Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Oligonucleotide Therapies in the Treatment of Inflammatory Joint Disease

Version 1 : Received: 25 June 2021 / Approved: 28 June 2021 / Online: 28 June 2021 (16:01:16 CEST)

A peer-reviewed article of this Preprint also exists.

Wijesinghe, S.N.; Lindsay, M.A.; Jones, S.W. Oligonucleotide Therapies in the Treatment of Arthritis: A Narrative Review. Biomedicines 2021, 9, 902. Wijesinghe, S.N.; Lindsay, M.A.; Jones, S.W. Oligonucleotide Therapies in the Treatment of Arthritis: A Narrative Review. Biomedicines 2021, 9, 902.

Abstract

Osteoarthritis and rheumatoid arthritis are two of the most common chronic inflammatory joint diseases, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. The pathology of both osteoarthritis and rheumatoid arthritis involves multiple tissues within the joint, including the synovial joint lining and the bone, as well as the articular cartilage in osteoarthritis. In this review, we discuss the potential for the development of oligonucleotide therapies for these disorders by examining the evidence that oligonucleotides can modulate the key cellular pathways that drive the pathology of the inflammatory diseased joint pathology as well as evidence in preclinical in vivo models that oligonucleotides can modify disease progression.

Keywords

Osteoarthritis; rheumatoid arthritis; synovitis; cartilage; bone; antisense; oligonucleotides; therapeutics.

Subject

Medicine and Pharmacology, Immunology and Allergy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.