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Abstract: Outcomes of repeated decision–making processes may be affected by adversarial actors,
without being noticed. Adversaries may try to gain knowledge about a particular decision–making
process, identify its decision–makers, and guess which underlying decision support model is used.
Then they can simulate the process, and craft different scenarios to affect its decision outcomes.
Therefore, designers of decision support systems need to incorporate this in the decision modeling
phase. The purpose of this study is to demonstrate this for the repeated decision–making in a
patent application process. In this process, two sequential decision outcomes can be affected by
adversarial actors: a company’s decision to which type of patent office to send a patent request to,
and the decision of a specialized patent officer to grant an application, or not. It is motivated that
the company’s decision–maker is bounded rational. A theory for information–theoretic bounded
rational decision–making under uncertainty proposed by Ortega et al. is adopted to model this type
of decision–maker. A framework is provided to simulate a number of scenarios that adversaries may
deploy to affect decision outcomes of a repeated patent application decision–making process. The
framework is also utilized for statistically testing the presence of the scenarios, and to demonstrate
how to discourage adversaries from deploying them.

Keywords: Adversarial risk analysis and decision analysis; information–theoretic bounded rational
decision–making; simulation

1. Introduction

Nowadays companies and organizations are increasingly using mathematical models
to support their decision–making processes. However, in most cases, the actual decisions
are still taken by humans. Adversaries may try to gain knowledge about a decision–making
process and the used decision criteria, may try to guess the supporting mathematical model,
may seek ways to degrade the performance of this model, and may try to influence decision–
makers by presenting them wrong insights from data. To make a supporting decision
model less vulnerable to such adversarial influencing, a solution would be manual and
ad hoc reconstruction of the decision support within the parameters of the used decision
model, and adapt the model to the adversary’s evolving manipulations [1]. An area of
research that focuses on the subfields risk analysis and decision analysis is adversarial
risk analysis (ARA). In ARA, one asserts that analysts should use Bayesian thinking to
describe their beliefs about an opponent’s goals, resources, optimism and type of strategic
calculation, while placing subjective probability distributions on all unknown quantities.
This in order to enable analysts to maximize their expected utilities [2]. Not all decision–
making processes, however, are suitable for applying Bayesian thinking, such as the patent
application decision–making process.

A patent application is a request pending at a patent office for the grant of a patent for an
invention, being described in a patent specification and a set of one ore more claims stated
in a formal document, including necessary official forms and related correspondence [3].
Companies and organizations normally use tools with patentability criteria, like a patenting
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decision tree and an additional machine learning system, to assist in determining which
technological inventions should be patented [4]. Once the decision is made to apply for a
patent, a company’s intellectual property department evaluates the proposed technology
(novelty) in relation to its patenting strategy. Depending on the outcome, a decision–maker
X in a company’s intellectual property department decides which geographic coverage a
patent must have (country, or region), and to which patent office a patent application has to
be filed to (decision A: country office or regional office). Lastly, the relevant documentation
is provided to and examined by a responsible patent officer at the chosen patent office
(i.e. decision–maker Y), who in a process of negotiating or arguing decides whether to
grant a patent or not (decision B). So, a binary decision A made by decision–maker X is
followed by X observing the outcome of a subsequent binary decision B taken by decision
maker Y. In X’s deliberation process there is interaction with the environment in that
he/she selects the choice alternative a according to some optimized probability distribution
PA={regional,country}(a). This has a stochastic effect on the environment according to the
probability distribution P(o|a), where o is X’s observation of the outcome of decision B.
Decision maker X’s resources to extensively evaluate all choice aspects of decision A are
limited, and this limitation reduces X to a state of bounded rationality, a term coined
by [5]. To model decision–maker X’s decision–making, the theory for bounded rational
decision–making under uncertainty developed by [6,7] is adopted. Put in a repeated patent
application context, the resulting repeated bounded rational decision–making model (here,
referred to as model M1) requires to choose the values of the so–called boundedness pa-
rameter and the value of a utility parameter.

In a patent application process, both of the binary decisions A and B are vulnerable
to adversarial influencing. For example, decision–maker X may be an adversarial actor,
or he/she may be influenced by an adversarial co–worker of the intellectual property
department who is presenting wrong insights from data. On the patent office–side of the
process, decision maker Y may be an adversary, or he/she may be manipulated by an
adversarial co–worker. There is even the possibility that adversarial actors on both sides of
the patent application process are closely cooperating. In the present study, a simulation
framework is proposed to generate for both binary decisions A and B a sample of decision
outcomes in complete absence of adversarial influencing, and an equally sized sample in
case some adversarial influencing scenario has been active in the same time window. By
pairing corresponding samples, a two samples (paired) proportion test can be conducted to
test whether there is a significant difference between two proportions of the same decision
outcomes, or not. To be precise, an asymptotic McNemar-test without continuity correction
[8].

In the present study, six adversarial influencing scenarios have been defined and
implemented: three different basic scenarios and three combinations of these scenarios. A
measure has been introduced to express the attractiveness of an influencing scenario from
the perspective of an adversarial actor. The measure is based on the observed average
number of times the presence of a scenario can statistically be proven, and the observed
average Cohen effect size [9] of the proven presences. A multi–objective optimization
model (referred to as model M2) is formulated to minimize the set of object functions
corresponding to the six considered scenarios, with regard to the to be chosen boundedness
parameter and utility parameter of model M1. It has been made plausible that solving
model M2 for a time window yields the most favorable parameter value pair of model M1
in this time window, and implementing this parameter pair will make it less attractive for
adversaries to deploy the six considered influencing scenarios in the time window.

2. Results

This section provides the results of the performed simulation study, and the conclu-
sions that have been drawn. As stated in the introduction, the purpose of the study is to
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demonstrate how a repeated patent application decision–making process, on average, can
be made less vulnerable to adversaries trying to affect its decision outcomes by deploying
six considered influencing scenarios in some time window W. Three time windows are
considered (1 year, 2 years, and 3 years). Mathematical details about these scenarios, the
statistical test(s) conducted to test for their presence, the modeling of the repeated patent
application decision–making process (i.e. model M1), and the used simulation framework
can be found in Section 3. Two parameters 0.30 < βd < 0.60 and 1.1 < Ud(1, R) < 5.0 of
model M1 remain to be specified (see Subsection 3.2). A second model M2 (see Subsection
3.8) is developed to determine the most favorable parameter pair (βd,∗

W , Ud,∗
W (1, R)) for

a time window W. In model M2, a set of objective functions is to be minimized with
regard to the parameters βd

W and Ud
W(1, R), where each objective function corresponds to

a considered influencing scenario •. An objective function represents the attractiveness of
the corresponding influencing scenario from the perspective of an adversarial actor, and
requires two statistical quantities as input: the sample mean of positive test results µptr•

(·,W)

(with · = X or Y) and the associated sample mean Cohen distance µ∆Cohen,•
(·,W)

(see Subsection

3.7). Here X and Y correspond to the statistical test conducted for the decision outcomes
of decision–maker X and Y, respectively (see Figure 9 below). To obtain these statistical
quantities, 50 simulation runs with 50 sub–runs per simulation run were performed for
each time window (see Subsection 3.6).

Subsection 2.1 illustrates how the attractiveness of each of the three basic influencing
scenarios • = 1, 2 and 3 in a time window depends on the behavior of the two statistical
quantities µptr•

(·,W)
and µ∆Cohen,•

(·,W)
in the (βd

W , Ud
W(1, R))–landscape. All plots shown in this

subsection were generated on a parameter grid in which βd
W is ranging from 0.32 to 0.59

with steps of 0.02, and Ud
W(1, R) is ranging from 0.11 to 4.9 with steps of 0.1. The main

contribution of the present study is to propose a mathematical model (M1) for repeated
patent application decision–making that inherently includes a second mathematical model
(M2) that takes into account that adversaries may guess the structure of model M1 and its
parametrization, and deploy six different crafted scenarios to affect its decision outcomes.
Moreover, model M2 provides a parametrization for model M1 that makes it less attractive
for adversaries to deploy the six scenarios. This is the subject of Subsection 2.2.

In total six adversarial influencing scenarios have been implemented in the proposed
simulation framework, for a time window W of 1 year, 2 years, and 3 years. Three basic
scenarios, denoted by • = 1, • = 2 and • = 3, and three combinations of these scenarios,
denoted by • = 2 + 3, • = 1 + 2 and • = 1 + 3.

2.1. First inspection of the attractiveness of the three basic influencing scenarios

Figure 1 and Figure 2 below show surface plots of the sample mean ptr–scores and
sample mean Cohen distances on the z-axis for the basic influencing scenario • = 1 and
the time windows W = 1 and W = 2, respectively. In the bumpy surface plots of the mean
Cohen distance, the heights are almost similar for both time windows (between a medium
effect 0.5 and a large effect 0.8). And the surface plots for the sample mean ptr–score
show a relatively smooth landscape surface. The surfaces of both statistical quantities rise
with increasing values of the grid parameters, where the heights in the upper right warm
colored area of the sample mean ptr–score surface for time window W = 1 are considerably
higher than those for time window W = 2. Hence, it does not seem to be attractive for an
adversarial actor to deploy this scenario for a period longer than 1 year.
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Figure 1. Surface plots of µptr•=1
(Y,W=1)

and µ∆Cohen,•=1
(Y,W=1)

for scenario • = 1 and time window W = 1.

Figure 2. Surface plots of µptr•=1
(Y,W=2)

and µ∆Cohen,•=1
(Y,W=2)

for scenario • = 1 and time window W = 2.

The computed mean power of the conducted statistical tests (i.e. McNemar tests)
for the time windows are β = 0.96± 0.02 for W = 1 and β = 0.95± 0.02 for W = 2, so
the power of the conducted McNemar tests is sufficient for security analysts of a patent
applying company.

For the basic scenarios • = 2 and • = 3, only surface plots for the scenario option
COW are shown (see Subsection 3.4.2 and Subsection 3.4.3). In this scenario option, an
adversarial co–worker in a patent applying company’s intellectual property department
tries to affect decision outcomes of the company’s decision–maker X (who is unaware
of any adversarial influencing). Figure 3 and Figure 4 below show the surface plots for
scenario option S•=2

COW and time window W = 1 and W = 2, respectively.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 June 2021                   doi:10.20944/preprints202106.0676.v1

https://doi.org/10.20944/preprints202106.0676.v1


5 of 22

Figure 3. Surface plots of µptr•=2
(X,W=1)

and µ∆Cohen,•=2
(X,W=1)

for scenario option S•=2
COW and W = 1.

Figure 4. Surface plots of µptr•=2
(X,W=2)

and µ∆Cohen,•=2
(X,W=2)

for scenario option S•=2
COW and W = 2.

For this scenario option, all surface plots show a smooth landscape. For both consid-
ered time windows, the landscape of the mean Cohen distance shows a warm colored area
in the upper right corner, with a maximum that is even hot colored (i.e. values ≥ 0.8). For
the time window W = 1, the warm colored area more or less coincides with the warm
colored area of the sample mean ptr–scores, whereas the warm colored area of the sample
mean ptr–scores for the time window W = 2 is much broader than is the case for W = 1.
In addition, the values of the sample mean ptr–scores for the time window W = 2 are
considerably higher than those for the time window W = 1. In the cooler areas of the
surface plot for time window W=1, however, there are areas with medium sample mean
Cohen distances and relatively low sample mean ptr–scores. Hence, this area might be
attractive for an adversarial actor. The computed mean power of the conducted McNemar
tests are β = 0.65± 0.01 for the time window W = 1 and β = 0.72± 0.01 for the time
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window W = 2, so the conducted McNemar tests lack some power. Overall, this scenario
option does not seem to be attractive for an adversarial actor to deploy for a period longer
than 1 year.

Figure 5 and Figure 6 below show the surface plots for the scenario option S•=3
COW and

time windows W = 1 and W = 2, respectively.

Figure 5. Surface plots of µptr•=3
(X,W=1)

and µ∆Cohen,•=3
(X,W=1)

for scenario option S•=3
COW and W = 1.

Figure 6. Surface plots of µptr•=3
(X,W=2)

and µ∆Cohen,•=3
(X,W=2)

for scenario option S•=3
COW and W = 2.

Of the three basic influencing scenarios, scenario option S•=3
COW seems to be the most

attractive for an adversarial actor to deploy, especially in the time window W = 1. This
is mainly due to the low sample mean ptr–scores at this time window, even in the warm
colored area of the surface. Unlike the other two basic scenarios, the sample mean Cohen
distances in the warm area of this scenario are small (ranging from below 0.1 to below 0.4).
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The computed mean power of the conducted McNemar tests are β = 0.62± 0.01 for the
time window W = 1 and β = 0.69± 0.01 for the time window W = 2, so the conducted
McNemar tests lack some power.

The above inspection makes clear that adversarial actors in their own simulation and
analysis somehow need to make a trade–off between the sample mean ptr–score (i.e. the
likelihood of occurrence of positive test results) and the sample mean Cohen distance (i.e.
the expected effect of the scenario), in order to determine the attractiveness of an influencing
scenario in a time window. Thereby taking into account that the values of both statistical
quantities for each influencing scenario and considered time windows W strongly depend
on the positions of the model M1’s parameter pair (βd

W , Ud
W(1, R)) in the surface landscape.

From an adversarial risk analysis (ARA) perspective, of importance to company security
analysts is to find the most favorable model parameter pair (βd,∗

W , Ud,∗
W (1, R)) for each time

window that makes it on average the least attractive for adversaries to deploy either of the
six considered scenarios. For company security analysts, as well as for adversaries, it is also
of concern to find out whether combining basic scenarios simply implies addition of their
sample mean Cohen distances, or that combining may cause some form of cancelling out
of sample mean Cohen distances, due to the mathematical structure of model M1. In other
words, what is the most favorable parameter value pair of model M1 for each time window
for the set of six adversarial influencing scenarios? This is the subject of Subsection 2.2.

2.2. The most favorable M1 model parameter pair for each time window

In model M2, a multi–objective optimization problem with a set of six attractiveness
objective functions is formulated, in order to find the most favorable parameter value pair
(βd,∗

W , Ud,∗
W (1, R)) of model M1 for a time window W (see Subsection 3.8). The NSGA–II

evolutionary optimization method [11,12] is used to solve the optimization problem. This
method yields a set of favorable model parameter pairs for a time window W, denoted
by {(β

(i),d,∗
W , U(i),d,∗

W (1, R))}Npop
i=1 , where Npop is the population size used in the NSGA–II

method. In the simulations Npop = 50, meaning that the method yields 50 favorable

model parameter pairs. Associated with each such pair is an attractiveness value A(i)
•,W for

the corresponding scenario/scenario option. Due to the definition of A(i)
•,W (see Subsec-

tion 3.7), some favorable model pairs in the above set may correspond with (very) high
attractiveness values. By putting some threshold value on the attractiveness value, unde-
sirable favorable model parameters pairs will be dropped, and this yields the reduced set
{(β

(i),d,∗
W , U(i),d,∗

W (1, R))}Nsel
i=1 of selected model parameter pairs, with 1 < Nsel ≤ Npop = 50.

Figure 7 below shows an example of the frequency distributions of the attractiveness
values corresponding to the reduced parameter pair set, for the scenario option COW.
The figure reveals that the scenario • = 1, the scenario option S•=3

COW and the combined
scenario • = 1+ S•=3

COW can potentially do more harm to the decision outcomes of the patent
applying repeated decision–making process than scenario • = 2 can do, especially in the
time window W = 1. The figure also reveals that the longer each scenario is deployed,
the less harmful it is, and the less spreaded are the corresponding attractiveness values
(i.e. smaller bin sizes). This is due to getting more reliable statistics with growing num-
bers of patent requests in a time window. Figure 7 also reveals that the combination of
scenario • = 1 with the scenario option S•=2

COW can potentially do considerably less harm
than scenario • = 1 can do on its own. Something similar is the case when combining the
scenario options S•=2

COW and S•=3
COW . The harm that the combination of scenario • = 1 with

the scenario option S•=3
COW can do is confuse.
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Figure 7. Frequency distributions of the attractiveness values A(i)
•,W corresponding to the reduced set

of favorable M1 parameter value pairs {(β
(i),d,∗
W , U(i),d,∗

W (1, R))}Nsel
i=1 for the three time windows and

six considered scenarios, for the scenario option COW.

From the perspective of an adversarial actor, scenario • = 1 and scenario option
S•=3

COW are potentially attractive on their own, even when considering favorable parameter
pairs, whereas combining each of them with another scenario option reduces attractive-
ness. This is especially true for the time window W = 1. Based on all of the above
findings, company security analysts have to apply some selection procedure on the reduced
set {(β

(i),d,∗
W , U(i),d,∗

W (1, R))}Nsel
i=1 of M1 model parameter pairs, in order to arrive at the single

most favorable model parameter (βd,∗
W , Ud,∗

W (1, R)) for a time window (see Subsection 3.8).
This selection procedure is company specific and may therefore be hard for adversaries to
guess. Table 1 below shows an example of the selected most favorable M1 model parameter
pair for each time time window. The coordinates of the selected most favorable parameter
pairs are in agreement with the inspection results described in Subsection 2.1, based on
inspecting surface plots.

Table 1. Selected most favorable M1 model parameter pair for each of the three time windows, and
the set of six considered influencing scenarios, for scenario option COW.

COW
W βd,∗

W Ud,∗
W (1, R)

1 0.571 4.997
2 0.574 3.468
3 0.560 3.334

Figure 8 below is similar to Figure 7 above, except that the scenario option X is
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considered instead of COW. In scenario option X, the company decision maker X is the
adversarial actor who negatively influences the outcomes of decision A (see Subsection
3.4.2 and Subsection 3.4.3).

Figure 8. Frequency distributions of the attractiveness values A(i)
•,W corresponding to the reduced set

of favorable M1 parameter value pairs {(β
(i),d,∗
W , U(i),d,∗

W (1, R))}Nsel
i=1 for the three time windows and

six considered scenarios, for the scenario option X.

Figure 8 reveals that the frequency distributions of the attractiveness values for sce-
nario option X resemble those of scenario option COW, except that they are less spreaded
and most frequency mass has shifted to the left. The frequency distribution for the scenario
• = 1 is slightly more spreaded than is the case for scenario option COW, within the
normal statistical variation. As is the case for scenario option COW, the scenario • = 1
and scenario option S•=3

X are potentially more harmful than scenario option S•=2
X , and

combinations of them with another scenario option reduce their attractiveness. Table 2
below shows an example of the selected most favorable M1 model parameter pairs for each
time time window for scenario option X.

Table 2. Selected most favorable M1 model parameter pairs for each of the three time windows, and
the set of six considered influencing scenarios, for scenario option X.

COW
W βd,∗

W Ud,∗
W (1, R)

1 0.471 4.784
2 0.333 4.887
3 0.336 4.246
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3. Materials and Methods

As stated in the introduction, the probabilistic scenario of the patent application
decision–making process is not Bayesian, in that the company decision–maker X selects a
choice alternative (decision A: region office or country office) before observing the outcome
of decision B (patent request granted or not granted). Moreover, decision–maker X is in fact
a bounded rational decision–maker. Subsection 3.1 briefly formalizes the theory of Ortega
et al. that is used to model a bounded rational decision–maker for the above probabilistic
scenario, and provides an example too

3.1. Formalization of the theory of Ortega et al. for the probabilistic scenario of the patent
application decision–making process

In real–world decision problems, a decision–maker does not always have enough
resources to exhaustively evaluate all aspects of each choice alternative of a decision.
Ortega et al. have shown that this limitation changes a decision problem in a fundamental
way. Their theory first requires defining a finite outcome space X , be defined as:

X = A×O,

= {a1, · · · , aM}︸ ︷︷ ︸
Choice alternatives

×{o1, · · · , oN}︸ ︷︷ ︸
Observations

,

where 0 < N, M ∈ N, A is a finite space of choice alternatives and O is a finite space
of possible observations. Furthermore, in the probabilistic scenario in which the decision–
maker first selects a choice alternative a and then observes the stochastic state of the world o,
the theory conceptualizes a decision–maker’s deliberation and planning process as follows.
The decision–maker first chooses a (what Ortega et al. call) prior decision policy, i.e. a
probability distribution P0,X (x), and then transforms this policy into a (what they call)
posterior decision policy, i.e. a probability distribution PX (x), be defined as:

PX (x) = PX (a, o) = P(o|a)PA(a),

P0,X (x) = P(o|a)P0,A(a). (1)

During this transformation process, the decision–maker is not allowed to reason
about the costs of transforming a prior decision policy into a posterior decision policy.
Furthermore, U : X → R is a real–valued mapping of the outcomes, called the utility
function. The decision maker’s goal is to find the optimal posterior decision policy P∗X (x)
by optimizing this utility function over the probability distribution PX (x), while facing
limited information processing resources in the deliberation and planning process. Ortega
et al. showed that this limitedness for an outsider will appear as if the decision–maker
were explicitly optimizing the explicit objective function −∆Fβ[P], known as the functional
for negative free energy difference due to its origin in thermodynamics:

− ∆Fβ[P] := ∑
x∈X

P(x)U(x)︸ ︷︷ ︸
Expected Utility

− 1
β ∑

x∈X
P(x) log

P(x)
P0(x)︸ ︷︷ ︸

Information Cost

. (2)

The second term in the formula expresses information cost due to limited resources
measured in units of utility (i.e., utiles), and the boundedness parameter β ∈ R acts as a
conversion factor between units of information and utiles. The functional in Equation (
2) expresses information–theoretic bounded rationality as a tradeoff between utilities and
information cost, and is reflecting the decision–maker’s net utility. In the literature, this
cost term also goes under other names, such as KL–control cost, and has been motivated in
numerous ways [7,10]. The boundedness parameter not only acts as a conversion factor, but
also scales how far P(x) can deviate from P0(x), measured in terms of the KL-divergence.
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The parameter therefore controls how much a decision maker is in control of the action of
selecting a choice alternative (see the limit cases in Table 3 below).

Table 3. Limit cases for the boundedness parameter.

Limit case Actions

β→ ∞ Perfectly rational decision maker with unlimited resources
β→ 0 Decision maker without resources simply selects an action

according to the prior decision policy P0(x)
β→ −∞ Perfectly anti-rational decision maker, which always selects

the action with the worst outcome.

To find the bounded rational optimal posterior decision policy, Ortega et al. have
formulated a variational principle for maximizing the functional over probability distri-
butions P(x). The general solution of this variational principle is the optimal posterior
decision policy:

P∗β (x) =
1

Zβ
P0(x)eβU(x), with Zβ = ∑

x∈X
P0(x)eβU(x). (3)

For the probabilistic scenario in the decision–making of the patent application process
(i.e. choice alternative selection decision A before observation of decision outcome of
decision B), the particular optimal solution over a finite action space A becomes:

P∗β,A(a) =
1

Zβ,A
P0,A(a)eβE[U|a], (4)

with E[U|a] = ∑o∈O [P(o|a)U(o, a)] and Zβ,A = ∑a∈A P0,A(a)eβE[U|a]. The reader can
find the derivation of this formula in Appendix A.

As of now, the case of decision–making in complete absence of adversarial influencing
is referred to as the default case, denoted by the superscript d. In addition, R and C represent
the choice alternatives “region office" and “country office", respectively. And 0 and 1
represent the decision outcomes “patent request not granted" and “patent request granted",
respectively.

Example 1. Let A = {R, C} and O = {0, 1}. Let the utility function be defined as Ud(0, R) =
Ud(0, C) = 0 if a patent has not been granted, and Ud(1, R) = 45 and Ud(1, C) = 1 if a patent
has been granted. Let Pd(0|R) = 0.92 = 1− Pd(1|R) be the probability of a patent not being
granted by a regional office in the default case, and Pd(0|C) = 0.2 = 1− Pd(1|C) the probability
of a patent not being granted by a country office. Let the prior decision policy that the patent will
be requested at a regional office be given by Pd

o,A(a = R) = 0.1 = 1− Pd
0,A(a = C). Choose a

value for the boundedness parameter βd (here βd = 1), representing how much the bounded rational
decision maker X is in control of selecting choice alternative R or C. Now, the optimal decision policy

becomes: Pd,∗
βd ,A(a) = Pd,∗

A (a; βd = 1) =
Pd

0,A(a)eE[U
d |a]

Zd
βd=1,A

, where E[Ud|a] = ∑o∈O Pd(o|a)Ud(o, a)

is the expected utility in case choice action a is selected, and the partition function Zd
βd=1,A =

∑a∈A Pd
0,A(a)eE[U

d |a]. Then E[Ud|R] = 0.08 ∗ 45 = 3.6, E[Ud|C] = 0.8 ∗ 1 = 0.8 , and the
partition function Zd

βd=1,A = 0.1e3.6 + 0.9e0.8. The optimal decision policy components then

become Pd,∗
A (a = R; βd = 1) = 0.1e3.6

0.1e3.6+0.9e0.8 = 0.65 and Pd,∗
A (a = C; βd = 1) = 0.35. The below

decision function is used to determine the outcome of decision A:

DA(a; βd) =

{
R if Pd,∗

A (a = R; βd) > 0.5,
C otherwise.

(5)
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As expected, with differences of utility values for both types of patent offices as above, decision
maker X adapts his/her strategy according to the optimal decision policy and decision rule, and
decides to send the patent request to a regional patent office.

3.2. Repeated patent application decision–making

Repeated patent application decision–making involves repeating the decision–making
process that is described in Subsection 3.1. Let r denote an individual patent request. To
capture variety in repeated patent requests in the simulation study, the following bounded
rational decision–making model will be applied in the default case:

Model M1 :

A = {R, C}
O = {0, 1}

βd,r = βd + 0.05 ∗ randint(1, 5)− 0.15, with 0.30 < βd < 0.60,

Ud,r(0, R) = Ud,r(0, C) = 0.0 for all r,

Ud,r(1, C) = Ud(1, C) = 1.0 for all r,

Ud,r(1, R) = Ud(1, R) + 0.05 ∗ randint(1, 5)− 0.15,

with 1.1 < Ud(1, R) < 5.0,

Ud,r(1, R) > Ud,r(1, C) for all r,

Pd,r(1|C) = 0.40 for all r, (6)

Pd,r(1|R) = 0.20 for all r,

Pd,r
0,A(a = R) = 0.43 + 0.02 ∗ randint(1, 5),

E[Ud,r|a; Ud(1, R)] = ∑
o∈O

Pd,r(o|a)Ud,r(o, a), with a ∈ A,

Zd,r
βd,r ,A = ∑

a∈A
Pd,r

0,A(a)eE[U
d,r |a;Ud(1,R)],

Pd,r,∗
A (a = R; βd, Ud(1, R)) =

Pd,r
0,A(a = R)eE[U

d,r |a=R;Ud(1,R)]

Zd,r
βd,r ,A

,

Dr
A(a; βd, Ud(1, R)) =

{
R if Pd,r,∗

A (a = R; βd, Ud(1, R)) > 0.5 for all r,
C otherwise.

where the values of the parameters βd and Ud(1, R) remain to be specified (as stated
in the introduction), and randint(a, b) represents a uniform drawing from the interval [a, b].

The quotient Ud,r(1,R)
Ud,r(1,C) expresses decision maker X’s preference with regard to how much

more important a grant at the regional office R is for patent a request r than a grant at a
country office C. By lowering the boundedness parameter βd,r compared to βd, decision
maker X admits to have less control of selecting choice alternative R or C for patent request
r. By raising the value of the prior decision policy parameter Pd,r

0,A(a = R) compared to 0.43,
decision maker X is more confident that patent request r will be granted by a patent officer
at regional office R. By raising the utility value Ud,r(1, C) compared to the value Ud(1, C),
decision maker X lowers his/her preference for getting the patent request granted at office
R.

3.3. Observed proportions of patent application decision–making outcomes in the default case

The repeated decision–making process described in Subsection 3.2 yields two equally
sized time ordered sequences (i.e. samples) of 1 < N(W) ∈ N decision outcomes from
individual patent requests r in a time window W (expressed in years). A sample of R/C
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outcomes (from decision A) and a sample of 0/1 outcomes (from decision B). This study
focuses on decision A outcomes R, and subsequent conditional decision B outcomes 1|R,
and defines two observed unaffected proportions of decision outcomes R and 1|R for the
default case:

p̂d
R(W; βd, Ud(1, R)) =

# unaffected R–outcomes in sample decision A
N(W)

p̂d
1|R(W; βd, Ud(1, R)) =

# unaffected 1|R–outcomes in sample decision B
N(W)

(7)

3.4. Observed proportions of adversarial influenced patent application decision–making outcomes

In this study, six scenarios are defined by which adversarial actors may negatively
influence patent application process decision–making outcomes, compared to the default
case. An adversarial influencing scenario is denoted by the superscript •, followed by the
number of the scenario.

3.4.1. Adversarial influencing scenario • = 1

An adversarial specialized patent officer in the regional patent office is able to create
the opportunity to assess all the patent requests that are sent to the office by a company.
The patent officer knows the observed granting chance pd,r(1|R) the decision maker X
in the company is counting on for the sent patent requests in the default case, and tries
to negatively influence the value of this chance, without raising suspicion. He/she first
determines the lowest number of patent requests Nlowest ∈ N that will approximately
result in the chance value pd,r(1|R) if just one of the Nlowest patent requests is granted:
Nlowest = round to the nearest lowest integer

(
1

pd,r(1|R)

)
. Suppose pd,r(1|R) = 0.40, then

Nlowest = round to the nearest lowest integer( 1
0.40 ) = 2. This means that with just one

granted patent on Nlowest + 1 patent requests, the resulting adversarial influenced granting
chance p•=1,r(1|R) = 1

Nlowest+1
= 0.33. So, the officer’s strategy is to not grant Nlowest

patents on every Nlowest + 1 patent requests. This strategy takes into account that it may be
hard to prove for company security analysts that there is a statistically significant difference
between the observed unaffected proportion p̂d

1|R(W; βd, Ud(1, R)), defined in Equation (
7), and the affected proportion:

p̂•=1
1|R (W; βd, Ud(1, R)) =

# affected 1|R–outcomes in sample decision B
N(W)

. (8)

Note that p̂•=1
R (W; βd, Ud(1, R)) = p̂d

R(W; βd, Ud(1, R)).

3.4.2. Adversarial influencing scenario • = 2

In this scenario, company decision maker X’s decision A for individual patent requests
r is influenced by either one of the below two scenario options:

• Scenario option S•=2
COW : An adversarial co–worker in the company’s intellectual property

department tries to persuade decision maker X to raise the value of the utility compo-
nent Ud,r(1, C) for a patent request with an integer value, with X being unaware of
this.

• Scenario option S•=2
X : Decision maker X is the adversarial actor and raises the value

of the utility component Ud,r(1, C) for a patent request with an integer value him-
self/herself.

To capture both options, the following mathematical formulation is used:
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U•=2,r(1, C) = Ud,r(1, C) + vr,

with vr ∼ (P(vr = 0) = p0, P(vr = 1) = p1, P(vr = 2) = p2, P(vr = 3) = p3),

and p0 + p1 + p2 + p3 = 1. (9)

In scenario option S•=2
COW , the value of vr is drawn from the distribution (P(vr = 0) =

0.50, P(vr = 1) = 0.30, P(vr = 2) = 0.15, P(vr = 3) = 0.05), meaning that the adversarial
co–worker has a 50% chance that decision maker X is willing to accept a proposed raise
of Ud,r(1, C). In scenario option S•=2

X , the value of vr is drawn from the distribution
(P(vr = 0) = 0.20, P(vr = 1) = 0.45, P(vr = 2) = 0.27, P(vr = 3) = 0.08). Raising the
value of Ud,r(1, C) leads to a value of the chance component P•=2,r,∗

A (a = R; βd, Ud(1, R))
that is lower than the value of the chance component Pd,r,∗

A (a = R; βd, Ud(1, R)), and the
more likely it is that the number of decision outcomes R will drop. Therefore, the value of
the below defined affected observed proportion is expected to be lower than the value of
the corresponding observed unaffected proportion:

p̂•=2
R (W; βd, Ud(1, R)) =

# affected R–outcomes in sample decision A
N(W)

. (10)

Though this scenario does not affect repeated decision B outcomes, in simulation
runs the below defined observed affected proportion may well differ from the value of the
corresponding observed unaffected proportion:

p̂•=2
R (W; βd, Ud(1, R)) =

# affected 1|R–outcomes in sample decision B
N(W)

. (11)

3.4.3. Adversarial influencing scenario • = 3

In this scenario, company decision maker X’s decision A for individual patent requests
r is influenced by either one of the below two scenario options:

• Scenario option S•=3
COW : An adversarial co–worker in the company’s intellectual property

department tries to persuade decision maker X to decrease the value of the bounded-
ness parameter βd,r for a patent request with some percentage, with X being unaware
of this.

• Scenario option S•=3
X : Decision maker X is the adversarial actor and decreases the

value of the boundedness parameter βd,r for a patent request with some percentage
himself/herself.

To capture both scenario options, the following mathematical formulation is used:

β•=3,r = βd,r(1− pr

100
), with pr being a drawing from the distribution

(P(pr = 0) = p0, P(pr = 30) = p1, P(pr = 40) = p2) and,

p0 + p1 + p2 = 1. (12)

In scenario option S•=3
COW , the value of pr is drawn from the distribution (P(pr =

0) = 0.40, P(pr = 30) = 0.40, P(pr = 40) = 0.20), and in scenario option S•=3
X from the

distribution (P(pr = 0) = 0.20, P(pr = 30) = 0.50, P(pr = 40) = 0.30). A decrease of βd,r

may drop the value of the chance component P•=3,r,∗
A (a = R; βd, Ud(1, R)), and may result

in a lower number of decision A outcomes R. Therefore, the value of the below defined
affected observed proportion is expected to be lower than the value of the corresponding
observed unaffected proportion:

p̂•=3
R (W; βd, Ud(1, R)) =

# affected R–outcomes in sample decision A
N(W)

. (13)
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As is the case for influencing scenario • = 2, this scenario does not affect repeated
decision B outcomes. However, in simulation runs the below defined observed affected
proportion may well differ from the value of the corresponding observed unaffected
proportion:

p̂•=3
R (W; βd, Ud(1, R)) =

# affected 1|R–outcomes in sample decision B
N(W)

. (14)

3.4.4. Combined influencing scenario • = 2 + 3

In this combined influencing scenario, either the combination of scenario options S•=2
COW

and S•=3
COW is active, or the combination of scenario options S•=2

X and S•=3
X . Combining the

individual influencing scenarios offers the adversarial actor the advantage that smaller
value changes of evr and pr may be more effective. However, the risk of exposure may
be higher than in case a single influencing scenario is deployed. The definitions of the
two observed affected proportions for this scenario are identical to the definitions for the
individual scenarios • = 2 and • = 3.

3.4.5. Combined influencing scenarios • = 1 + 2 or • = 1 + 3

In these two combined scenarios, the patent office–side adversarial actor and the
company–side adversarial actor do cooperate. Scenario • = 1 + 2 is a combination of
scenario • = 1 with either scenario option S•=2

COW or scenario option S•=2
X . And scenario

• = 1 + 3 is a combination of scenario • = 1 with either scenario option S•=3
COW or scenario

option S•=3
X . If the company–side adversarial actor succeeds in dropping the number of

patent requests that is send to the regional patent office, then it may be statistically harder
for company security annalists to test for the presence of scenario • = 1, being deployed
by the patent office–side adversarial actor.

3.5. Testing for the presence of an adversarial influencing scenario

To find out whether an adversarial influencing scenario • has been active on decision
A–outcomes in a time window W, or not, a paired proportions test will be conducted. To be
precise, the asymptotic McNemar-test without continuity correction [8]. The distinguishable
case outcomes for decision A are captured by the 2x2 contingency table shown in Table 4
below, where (n11, n12, n21, n22) denotes a combination of outcome pairs on a total of N(W)
pairs.

Table 4. 2 x 2 contingency table with the distinguishable case outcomes for decision A.

Case influence scenario • be active
Outcome R Outcome C Totals

Default case d Outcome R n11 n12 n11 + n12
Outcome C n21 n22 n21 + n22

Totals n11 + n21 n12 + n22 N(W)

The McNemar test procedure that is followed in the simulation study is explained
below by means of Example 2.

Example 2. Suppose, the simulation framework has generated N(W) = 11 drawn pairs of binary
decision outcomes R/C for the default case and the case adversarial influencing • has been deployed,
with (n11, n12, n21, n22) = (6, 3, 0, 2) being the generated combination of drawn outcome pairs.
This corresponds with the observed proportions p̂d

R(W; βd, Ud(1, R)) = n11+n12
N(W)

= 9
11 = 0.818 and

p̂•R(W; βd, Ud(1, R)) = n11+n21
N(W)

= 6
11 = 0.545. Do these proportions significantly differ from each

other or not, under the null hypothesis H0 that the proportions of R– outcomes in the population
are equal for both cases?
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Based on the criterion n12 + n21 = 3 + 0 = 3 < 20, the exact binomial version of the Mc-
Nemar test will be conducted, otherwise the normal (χ2

1) approximation. Choose a significance level
(here α = 0.05), and let a software package compute the McNemar score statistic M = (n12−n21)√

n12+n21
and the two-tailed P-value, according to H0 and by using the exact binomial distribution. The
computed (two-sided) P-value is equal to 0.25. Because this value is greater than α = 0.05, we fail
to reject H0 and assume there is no significant difference between the proportions.

To assure that the conducted McNemar test does not lack sufficient power to demonstrate and
prove adversarial influencing for small and moderate sample sizes, as well as for larger sample
sizes, a power analysis will be performed by means of a software package. The power value β will
be computed given the sample size N(W) = 11, the significant level α = 0.05 and the observed
effect size ∆(W; βd, Ud(1, R)) = | p̂•R(W; βd, Ud(1, R))− p̂•R(W; βd, Ud(1, R))| = 0.273. The
computed power value β = 0.701. In the performed simulation experiments, the calculated
power value should not be far away from the value 0.8, which is normally imposed on a statistic
hypothesis test. Instead of using the real difference between the two proportions as effect size, the
Cohen difference will be used, be defined as the absolute difference between the arcsine-root-

transformed values of the proportions [9], i.e. ∆Cohen = |2arcsine(
√

p̂d
R(W; βd, Ud(1, R))) −

2arcsine(
√

p̂•R(W; βd, Ud(1, R)))|. Cohen suggested that ∆Cohen = 0.2 can be considered a small
effect size, ∆Cohen = 0.5 represents a medium effect size and ∆Cohen = 0.8 a large effect size. This
means that if two proportions do not differ by 0.2 (threshold) standard deviations or more, the
difference is trivial, even if it is statistically relevant. Here, the Cohen distance is equal to 0.599,
representing a more than medium effect.

In a similar way as for decision A outcomes, the McNemar test can be conducted for
decision B outcomes, that is for the paired observed proportions p̂d

1|R(W; βd, Ud(1, R)) and

p̂•1|R(W; βd, Ud(1, R)), under the null hypothesis H0 that the proportions of 1|R– outcomes
in the population are equal for both cases. The two McNemar tests for decision A and B
will be referred to as MNT(X, W) and MNT(Y, W), respectively (see the test setup shown
in Figure 9 below).

figure-test-setup-eps-converted-to.pdf

Figure 9. Setup to test for the six considered adversarial influencing scenarios in time window W.

Depending on the particular influencing scenario •, either McNemar test MNT(X, W)
or McNemar test MNT(Y, W) has to be conducted, or both McNemar tests have to be
conducted to test for the presence of the scenario in time window W. If the null hypothesis
in a particular McNemar test is rejected, this is called a positive test result (denoted by
+), otherwise the test result is negative (-). A positive test result is translated into the
binary score 1, and a negative test result in the score 0. Table 5 below shows for each
influencing scenario (option) the applicable McNemar test(s), together with the above score
mechanism.
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Table 5. Applicable McNemar tests for the six adversarial influencing scenarios, and the test score
mechanism.

Scenario Option McNemar test Test result Score
(H0 rejected) (+/-) (1/0)

• = 2 S•=2
COW or S•=2

X MNT(X, W) +/- 1/0
• = 3 S•=3

COW or S•=3
X MNT(X, W) +/- 1/0

• = 2 + 3 S•=2
COW + S•=3

COW MNT(X, W) +/- 1/0
• = 2 + 3 S•=2

X + S•=3
X MNT(X, W) +/- 1/0

• = 1 MNT(Y, W) +/- 1/0

• = 1 + 2 S•=2
COW MNT(X, W) +/- 1/0

MNT(Y, W) +/- 1/0
• = 1 + 2 S•=2

X MNT(X, W) +/- 1/0
MNT(Y, W) +/- 1/0

• = 1 + 3 S•=3
COW MNT(X, W) +/- 1/0

MNT(Y, W) +/- 1/0
• = 1 + 3 S•=3

X MNT(X, W) +/- 1/0
MNT(Y, W) +/- 1/0

3.6. Building test statistics in the simulation study

In order to statistically examine the presence of a specific adversarial influencing
scenario • in the three considered time windows in more detail, test statistics need to be
build in the simulation study. Therefore, Nsim = 50 simulation runs with Ns = 50 sub–runs
s per simulation run will be performed for each time window. For each simulation run, the
number of patent requests in an individual sub–run for the time window, N(s)(W), will
be determined by the drawing N(s)(W) ∼W(2 + randint(1, 4)). For both McNemar tests
MNT(X, W) and MNT(Y, W), the percentage of positive test results of a simulation run
(denoted by ptr) can be computed over the 50 sub–runs, as well as the mean power and
mean Cohen distance. Over the 50 simulation runs, the sample means of these quantities
and their associated standard deviations can be computed for the two McNemar tests. Let
the latter quantities for the test MNT(X, W) be represented by: µptr•

(X,W)
, σptr•

(X,W)
, µ∆Cohen,•

(X,W)
,

σ∆Cohen,•
(X,W)

, µβ•
(X,W)

and σβ•
(X,W)

, and for test MNT(Y, W) by: µptr•
(Y,W)

, σptr•
(Y,W)

, µ∆Cohen,•
(Y,W)

, σ∆Cohen,•
(Y,W)

,

µβ•
(Y,W)

and σβ•
(Y,W)

. Though not shown in the notation, all these statistical quantities are

parameterized by the parameter pair (βd, Ud(1, R)), because they are based on an observed
unaffected and affected proportion pair and each proportion in this pair is parameterized
by βd and Ud(1, R).

3.7. The attractiveness of an adversarial influencing scenario from the perspective of an adversarial
actor

Combining the sample mean of positive test results µptr•
(·,W)

(with · = X or Y) and the
associated sample mean Cohen distance µ∆Cohen,•

(·,W)
is a way to express the attractiveness of

influencing scenario (option) • from the perspective of an adversarial actor who considers
to deploy • in a time window. The lower the µptr•

(·,W)
value, the more attractive the scenario

(option)/window combination is for an adversarial actor. And, the higher the µ∆Cohen,•
(·,W)

value,

the higher is the gain for an adversarial actor, and the more attractive is the combination.
The most attractive combination for an adversarial actor would be a low value of µptr•

(·,W)

against a high value of µ∆Cohen,•
(·,W)

. Based on this directive and on Table 5, the attractiveness

A•,W of a scenario (option) in a time window is defined as:
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A•,W :=



0.0 if • = 2, 3, or 2+3,
µ∆Cohen,•

(X,W)
= 0 and

µptr•
(X,W)

= 0,

µ
∆Cohen,•
(X,W)

µptr•
(X,W)

+ε if • =2, 3, or 2+3

otherwise,

0.0 if • = 1,
µ∆Cohen,•

(Y,W)
= 0 and

µptr•
(Y,W)

= 0,

µ
∆Cohen,•
(Y,W)

µptr•
(Y,W)

+ε if • = 1 otherwise,

0.0 if • = 1+2, or 1+3,
µ∆Cohen,•

(X,W)
= 0,

µptr•
(X,W)

= 0,

µ∆Cohen,•
(Y,W)

= 0 and

µptr•
(Y,W)

= 0,

µ
∆Cohen,•
(X,W)

+µ
∆Cohen,•
(Y,W)

µptr•
(X,W)

+µptr•
(Y,W)

+ε if • = 1+2, or 1+3

otherwise,

(15)

where µptr•
(X,W)

= 0 if µ∆Cohen,•
(X,W)

= 0, µptr•
(Y,W)

= 0 if µ∆Cohen,•
(Y,W)

= 0, and ε ∈ R is a small

factor to prevent dividing by zero. The higher the value A•,W , the more attractive the
scenario (option)/time window combination is for an adversarial actor, and the higher
will be the risk for a patent requesting company. Though not shown in the notation, the
attractiveness value A•,W is parameterized by the parameter pair (βd, Ud(1, R)), because
the statistical quantities on the right side of Equation (15) are parameterized by this
parameter pair (see Subsection 3.6).

3.8. Procedure for making patent application decision–making outcomes on average less vulnerable
to negative adversarial influencing

As stated before, the values of the parameters βd and Ud(1, R) of model M1, defined
in Equation (6), remain to be specified. Instead of choosing some pair of parameter values
within the specified bounds, a procedure is provided to determine the most favorable
parameter values in a time window with regard to the six adversarial influencing scenarios.
By considering the two parameters as variables and by formulating the attractiveness
objective function defined in Equation (15) for each of the six considered influencing
scenarios, the multi–objective optimization problem stated below is used to determine a set
of pairs of optimal parameter values. On this set, a refinement procedure will be applied to
determine the most favorable parameter pair (βd,∗

W , Ud,∗
W (1, R)) for a time window W.
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Model M2 :

Multi–objective optimization problem:

min
[

A•=1,W(βd
W , Ud

W(1, R)), A•=2,W(βd
W , Ud

W(1, R)), A•=3,W(βd
W , Ud

W(1, R)),

A•=2+3,W(βd
W , Ud

W(1, R)), A•=1+2,W(βd
W , Ud

W(1, R)), A•=1+3,W(βd
W , Ud

W(1, R))
]

s.t. 0.30 < βd
W < 0.60 and 1.1 < Ud

W(1, R) < 5.0, (16)

over

Nsim simulation runs, with Ns sub–runs per simulation run, according to the test setup

shown in Figure 9 above,

where

W ∈ {1, 2, 3}, the objective functions A•=·,W(βd
W , Ud

W(1, R)) are computed according

to Equation (15), ε = 0.0001 and where the

output

is a finite set of favorable parameter pairs {(β
(i),d
W , U(i),d

W (1, R))}
Npairs
i=1 , 1 ≤ Npairs ∈ N.

Selection procedure :

A selection procedure will be applied on the output set, in order to arrive at a single

most favorable pair of optimal parameters (βd,∗
W , Ud,∗

W (1, R)) for the time window.

For each time window value W, the evolutionary optimization method NSGA–II
[11,12] will be applied to Equation (16), with a population size of Npop = 50 and Ngen = 30
generations as a termination criterium. This results in a set of 1 ≤ Npairs ≤ Npop favorable

parameter pairs (β
(i),d
W , U(i),d

W (1, R)), from which a single most favorable parameter value
pair (βd,∗

W , Ud,∗
W (1, R)) is selected. It is expected that implementing the latter parameter

pair in model M1 for a time window, will discourage adversaries from deploying one of
the six considered scenarios. Especially, because it is hard for them to not only guess the
underlying mathematical decision support model a patent applying company is using, but
also the most favorable parameter pair the company has selected.

4. Discussion

In the literature, a lot of attention is drawn to adversaries trying to explore vulnerabili-
ties of IT systems that are supporting crucial business processes or infrastructure, and how
to detect attempts to manipulate such systems. Considerably less attention is drawn to
adversaries trying to manipulate the decision outcomes of repeated decision–making pro-
cesses with underlying parameterized decision support models. And no serious attention
at all is drawn to incorporating simulated statistics of repeated decision outcomes affected
by a set of well–defined possible influencing scenarios into the parametrization of math-
ematical decision support models. The purpose of this study is to draw attention to this
deficiency, and set a stage for the topic by means of the proposed general simulation frame-
work. The decision support model underlying the patent application decision–making
process serves as an example, because of its interesting structure: a non–Bayesian bounded
rational action–reward model with two successive binary decisions. Most mathematical
decision support models have some parameters that remain to be specified, and usually
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an optimization problem is formulated to find the optimal parameter values with regard
to some general objective function or loss function. A crucial attribution of the proposed
simulation framework is that it provides a general definition of a measure that is feeded
by simulated statistical test outcomes and that expresses the attractiveness of a defined
influencing scenario (from the perspective of an adversary), in terms of the decision support
model parameters that remain to be specified. The present study has demonstrated that by
considering this measure as an objective function, a multi–objective optimization problem
can be formulated for a set of well–defined adversarial influencing scenarios. And that
solving the optimization problem for a chosen time window, and applying some selection
procedure on its solution set, will provide the most favorable (for adversaries hard to guess)
support model parameter values for the time window. Parameterizing the decision support
model according to these parameter values, will on average make the considered set of
influencing scenarios less attractive for adversaries to deploy in the chosen time window.

Of course, company security analysts cannot be accounted for preventing adversaries
from crafting and deploying adversarial influencing scenarios to manipulate decision
outcomes of repeated decision–making processes they are supposed to protect. However,
they can be accounted for taking countermeasures, such as implementing the proposed
approach, that will make such scenarios on average less effective and that on average
will raise the chance that adversarial influencing of decision outcomes will be detected.
Once adversaries suspect that company security analysts themselves craft and simulate
influencing scenarios to make them less effective and that this may raise the chance of
being exposed, this may discourage them from crafting and deploying such scenarios in
the future.

The statistical theory underlying the presented mathematical model M2 needs to be
further developed. Company security analysts should be given stricter guarantees than
that the effect of considered scenarios on average will be less and the detection chance
of a deployed scenario will on average be higher. But, this is left to future research. The
approach presented in this study is general and can be applied to a variety of repeated
decision–making processes and underlying mathematical decision support models. For
instance, to decision support of repeated decision–making by means of machine learning
models, in which case the presented approach needs to be included into the hyperparameter
tuning of the used machine learning model. In forthcoming work, a case study of this will
be presented. As well as a case study of detection of adversarial influencing of repeated
decision outcomes of a repeated decision–making process supported by a bounded rational
Bayesian decision support model.
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Appendix A Derivation of the optimal posterior decision policy for the action before
observation probabilistic scenario

This appendix describes how to derive the expression for the optimal posterior deci-
sion policy (i.e., the distribution p∗A(a)) in the theory of Ortega et al. for the probabilistic
scenario in which PX (x) = P(o, a) = P(o|a)PA(a). In this scenario, there is interaction
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with the environment in that the choice action the decision maker takes according to the
optimized PA(a) has a stochastic effect on the environment according to the distribution
P(o|a).

X = A×O,

= {a1, · · · , aM}︸ ︷︷ ︸
Actions

×{o1, · · · , oN}︸ ︷︷ ︸
Observations

,

PX (x) = PX (a, o) = P(o|a)PA(a),

QX (x) = P(o|a)P0,A(a),

−∆Fβ[P] := ∑
x∈X

PX (x)U(x)︸ ︷︷ ︸
Expected utility

− 1
β ∑

x∈X
PX (x) log

P(x)
P0,X (x)︸ ︷︷ ︸

Information cost

= ∑
x∈X
{PX (x)U(x)− 1

β
PX (x) log

PX (x)
P0,X (x)

},

where P0,X (x) and PX (x) represent the prior decision policy and the posterior decision
policy with respect to the space X , respectively. Optimizing the above objective function is
equivalent to optimizing the objective function

∑
a∈A

∑
o∈O

{
P(o|a)PA(a)U(o, a)− 1

β
P(o|a)PA(a) log

PA(a)
P0,A(a)

}
+ λ

{
∑

a∈A
∑

o∈O
PX (o, a)− 1

}
,

in terms of actions

PA(a) = ∑
o∈O

PX (o, a).

Take the derivative with respect to PA(a) for fixed a ∈ A:

d
dPA(a)

[
∑

a∈A
∑

o∈O

{
P(o|a)PA(a)U(o, a)− 1

β
P(o|a)PA(a) log

PA(a)
P0,A(a)

}]

+
d

dPA(a)

[
λ ∑

a∈A
∑

o∈O
PX (o, a)− λ

]
= 0

∑
o∈O

[
P(o|a)U(o, a)− 1

β
P(o|a) log

PA(a)
P0,A(a)

− 1
β

P(o|a)P̃A(a)
1

PA(a)

]
+ λ = 0

∑
o∈O

[P(o|a)U(o, a)]︸ ︷︷ ︸
E[U|a]

− 1
β

log
PA(a)

P0,A(a)
− 1

β
+ λ = 0.

Take the derivative with respect to λ:

∑
a∈A

PA(a) = 1. (A1)

This yields

βE[U|a]− log
PA(a)

P0,A(a)
= 1− βλ
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PA(a) = P0,A(a)eβE[U|a]eβλ−1.

Using equation (A1):

∑
a∈A

PA(a) = ∑
a∈A

P0,A(a)eβE[U|a]eβλ−1 = 1

∑
a∈A

P0,A(a)eβE[U|a] = e1−βλ.

This finally yields the optimal decision policy over the finite action space A:

P∗β,A(a) =
P0,A(a)eβE[U|a]

∑a∈A P0,A(a)eβE[U|a]

=
P0,A(a)eβE[U|a]

Zβ,A
, (A2)

with E[U|a] = ∑o∈O [P(o|a)U(o, a)] and Zβ,A = ∑a∈A P0,A(a)eβE[U|a].
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