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Abstract: Time evolution operators of a strongly ionizing medium are calculated by a time-dependent
unitary transformation (TDUT) method. The TDUT method has been employed in quantum me-
chanical system composed of discrete states. This method is especially helpful for solving molecular
rotational dynamics in quasi-adiabatic regimes because the strict unitary nature of the propagation
operator allows us to set the temporal step size large; a tight limitation on the temporal step size
(δt << 1) can be circumvented by the strict unitary nature. On the otsher hand, in a strongly
ionizing system where the Hamiltonian is not Hermitian, the same approach cannot be directly
applied because it is demanding to define a set of field-dressed eigenstates. In this study, the TDUT
method was applied to the ionizing regime using the Kramers-Henneberger frame, in which the
strong-field-dressed discrete eigenstates are given by the field-free discrete eigenstates in a moving
frame. Although the present work verifies the method for a one-dimensional atom as a prototype,
the method can be applied to three-dimensional atoms, and molecules exposed to strong laser fields.

Keywords: Numerical method; Laser-matter interaction; Time-dependent Schrödinger equation;
Time-dependent unitary transformation method; Strong-field ionization; Kramers-Henneberger
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1. Introduction

Over the last few decades, the ionization of atoms and molecules by ultrafast strong
infrared laser fields has attracted considerable interest because of the availability of high-
intensity lasers. Field-induced ionization can be divided into two regimes, according
to the Keldysh parameter γ ≡

√
IP/(2UP) [1], where IP and UP are the ionization and

the ponderomotive potentials, respectively. The ionization dynamics is considered to be
governed by tunneling when γ << 1, while for γ >> 1 the process is mostly affected
by multiphoton ionization. For a typical 800-nm infrared laser field, the dynamics of the
atoms and molecules can be characterized by the laser intensity. In the low-intensity laser
field (γ >> 1), the dynamics can be studied with the aid of the perturbation theory. When
the laser field strength is comparable to or even higher than the Coulomb field strength
in atoms and molecules (γ << 1), the ionization dynamics can be described by tunneling
ionization, which can be solved analytically by using a strong-field approximation (SFA)
model [1,2]. The tunneling picture based on the SFA model explains many qualitative
features of strong-field phenomena, such as high-harmonic generation (HHG) [3–6] and
above-threshold ionization (ATI) [4,7,8].

However, the conventional SFA model is not capable to render a description of phe-
nomena mediated by other bound states in addition to the ground state. For example, some
tunneling-ionized electrons that receive relatively low drift energies from the laser fields
are observed to still stay in the excited bound states after the laser pulse has passed [9]. A
simple man model, which is based on the solutions of the Newtonian equations of motion,
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has been used in many studies on this phenomenon known as the frustrated tunneling
ionization (FTI) [9–14]. Moreover, coherent EUV generation via FTI [15,16] and resonantly
enhanced HHG [17–21] require the high-lying electronic bound states to be considered. In
solving the full TDSE to understand these phenomena, discrete-level-based calculations
and/or analysis are essential. The discrete-level-based analysis of the strong-field ion-
ization can provide fresh insights into the underlying physical mechanisms. In Ref. [22],
by calculating a strong-field-dressed discrete adiabatic basis set, it has been revealed that
tunneling ionization is diabatic rather than adiabatic in a language based on the so-called
adiabatic representation. Tunneling ionization is often regarded as an adiabatic process,
which is not true in terms of the adiabatic representation [22]. Also, a series of discrete-
level-based numerical calculations have shown that atomic ionization passages can be
manipulated by chirp control of an incident laser pulse [23].

Analytical and numerical studies with discrete basis sets are commonly used in various
branches of atomic and molecular physics, such as the Rydberg atoms [24,25], ultracold
gases and trapped ions [26–28], and molecular rotational dynamics [29–31]. In molecular
rotational dynamics, we have developed a time-dependent unitary transformation (TDUT),
which has been particularly useful in quasi-adiabatic regimes. In this method, the field-
dressed eigenstates and eigenenergies are calculated in every temporal step to obtain
strict unitary propagation operators. The TDUT method is free from a tight limitation
on the temporal step size (δt << 1), existing in conventional numerical methods (e.g.,
Crank-Nicolson method and Runge-Kutta method), so that rapid numerical calculations
are possible. In the case of strong-field-induced ionization dynamics, however, specific
efforts are needed to apply this approach using discrete field-dressed states as a basis
set. The eigenstates of an atomic potential tilted by a strong electric field form continuum
states [22], and the ground state is localized at the edge of a spatial boundary position.
Thus, the direct formulation of the TDUT method itself [29], cannot solve the dynamics in
the presence of ionization events.

In this study, this problem was solved using the Kramers-Henneberger (KH) frame [32],
in which the strong-field-dressed discrete eigenstates are given by the field-free discrete
eigenstates in a moving frame. Once a unitary translation operator is calculated correctly,
the TDSE can be solved numerically using the TDUT method in the KH frame. Using a
one-dimensional atom as a prototype, the numerical method is validated by comparing
it with the Crank-Nicolson method. The final electronic states excited by a few-optical
cycled near-infrared (800 nm) laser are calculated by changing the field strength and initial
state. This study numerically clarifies that the number of discrete states for the TDUT
calculation depends on the field strength. Below the tunneling intensity regime, only a few
bound states can be used, while in the stronger field regime, much higher-lying continuum
states need to be included. The dynamics of three-dimensional atoms and molecules can
be calculated using the TDUT method.

The paper is organized as follows. Sesction 2, revisits the general TDUT method in the
ionization-free regime, which was developed for the molecular rotational dynamics [29].
The method is then implemented to a strong-field ionization regime within the KH frame.
Section 3 presents the numerical results of a one-dimensional atom exposed to a intense
laser pulse to test the numerical method. A summary and outlook are provided in Section
4. Atomic units are used throughout the paper unless otherwise stated.

2. Numerical method

This section provides a detailed explanation of the numerical method.

2.1. Time-dependent unitary transformation method (TDUT) in discretized systems

In conventional methods for solving the TDSE, a wave function at t + δt, ψ(t + δt),
is approximated by [exp (−iĤ(t)δt)]ψ(t) ∼ [1− iĤ(t)δt]ψ(t) under the assumption of
δt � 1. Here, Ĥ(t) is the time-dependent Hamiltonian. In this simple sum formulation,
the operator [1 − iĤ(t)δt] is not a unitary one in principle. The nonunitary nature is
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Figure 1. Schematic diagram of time-dependent unitary transformation method for wave packet evolution. In the presence of the
time-dependent Hamiltonian Ĥ(t), temporal evolution of a wave function from t = t0 to t = t0 + δt is operated by multiplying three
strict unitary operators Û†a, Ûb, and exp(−iε̂bδt). See the main texts.

accumulated over a number of evolution steps, and the simulation can catastrophically fail.
The popular Runge-kutta method and Crank-Nicolson method can reduce the nonunitary
nature. On the other hand, the constraint δt� 1 must be satisfied to a reasonable degree.

Several numerical methods, such as methods based on the Chebyshev propagator [33]
and Lanczos propagator [34], the split-operator method [35], and a huge number of varia-
tions, are available. The time-dependent unitary transformation (TDUT) method is one of
the effective and intuitive methods for the TDSE [29], where every temporal evolution op-
erator is strictly unitary. To describe the method, we need to consider two arbitrary frames
labeled by (a) and (b), respectively. When we consider a single stepwise temporal variation
δt, the time-dependent Hamiltonian evolves from Ĥ(t) to Ĥ(t + δt). The two Hamiltonians
can be lableds as Ĥ(t) ≡ Ĥa and Ĥ(t + δt) ≡ Ĥb. Because the time-independent Hamil-
tonian operator Ĥa or Ĥb is a hermite operator in general, there are a set of real-valued
eigenvalues εa

i (εb
i ) and the corresponding set of eigenstates φa

i (φb
i ), obtained by solving

the TISE as follows.

Ĥaφa
i = εa

i φa
i ,

Ĥbφb
i = εb

i φb
i . (1)

Here the integer i representss a state number.
Let us set the moment of the step-wise change of the Hamiltonian from (a) to (b) at t0.

A wave function ψ(t0) can be expressed as a superposition of eigenstates φa
i as follows.

ψ(t0) = ∑
m

ca
m(t0)φ

a
m
(
t0
)
, (2)

where ca
m(t0) corresponds to the probability amplitude 〈φa

m|ψ(t0)〉 at time t0. The same
eigenstate expansion is also possible in the (b) frame. The probability amplitude cb

m(t0) ≡
〈φb

m|ψ(t0)〉 in the (b) representation, can be expressed using the (a) frame eigenstates as
cb

n(t0) = ∑
m
〈φb

n|φa
m〉ca

m(t0). In the (b) frame, for t ≥ t0 until the next step-wise change of

external field intensity occurs, the time evolution of the wave function is given by adding a
phase shift to each eigenstate of φb

n, which is operated by

ψ(t) = ∑
n

[
∑
m
〈φb

n|φa
m〉ca

m(t0)
]
φb

n×

exp(−iεb
n(t− t0)). (3)

Here the matrix 〈φb
n|φa

m〉 is equivalent to ∑l〈φb
n|χl〉〈χl |φa

m〉, with χl being a field-free
eigenstate, i. e. , the spherical harmonics in the case of the linear molecules. The unitary
matrices 〈φa

m|χl〉 and 〈φb
m|χl〉 are obtained by solving the TISE given in Eq. (1). In a matrix-
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based expression, the temporal evolution can be rewritten by an evolution matrix, Ût0 ,
satisfying ψ̂(t0 + δt) ≡ Ût0 ψ̂(t0), as follows:

Ût0 = exp(−iε̂bδt)ÛbÛ†a. (4)

Here Û†a ≡ 〈χl |φa
m〉 transforms the (a)-frame eigenstate back sto the one in the field-free

frame. Next, Ûb ≡ 〈φb
m|χl〉 transforms the state defined in the field-free frame sto the

one in the (b) frame. The time-evolution is operated easily in the (b) frame by adding the
phase-shift to the eigenstates defined in the (b) frame, which is performed by multiplying a
diagonal matrix exp(−iε̂bδt). Fig. 1 presents a schematic diagram of the numerical method.

We emphasize again that all the operations are strictly unitary in this time evolution if
the eigenvalue problems are solved correctly. Hence, it is free from any numerical errors
generated in the temporsal propagation. Instead, the temporally-discretized Hamilto-
nian is solely responsible for some possible deviations from thes correct solution. The
discretized Hamiltonian approaches a real Hamiltonian by reducing the step size. The
reliable maximum step size depends on the temporal shape of the Hamiltonian rather
than the wave function condition. In this method, most of the numerical tasks involves
calculating the eigenstates and eigenvalues of the Hamiltonians in every discretized step,
which can be conducted using the available built-in functions in various programming
languages. A similar numerical approach is used in the Lanczos propagator [34], but with
a set of quasi-eigenvalues and quasi-eigenstates defined in a reduced subspace rather than
exact eigenvalues and eigenstates in the full Hilbert space. For example, if the exact TISE
calculation is numerically demanding, the Lanczos approach can be used with a trade-off
between the numerical accuracy and the computing cost.

2.2. TDUT in the strong-field ionization regime

When a target material ionized by an external laser field is considered, a set of time-
independent field-dressed eigenstates of the material at a sepecific time will form a contin-
uum state that is not localized in real space [22]. As a result, the TDUT approach introduced
in subsection 2.1 is not directly applicable in the strong-field regime because the method
requires a set of field-dressed eigenstates in every temporal step. On the other hand, a set
of strong-field-dressed eigenstates and eigenenergies can be obtained in the moving frame,
so-called the Kramers-Henneberger frame.

In the KH frame [32], the laser-field-dressed Hamiltonian of an atom or a molecule is
given by

H =
~p2

2
+ V(~r +~α(t)), (5)

where V(~r) is the binding potential and~α(t) ≡
∫ t
−∞

~A(t)dt indicates the classical trajectory

of a free electron exposed to the laser field ~E(t) ≡ − d~A(t)
dt . In this moving frame, the

eigenstates of a field-dressed Hamiltonian are equivalent to the field-free eigenstates except
that they are displaced uniformly from the origin by −~α(t). Once the field-free eigenstates
of an atom or a molecule are accurately obtained, we can apply the method given in Eq. (4).
The method given in Eq. (4) can be applied once the field-free eigenstates of an atom or a
molecule are obtained accurately.

The wave function ψ(t) can be described in terms of the discrete level expansion
as Eq. (2). Hence, the wave function ψ(t) can be represented by the vector ψ̂(t) =
(a1, a2, ..., anmax)

T , e.g., the initial ground state is (1, 0, ..., 0)T . In the moving (laser-field-
dressed) frame, ψ̂(t) is replaced with Û(~α(t)) · ψ̂(t), where the matrix Û(~α(t)) is a transla-
tion operator (Fig. 2):

Û(~α(t))m,n ≡
∫ ∞

−∞
φ∗m(~r +~α(t))φn(~r)dr. (6)
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Figure 2. Representation of two frames converted by a translation operator Û(~α(t)). The black-solid
and black-dashed lines are the atomic potentials in the field-free and the field-dressed KH frames,
respectively, while the solid red line is the ground state of the atom, and the other colored-dashed
lines are eigenstates of the field-dressed KH Hamiltonian Eq. (5). The initial ground state is expanded
by the eigenstates of the field-dressed Hamiltonian by multiplying Û(~α(t)) to the initial ground state.

The time evolution of the wave function for a time step dt can be expressed as

Û(~α(t)) · ψ̂(t + dt) = exp−iεndt ·Û(~α(t)) · ψ̂(t). (7)

Here, εn is the eigenenergy of the field-free eigenstate, which is labeled by a quantum
number n. To rewrite the wave function Eq. (7) in the field-free frame, the transpose of
Û(~α(t)) needs to be multiplied, resulting in

ψ̂(t + dt) = ÛT(~α(t)) · exp−iεndt ·Û(~α(t)) · ψ̂(t). (8)

Although the translation operator Û(~α(t)) is a unitary matrix in principle, in case
of the numerical calculation, the unitarity of Û(~α(t)) is not ensured. Furthermore, the
matrix becomes less unitary as the spatial displacement~α(t) increases. The matrix Û(~α(t))
corresponds to the unity matrix when ~α(t) is zero. For other cases, because Û(~α(t)) is
responsible for transforming a wave function in the~r frame into that in the~r +~α(t) frame,
if~α(t) is too large, the initial wave function will be placed outside of the spatial boundary
so that Û(~α(t)) is no longer unitary.

We have identified that a spatial displacement of 0.2, which is the size of spacial
grid used in the numerical calculations, does not ensure that the matrix is unitary, i.e.,
det|Û(αx(t) = 0.2)| < 1. To obtain a unitary translation operator Û(δx), the matrix
elements were calculated in the momentum domain by

Û(δx)m,n ≡
∫ ∞

−∞
expipxδx φ̃∗m(~p)φ̃n(~p)dp, (9)

where φ̃n(~p) is the Fourier-transformed, normalized wave function.
In the momentum domain, we have calculated the unit translation operator Û(δx)

with δx = 10−4. This operator is quasi-unitary, satisfying |Û(δx)| ∼ 1 with a possible
deviation of only 10−15s. When the laser field is linearly polarized in the x direction and
~α(t) ≡ αx(t) ≡ α(t), an arbitrary translation operator Û(α(t)) can be obtained from the
multiplication of the unit displacement operator, i.e., Û(α(t)) ≡ Û(δx)α(t)/δx. By applying
this operator Û(δx), the TDSE can be solved by the following procedure.

For the time evolution of the wave function, first, we expand the wave function
ψ̂(t) with respect to the field-dressed eigenstates, which are the field-free eigenstates
spatially displaced by α(t) from the origin. This expansion is conducted by multiplying the
quasi-unitary matrix Û(δx)α(t)/δx to the wave function ψ̂(t). The negative unit translation
operator Û(δx)−1 is, therefore, defined as Û(δx)T . Afterwards, the expanded wave function
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Û(δx)α(t)/δx · ψ̂(t) is multiplied by the diagonal matrix exp−iεndt, resulting in phase shifts
of the expanded eigenstates. Thereafter, we recover the wave function described from
the spatially displaced (field-dressed) frame to the field-free frame. This is conducted by
multiplying the transpose of Û(δx)αx(t)/δx. By repeating the procedure for the overall time
evolution, we can express the full time-evolution operator Ûtotal given by

Ûtotal = [
lf

∏
l=0

Û(δx)−αx(tl)/δx · exp−iεndt ·Û(δx)αx(tl)/δx], (10)

where tl ≡ t0 + ldt, with l being an integer. l f is defined as t f = t0 + l f dt.
By combining the relation α(t + dt)− α(t) = A(t)dt with a temporal boundary condi-

tion A(t0) = A(t f ) = 0, the expression for Ûtotal can be further simplified to

Ûtotal = [
lf

∏
l=0

exp−iεndt ·~U(δx)Ax(tl)dt/δx]. (11)

In Eq. (11), the number of multiplications Ax(tl)dt/δx for each time step l is rounded.
The numerical error caused by the rounding is ignorable by setting δx at ∼ 10−4, far
smaller than the spatial grid size of 0.2. We use a set of eigenstates of the field-free
Hamiltonian to calculate the time evolution operator. To obtain the field-free eigenstates by
solving a Hermitian TISE, we considered a reflection boundary rather than an absorbing or
transparent one. In the absorbing and transparent boundaries, the Hamiltonians are non-
Hermitian, so that the numerical solutions of the TISE require additional techniques [22].
The resulting high-lying continuum states in the reflection boundary are, therefore, well
confined inside the boundary, indicating that the full propagator Eq. (11) intrinsically
includes unphysical reflections of the wave function at the boundary. To avoid such
unphysical reflections, an absorbing boundary matrix Ŵ is multiplied to the wave function
at every time step. The matrix elements are described as

Ŵm,n ≡
∫ ∞

−∞
φ∗m(x)W(x)φn(x)dx, (12)

where W(x) is a unity function that smoothly decays to zero near the boundary. We can
express the full time-evolution propagator, including the absorbing boundary, as

Ûtotal = [
lf

∏
l=0

Ŵ · exp−iεndt ·Û(δx)Ax(tl)dt/δx]. (13)

An initial state converts to the corresponding final state by multiplying the operator Eq.
(13).

3. Results of the simulation

The numerical method shown in Section. 2 was tested with a one-dimensional soft-core
potential V(x) = − 1√

x2+1
. The atom was irradiated with a pulsed laser field,

E(t) = E0 exp[−2 ln 2(t2/τ2)] sin(ωt), (14)

where E0 is the peak strength of the laser field, and τ is the FWHM (fixed at 5 fs). The
central frequency of the laser ω was set to λ ≡ 2πc/ω = 800 nm, where c is the speed of
light. Figure 3 presents the temporal profiles of the vector potential, A(t) ≡ −

∫ t
−∞ E(t)dt,

and the function, A(t)dt/δx, used to define the translation operator, Û(δx)Ax(tl)dt/δx as
included in Eq. (11). dt was set to 0.2 in the calculations. We tested the dt dependence of
the numerical solution by varying its values from 0.5 to 0.01 (not shown). The numerical
solution converged well for all the values.
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Figure 3. Temporal profiles of the vector potential A(t) and the function A(t)dt/δx, which is rounded.

To obtain the eigenstates and eigenvalues of the atom, the TISE was solved. The
one-dimensional x space, whose reflection boundaries were set at -614.4 and 614.2, was
employed. The space was discretized by 6144 grids, each with a size of 0.2. There were 43
bound states with negative energies and 6101 continuum states with positive energies. The
ionization energy of the atom, i.e., the eigenenergy of the ground state, was obtained as
-18.23 eV. We set nmax, the number of the lowest-lying states, to 50 ∼ 2000. The number of
the necessary states depends on the peak laser intensity.

Figure 4 shows the wave function of the initial ground state atom after a laser pulse,
described by Eq. (14), has passed. The peak intensity of the pulse is 2.0× 1014 W/cm2. We
show the results obtained when the numbers of discrete states nmax are 400, 1000, and 1600.
For the above laser condition, the results obtained using nmax = 1000 and 1600 do not show
any noticeable variations in the all represented domains: space (Fig. 4 (a)), momentum
(Fig. 4 (b)), and quantum number (Fig. 4 (c)). The agreement between the results for nmax
=1000 and 1600 indicates that the TDUT method converges by using nmax > 1000 discrete
states, as the basis set. When nmax is set to 400, the results from the TDUT show clear
deviations from the other results. The deviations are observed not only in the continuum
states (n >44), but also in the bound states (n ≤43), meaning that a noticeable amount of
field-ionized electrons can be recaptured to the bound states.

When the applied laser field is stronger and the excitation of the higher-lying states
becomes essential, more discrete states are required for the TDUT calculation. We have
evaluated, therefore, this quantity as a function of the peak laser intensity. For a given peak
intensity condition and from the initial ground state, we have recalculated the final states
until a converged result is obtained by increasing nmax by every 50. The convergence is
evaluated from the parameter,

δO(nmax) ≡ |Utotal(nmax)|1 > −Utotal(nmax + 50)|1 > |2, (15)

where |1 > represents the ground state. By increasing nmax, the final wave function
Utotal(nmax)|1 > must converge to a state so that δO(nmax) becomes negligibly small.
When δO(nmax) is smaller than 2.5−7, nmax is selected as ncutoff and the convergence test is
terminated.

In Fig. 5 (a), ncutoff is shown as a function of the peak laser intensity. For lower
intensities, such as 0.125-0.25×1014 W/cm2, the TDUT method provides converged results
by using less than 50 discrete states. In this case, the atomic response can be described by
perturbation theory, considering only a few discrete low-lying bound states. When the
peak laser intensity is high, the dynamics is governed by tunneling ionization. In Fig.
5 (a), the dramatic increase in ncutoff at an intensity of 0.375× 1014 W/cm2 is observed,
showing the transition from the perturbative to the tunneling regimes. After this transition
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Figure 4. Initial ground state of the atom irradiated with the short infrared laser pulse described
in Eq. (14). The wave function at t = tf =15 fs is shown in the space (a) and momentum (b) domains,
and also by the quantum number n representation (c). For the plots in the momentum domain (b),
only the continuum states are considered. The lines are displaced vertically for visual convenience.

Figure 5. ncutoff (a) and the eigenenergy at ncutoff (b) as functions of the peak laser intensity. See the
main text.
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Figure 6. Final states for several different initial wave functions, numbered by n0 = 1, 2, 3, 4, 11, 12,
and 13, shown in the discrete state representation.

point, ncutoff continues to increase with the increasing peak laser intensity. In Fig. 5 (b), the
eigenenergy of a discrete state, whose quantum number corresponds to ncutoff is plotted
as a function of the peak laser intensity. 10 UP, where UP is the laser-intensity-dependent
ponderomotive energy, is also represented by the blue dashed line. 10 UP is a maximum
possible energy of an electron, which is generated after being elastically rescattered by the
atomic core in the above-threshold ionization (ATI) dynamics [7]. The number of states
needed for the TDUT method can be approximately determined by the maximum electron
energy, because much higher-energy states cannot physically exists. The necessary number
of states in the calculation will depend on the dynamics to be investigated, because such
high-energy states have ignorable influence on the bound electron dynamics. In fact, it
has been clarified that some of strong-field-ionized electrons having low kinetic energy
can survive as Rydberg states [9,15,16]. To study only the bound-state dynamics, which
is possibly coupled with the strong-field ionization, the number of included states can be
further reduced.

We are able to apply the full time-evolution operator Eq. (13) to any initial wave

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 June 2021                   doi:10.20944/preprints202106.0678.v1

https://doi.org/10.20944/preprints202106.0678.v1


10 of 12

function. Figure 6 shows the final states obtained by multiplying a full-time evolution
operator to several different initial bound states (n0 =1, 2, 3 ,4, 11, 12, and 13), where n0 is
the quantum number of the initial state. The temporal shape of the laser is the same as Eq.
(14), and the peak laser intensity is set at 1.0× 1014 W/cm2. The time evolution operator is
calculated with nmax = 2000. The results obtained by the Crank–Nicolson method are also
shown in Fig. 6.

For the initial ground state n0 = 1, the ground state population remains almost equal
to 1, indicating that the depletion by tunneling ionization is not so significant. Other initial
low-lying bound states, i.e., when n0 = 2, 3, and 4, whose eigenenergy values are -7.49,
-4.13, and -2.53 eV, respectively, result in significant depletion by tunneling. However, for
the Rydberg bound states n0 = 11, 12, and 13, with the eigenenergy values of -0.40, -0.34,
and -0.29 eV, respectively, the depletion of the initial states is less dominant than that in the
lower-lying bound states. This is due to the stabilization of Rydberg states [36,37]. For the
defined initial conditions, the final quantum state distributions obtained by both methods
exhibit some visible deviations, due to the difference in the absorbing boundary conditions,
in the continuum states (n > 43). The absorbing boundary function W(x), defined in the
space domain for the Crank-Nicolson method, has been transformed by the matrix Ŵm,n of
the discrete state representation given by Eq. (12). For the bound states (n ≤ 43), which
are not directly affected by the absorbing boundary conditions, the numerical results from
both the methods are consistent.

4. Summary and outlook

In this paper, we have introduced a numerical method based on the time-dependent
unitary transformation (TDUT). This approach, first demonstrated for molecular rotational
dynamics in Refs. [29,30], is implemented to the strong-field-ionization regime of an atom or
a molecule. In the Kramers-Henneberger frame, the field-dressed eigenstates are identical
to the field-free eigenstates excluding their spatial displacement, which becomes a useful
advantage to calculate the unitary operators to propagate the electronic wave function
in every temporal step. In the TDUT method, matrices and vectors associated with an
atom, such as engenstates, eigenenergies, and a unit translation operator Û(δx) (Eq. (9))
need to be calculated in advance (the calculation took 5 minutes for nmax = 2000). Thes
matrices and vectors can be reapplied under different laser conditions. For the same reason,
the method will be even more beneficial in a very long-pulsed case. A final bound state
population after pico- to nanosecond laser pulse irradiation can be calculated. In the present
work, after the matrix elements were prepared, it took approximately 4 s and 20 s with the
TDUT and Crank-Nicolson methods, respectively, by using a personal computer (Intel(R)
Core(TM) i9-9900K CPU, 128 GB RAM, Windows 10). This method can be a useful tool in
calculating and analyzing bound electron dynamics coupled with strong-field ionization,
not only in the one-dimensional system but also in 3-dimensional molecular systems.
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TISE Time-independent Schrödinger equation
TDSE Time-dependent Schrödinger equation
KH Kramers-Henneberger
SFA Strong-field approximation
FTI Frustrated tunneling ionization
ATI Above-threshold ionization
HHG High-harmonic generation
TDUT Time-dependent unitary transformation
FWHM Full width at half maximum
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