pre-test, gASR and kASR, respectively). The371

placebo group achieved the worst post-test (3.2 and 3.5, gASR and kASR, respectively)372

and pronunciation improvement values (0.2 and 0.4, gASR and kASR, respectively).373

A Wilcoxon signed–rank test (final column of Table 5) found statistically significant374

intra-group differences between the pre- and post-test values of the experimental and375

in-classroom groups of both ASR systems. In the case of the placebo group, there were376

differences only in the gASR values (see p and Z values in Table 5). This learning377

difference at the end of the experiment was supported by the time spent on carrying out378

the pre-test and post-test. Each participant took an average of 83.77 seconds to complete379

the pre-test (63.85 seconds min. and 129 seconds max.) and an average of 94.10 seconds380

to complete the post-test (52.45 and 138.87 seconds min. and max.).381

Concerning inter-group pairs comparisons, a Mann–Whitney U test found statisti-382

cally significant differences between the experimental and in-classroom groups in the383

post-test gASR scores (p < 0.001; Z = -2.773) and kASR ones (p < 0.001; Z = -2.886).384

There were also differences between the experimental and placebo groups in the post-test385

kASR scores (p < 0.001; Z = -5.324). Post-test differences between the in-classroom and386

placebo groups were only found in the kASR scores (p < 0.001; Z = -7.651). Finally, al-387

though there were significant differences between the pre-test scores of the in-classroom388

group and the experimental group (gASR: p < 0.001; Z = -8.892; kASR: p < 0.001; Z =389

-3.645), and the placebo group (gASR: p < 0.001; Z = -8.050; kASR: p = 0.001; Z = -3.431),390

such differences were minimal since the effect size values were small (r = 0.10 and r =391

0.20, respectively).392

Finally, we analyzed the correlations between (1) the pre/post-test scores of both393

ASR systems (three groups) and (2) the CAPT scores with the experimental group’s394

post-test scores of both ASR systems (since the experimental group was the only group395

with a CAPT score) in order to compare the three sources of objective scoring (Table 6).

Table 6: Regression coefficients of the CAPT, gASR and kASR systems.

x y a b S.E. r p-value

pre-kASR pre-gASR 0.927 1.919 0.333 0.51 0.005
post-kASR post-gASR 0.934 1.897 0.283 0.57 0.002
post-gASR CAPT score 0.575 -0.553 0.148 0.81 0.002
post-kASR CAPT score 0.982 -1.713 0.314 0.74 0.007

396
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The columns x, y, a, b, S.E., and r of Table 6 refer to dependent variable, independent397

variable, slope of the line, intercept of the line, standard error, and Pearson coefficient,398

respectively. The first row of Table 6 and the left graph of Figure 3 represent the moderate399

positive Pearson correlation found between the gASR and kASR pre-test scores (r = 0.51,400

p = 0.005); whereas the second row of Table 6 and the right graph of Figure 3 show the401

moderate positive Pearson correlation found between the gASR and kASR post-test402

scores (r = 0.57, p = 0.002).403

Figure 3. Correlation between the gASR and kASR scores of the pre-test (left graph) and post-test
(right graph).

The third row of Table 6 and the left graph of Figure 4 represent the fairly strong404

positive Pearson correlation found between the CAPT scores and the post-test scores of405

gASR (r = 0.81, p = 0.002); whereas the final row of Table 6 and the right graph of Figure406

4 show the fairly strong positive Pearson correlation found between the CAPT scores407

and the post-test scores of the kASR system (r = 0.74, p = 0.007).408

Figure 4. Correlation between the gASR (left graph) and kASR (right graph) ASR scores of the
post-test with the CAPT score.

4. Discussion409

Results showed that the Japañol CAPT tool led experimental group users to carry410

out a significantly large number of listening, perception and pronunciation exercises (Ta-411

ble 1). With an effective and objectively registered 57% of the total time, per participant,412

devoted to training (102.2 minutes out of 180), high training intensity was confirmed413

in the experimental group. Each one of the subjects in the CAPT-group listened to414

an average of 612.5 synthesized utterances and produced an average of 291.4 word-415

utterances, which were immediately diagnosed, triggering, when needed, automatic416

feedback. This intensity of training (hardly obtainable within a conventional classroom)417

implied a significant level of time investment on tasks which might establish a relevant418

factor in explaining the larger gain mediated by Japañol.419
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Results also suggested that discrimination and production skills were asymmetri-420

cally interrelated. Subjects were usually better at discrimination than production (8.5 vs.421

10.1 tries per user, see Table 1, #Tries row). Participants consistently resorted to the TTS422

when faced with difficulties both in perception and production modes (Table 1, #Req.List.423

row; and Table 2 and Table 3, #Lis column). While a good production level seemed to be424

preceded by a good performance in discrimination, a good perception attempt did not425

guarantee an equally good production. Thus, the system was sensitive to the expected426

difficulty of each type of task.427

Tables 2 and 3 identified the most difficult phonemes for users while training with428

Japañol. Users encountered more difficulties in activities related to production. In429

particular, Japanese learners of Spanish have difficulty with [f] in onset clusters position430

in both perception (Table 2) and production (Table 3) [25]. [s]-[T] present similar results,431

speakers tended to substitute [T] by [s], but this pronunciation is accepted in Latin432

American Spanish [26]. Japanese speakers are also more successful at phonetically433

producing [l] and [R] than discriminating these phonemes [27]. Japanese speakers have434

already acquired these sounds since they are allophones of a same liquid phoneme435

in Japanese. For this reason, it does not seem to be necessary to distinguish them in436

Japanese (unlike in Spanish).437

Regarding the pre/post-test results, we have reported on empirical evidences about438

significant pronunciation improvement at the segmental level of the native Japanese439

beginner–level speakers of Spanish after training with the Japañol CAPT tool (Table440

5). In particular, we used two state-of-the-art ASR systems to assess the pre/post-test441

values. The experimental and in-classroom group speakers improved 0.7|1.1 and 0.6|0.9442

points out of 10, assessed by gASR|kASR systems, respectively, after just three one-hour443

training sessions. These results agreed with previous works which follow a similar444

methodology [8,28]. Thus, the training protocol and the technology included, such as445

the CAPT tool and the ASR systems provided a very useful and didactic instrument that446

can be used complementary with other forms of second language acquisition in larger447

and more ambitious language learning projects.448

Our specific–purpose kASR system allowed us to reliably measure the pronunci-449

ation quality of the substantial quantity of utterances recorded after testing different450

training models (Table 4). In particular, this ASR system proved to be useful for working451

at the segmental (phone) level for non-native speakers. Developing an in–house ASR452

system allowed us not only to customize the post-analysis of the speech without the453

black-box and pricing limitations of the general–purpose gASR system, but also neither454

pre-discard specific words (e.g., out-of-context, infrequent, and very short words) nor455

worry about the data privacy. Also, future research studies might follow the same pro-456

cedure to develop a similar ASR system for minimal pairs focusing on specific sounds.457

Despite the positive results reported about the kASR, the training corpus was limited458

in both quantity and variety of words and the experiment was carried out under a459

controlled environment. Data augmentation, noise-reduction, and a systematic study of460

the non-native speech data gathered to find pronunciation mistakes associated with key461

features of proficiency level characterization with the help of experts for its automatic462

characterization [4,17] must be considered in the future to expand the project.463

Finally, we compared the scores provided by kASR to the gASR ones, obtaining464

moderate positive correlations between them (Table 6 and Figure 3). The post-test values465

of both gASR and kASR systems also strongly correlated with the final scores provided466

by the CAPT tool of the experimental group speakers (Table 6 and Figure 4). That is,467

although the training words in Japañol were not the same as the pre/post-test ones, the468

phonemes trained were actually the same and the speakers were able to assimilate the469

lessons learned from the training sessions to the final post-test. Therefore, we were able470

to ensure that both scoring alternatives are valid and can be used for assessing Spanish471

minimal pairs for certain phonemes and contexts (e.g., availability of resources, learning,472

place, data privacy, or costs), even though our specific–purpose ASR system is not as473
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accurate as gASR (30.0% vs. 44.22% WER values, Table 4). Future work will consist on a474

fine–tuning of our kASR system with more speech data and re-training techniques, such475

as deep or recurrent neural networks, combining both native and non-native speech476

in order to improve current results and to obtain a better customization of the ASR477

system to the specific phone–level tasks. Thus, researchers, scholars, and developers can478

decide which one to integrate in their CAPT tools depending on the tasks and resources479

available.480

5. Conclusions481

The Japañol CAPT tool allows L1 Japanese students to practice Spanish pronuncia-482

tion of certain pairs of phonemes achieving improvements comparable with the ones483

obtained in in-classroom activities. The use of minimal pairs permits to objectively iden-484

tify the most difficult phonemes to be pronounced by initial level students of Spanish.485

Thus, we believe is worth taking into account when thinking about possible teaching486

complement since it promotes a high level of training intensity and a corresponding487

increase in learning.488

We have presented the development of an specific–purpose ASR system that is489

specialized in the recognition of single words of Spanish minimal pairs. Results show490

that the performance of this new ASR system are comparable with the ones obtained491

with the general ASR gASR system. The advantage is not only that the new ASR permits492

substituting the commercial system, but also that it is permitting in future applications493

to obtain information about the pronunciation quality at the level of phoneme.494

We have seen that ASR systems can help on the costly intervention of human495

teacher on the evaluation of L2 learners pronunciation in pre/post-tests. It is our future496

challenge to provide information about the personal and recurrent mistakes of speakers497

that occur at the phoneme-level while training.498
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Appendix A. Word list for pre-test and post-test

The instructions given to the students in the pre-test and post-test are the following:

• Please read carefully the following list of word pairs (Table 1). Read them from top to bottom and from left to right.
• You can read the word again if you think you have mispronounced it.
• All words are accompanied by their phonetic transcription, in case you find it useful.
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Spanish

1 caza /‘kaTa/ casa /‘kasa/
2 cocer /ko‘Ter/ coser /ko‘ser/
3 cenado /Te‘naðo/ senado /se‘naðo/
4 vez /beT/ ves /bes/
5 zumo /‘Tumo/ fumo /‘fumo/
6 moza /‘moTa/ mofa /‘mofa/
7 cinta /‘TiNta/ finta /‘finta/
8 concesión /koNTe‘sioN/ confesión /koNfe‘sioN/
9 fugo /‘fuÈo/ jugo /‘xuÈo/

10 fuego /‘fweÈo/ juego /‘xweÈo/
11 fugar /fu‘Èar/ jugar /xu‘Èar/
12 afuste /a‘fuùte / ajuste /a‘xuùte/
13 pelo /‘pelo/ pero /‘peRo/
14 hola /‘ola/ hora /‘oRa/
15 mal /mal/ mar /maR/
16 animal /ani‘mal/ animar /ani‘maR/
17 hielo /‘Ãelo/ hierro /‘Ãerro/
18 leal /le‘al/ real /rre‘al/
19 loca /‘loka/ roca /‘rroka/
20 celada /Te‘laða/ cerrada /Te‘rraða/
21 pero /‘peRo/ perro /‘perro/
22 ahora /a‘oRa/ ahorra /a‘orra/
23 enteró /ẽn

›
te‘Ro/ enterró /ẽn

›
te‘rro/

24 para /‘paRa/ parra /‘parra/
25 flotar /flo‘taR/ frotar /fRo‘taR/
26 flanco /‘flaNko/ franco /‘fRaNko/
27 afletar /afle‘taR/ afretar /afRe‘taR/
28 flotado /flota‘ðo/ frotado /fRota‘ðo/

Table 1: Pre-test and post-test words list

• You may read looking at the orthographic expression —cat— or at the transcription —/kæt/— but read the
orthographic text at least one time.
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