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Abstract: Concrete is a heterogeneous material with a disordered material morphology that strongly
governs the behavior of the material. In this contribution, we present a computational tool called
the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete
morphologies for mesoscale and multiscale computational modeling and simulation of concrete.
Given an aggregate size distribution, realistic generic concrete aggregates are generated by a se-
quential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave
depressions are introduced in the polyhedron using gaussian surfaces. The generated aggregates are
assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The
virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions.
The model is validated by comparing the elastic properties obtained from laboratory testing of
concrete specimens with the elastic properties obtained using computational homogenisation of
virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly
generate elastic properties from voxel data.
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1. Introduction

Concrete is a highly heterogeneous composite material with a random microstructure
across the length scales. This includes the material topology, size distribution as well as
their spatial configuration. Variations in the aggregate size distribution and the pore-size
distribution from the nanometer scale to the decimeter scale manifest as variations in the
behavior of concrete at the macroscopic scale. The macroscopic properties of concrete
such as strength, stiffness, permeability, diffusivity etc. are completely determined by the
heterogeneities in the material [1]. To enable concrete material design that is well-suited
for a specific engineering application, it is important to understand and establish a clear
relationship between the role of the material structure (aggregate distribution, pore-size
distribution etc) and the macroscopic behavior subject to various multiphysical loadings.
However, establishing such a relationship using purely conventional testing methods in
the laboratory is not practical due to the large variety of material compositions that have to
be considered. To address this issue, several modeling and simulation approaches ranging
from continuum micromechanics models [2—4] to mesoscale models (see for e.g. [5-17]), that
take into account the role of the material structure in simulating the material response have
been proposed. It is essential to adequately resolve the details of the material morphology at
a particular scale, such that the relevant mechanisms at this scale can be correctly captured.
Computational mesoscale models explicitly resolve the heterogeneity of the material and
provide deeper insight into the role of the heterogeneity on the material behavior especially
in processes that are governed by localised phenomena such as microcracking and failure
processes. Recently, due to the advancement in computational resources and X-ray
computed tomography (CT), models, in which mesostructures directly incoporated as voxel
data from CT-scans, have been proposed and used for numerical meso-scale simulations
[18-21].

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.
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However, the process of virtually generating the mesostructure is much faster and
cheaper as compared to extracting the microstructure using CT scans, provided, that the
virtualally generated mesostructure provides the same level of detail and information.
Moreover, a method to generate realistic virtual mesostructures would significantly accel-
erate and support simulation models that integrate CT data into their pipelines. The aim
of this paper is to present a tool to generate realistic virtual concrete mesostructures. In
order to generate a virtual mesostructure, inclusions are first generated using a variety of
computational methods and then assembled onto the main mesostructure volume using
certain packing algorithms. Several optimised algorithms have been proposed in the last
two decades for the random packing algorithm, constituting the most basic packing algo-
rithm. Applications include integrated spherical particle kinetics models [22], molecular
dynamics models [23,24], and discrete element models [25,26]. All these algorithms focus
on achieving a maximum packing density for spherical inclusions. With regard to the
inclusion shape (i.e. the aggregates), owing to the complexity involved in simulating
realistic concrete aggregates, the inclusions are often represented by spherical or ellipsoidal
shapes with random orientations embedded in a mortar matrix [8,27-30]. However, as the
shape of the aggregate particle plays an important role in the local stress distribution in the
mesostructure, virtual inclusions with smooth surfaces fail to capture stress concentrations
due to sharp corners in concrete aggregates. To this end, attempts have been made to
generate more realistic cement paste aggregates by employing dodecahedral shapes [31].
Xu et al. [22] used random polyhedrons created by extending triangular fundamentals to
generate aggregates for asphalt mixture. Even though these shapes closely resemble real
aggregates, when actual concrete mesostructures are studied, it is evident that these inclu-
sions still lack important features such as multiple irregular faces and concave depressions
etc. These features in concrete aggregates have been considered in[32] with regards to the
aggregate shape, however restricted to a 2D representation.

In this contribution, a computational tool called Concrete Mesostructure Generator
(CMG) that allows an efficient generation of ultra-realistic concrete mesostructure, is
developed. A Python implementation is available here:https://pycmg.readthedocs.io/
en/latest/. The proposed methodology is calibrated and validated using a variety of data
obtained from laboratory measurements of real concrete specimens. Finally, as an add-on,
and one of the many possible potential applications of CMG, we develop an artificial
neural network ANN model for directly predicting the elastic properties from voxel data
of concrete mesostructures generated by CMG.

2. Concrete Mesostructure Generator (CMG)

The procedure for generating a virtual concrete mesostructure consists of two steps:
a) the generation of realistic concrete aggregate inclusions using irregular polyhedron
geometries with concave depressions and b) the packing of aggregates into the cementitious
mortar (host material). The final mesostructure morphology is represented in terms of
discrete voxels.

2.1. Modeling a Generic Aggregate

Coarse concrete aggregates are characterised by multiple faces, sharp corners, and
irregular surfaces. Even though the shape of aggregates has a strong effect on the stress
concentration, crack initiation, and propagation in concrete [33], often oversimplified
models are used in most numerical analyses. In this work, we aim at modeling the
aggregate topology featuring sharpness, elongation as well as concavity by means of an
irregular polyhedron geometry. The option to include an interfacial-transition-zone (ITZ)
between the aggregate and the mortar matrix is also available. The procedure to generate a
virtual aggregate involves sequential reduction of an initial cuboid to a polyhedron through
slicing operations tangential to an imaginary inscribed ellipsoid as shown in Figure 1 (left).
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Figure 1. Concrete Mesostructure Generator (CMG): 2D section of a 3D polyhedron enclosing an
ellipsoid in CMG (Left), calculation of tangent points between the ellipsoid surface and polyhedron
planes with random angles (Right).

Given the maximum aggregate size D,y in mm, we generate a 3D array of voxels
of dimension ! x | x I. Here, | = Dy, /h and is rounded-off to the nearest integer and
its dimension is [voxels]. The parameter h[mm /voxel] is the resolution of the virtual
mesostructure generated by the CMG. & is used to convert physical dimensions in SI units
into voxels, its value can be set depending on the available computational resources. If
is an even-number, then [ is incremented by one. This is to ensure that the array contains
a mid-point voxel. The voxel at the mid-point of the array at position [(I —1)/2, (I —
1)/2,(1 —1)/2] is set as the origin for a cartesian coordinate system in voxel coordinates.

In order to model flat and elongated aggregates, we introduce the aspect-ratio ¢. Given
the aspect-ratio and the voxel dimensions I, we first inscribe an imaginary ellipsoid with
dimensions ry = 1/2, ry = ry - ¢, r; = rx - ¢. Then, the required number of faces N on the
polyhedron representing the aggregate is specified. Subsequently, N points, denoted by
the position vector X!, which are located on the surface of the inscribed ellipsoid are chosen
randomly (see Figure 1 (right)). The faces of the polyhedron are assumed to be tangential
to the inscribed ellipsoid at these points. Each tangent plane i is defined using a planar
equation which is a function of the point X! and orientation angles ai, /Si, ’yi. The position
vectors X! are determined as

X =P-R-Q-u, i=1,23..N, 1)

with u denoting a unit vector. The rotation operator P with angles 6,,0,, 6, determines
the final orientation of the polyhedron, and the rotation operator Q' with angles 7/,!
and a! determines the orientation of a polyhedron face i. The rotation angles 0y,0,,0, are
chosen randomly, as aggregates in concrete do not in general orient themselves along a
certain axes. R is a matrix that specifies the dimensions of the ellipsoid. All geometrical
operations are performed using real numbers. After having specified the final geometry of
the aggregates, we round-off the real number to the nearest integer that correspond to the
discrete voxel positions. The complete expressions for the operators introduced in Eq.(1)
are given below:

1 re 0 O
u= (0|, R=1|0 r, 0| with ry =1/2, ry=71y-8, rz=71+-¢,
0 0 0 r
cosf, —sinf, 0 costy, 0 sinty 1 0 0
P = |sinf, cosf, Of. 0 1 0 |[.]0 cosBy —sinby|,
0 0 1 —sinthy 0 cosby| [0 sinfy  costy
' cosy!  —siny’t 0 cosBi 0 sinp’] [1 0 ‘ 0
Q' = |siny’  cosy! 0. 0 1 0 |[.]|0 cosat —sinat|,

0 0 1| |—sinp’ 0 cosp'| [0 sina’ cosa’
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where 6y, 6y,6 € [0,27], and &/, B, 7' € [0,27].

In order to perform the imaginary cutting operation (sequential reduction of the
cuboid to a polyhedron), all voxels with position vectors X* are set to one if they satisfy
the following condition:

V. f(x)] - (x*-x)<o0, i=12.,N. )

Here, f(X') = Z:(X]’:/rj)2 —1for j € 1,2,3is the surface of the ellipsoid at X'. The above

expressions are evaluated at all voxel positions. The position of the k" voxel is denoted as
X*. (It should be noted, that X' is rounded to the nearest integer before performing the
calculations.) Figure 1 (left) shows an illustration of a section of the 3D-Array after having
performed the aforementioned operations.

Certain aggregate geometries are characterised by concave depressions, e.g. from
crushing the aggregates during the production process. So far, we have designed a polyhe-
dron whose geometry is described by voxel value = 1 embedded in a matrix material with
voxel value = 0. Certain volumes of the voxel can be sculpted out to introduce concave
depressions. This translates to replacing certain voxels with value 1 that are inside the
volume to be sculpted out to 0. Concave depressions are introduced on the inscribed
ellipsoid using the Gaussian surface equation (see Figure 2, right). The condition for setting
a voxel to zero is specified as

4 X3 Xg+xg X3)
b’exp( (X * * )+Xg*Xg>c for ie1,2,3,.., M, 3)

where ¢ b=d-X, X$=pP-Q X,

where M denotes the total number of concave depressions centered at X'. This equation
implements a gaussian surface below the ellipsoidal surface and checks if the voxel value
is zero or not. Here X' are computed from (Eq.(1)). The width of the gaussian surface is
w, the depth is d and ¢ is the variance parameter (see Table 1 for more details). Concave
depressions are generated on the surface of the imaginary ellipsoid at random locations.

The procedure is as follows: First, M number of positions X’ for the Gaussian surface
are generated. Using these positions, the concave equations (Eq.(3)) are generated with the
input parameters d and w, which control the depth and width of the concavity from the
ellipsoid surface. The voxel values of the points which lie inside the polyhedron and below
the Gaussian surface are changed from zero to one as shown in Figure 2. X' is rounded to
the nearest integer before performing the calculations and X* are the voxel positions.

SEERREEE

Figure 2. Concrete Mesostructure Generator: 2D section of a 3D polyhedron with concave depressions
(Left), calculation of basis points on the ellipsoid surface for the Gaussian surface generation (Right).

A summary of all parameters for the generation of realistic generic aggregates are
provided in Table 1.
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Table 1: Input parameters for the CMG.

Input symbol Input description CMG algorithm
Lx,Ly,LZ Micro/Mesostructure size in mm
Vo Maximum volume fraction of inclusions in micro/mesostructure
{1part} Aggregate size distribution Assembly algorithm
{prm} Volume fraction list
(¢} Aspect ratio list
{N} Number of faces list
{Scon} Concave provision list (Yes/No)
{Siz} Coating provision list (Yes/No)
{d},{w} Width and depth parameter list for the concave depression
{t} Coating thickness list
Kinax Maximum number of failed assembly attempts for each particle
T Threshold to switch algorithm from RSA to SRSA
Diax Maximum size of aggregate
Number of faces of polyhedron A
. ggregate
14 Aspect ratio of the aggregate enerator-Polvhedron
Scon Concave depression boolean (Yes/No) g Y
Sitz ITZ provision boolean (Yes/No)
M Number of concave depressions A
d Depth parameter ggregate
pthp
w Width parameter generator-Concave surface
o2 Variance parameter
t ITZ thickness Aggregate generator-ITZ

In order to include the ITZ as a coating around the aggregate, the thickness t of the
ITZ is the only input. The algorithm uses the same technique as that of the polyhedron
and the Gaussian surface, but with a larger concentric imaginary ellipsoid. The thickness ¢
is added to the polyhedron ellipsoid axes to obtain the coating surface,

re +t/h 0 0
R = 0 ry+t/h 0o |. @)
0 0 r.+t/h

Hence, there will be two sets of concentric polyhedron and Gaussian equations. The final
algorithm checks for all points in the domain first for the outer surface followed by the
inner surface. Voxels at the ITZ are represented with voxel value 2. This methodology can
also be used to enforce a minimum spacing between the aggregates by setting these voxel

values equal to that of the matrix (host) material.

Figure 3 shows aggregate samples generated by the aformentioned procedure. For

Figure 3. Aggregate samples generated by CMG.
a better visualisation, the surface region of the aggregates is smoothed. With multiple
irregular surfaces, different aspect ratios, and concave depressions, it can be seen from these
samples, that the proposed algorithm can generate realistic aggregate geometries. Figure 4
shows aggregates in their original voxel form with and without a layer representing the
ITZ (in red).

Figure 5 shows the effect of the number of polyhedron faces N and the elongation
(1/¢) on the aggregate shape. The aggregate size I of all aggregates is set to 50 voxels.
The elongation varies from 1 to 4, while the number of cuts varies from 10 to 45. The
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(a)

(b)

Figure 4. Visualisation of actual coated polyhedron with maximum length of 2.5 cm (50 voxels),
elongation ratio 2.5 with 30 number of cuts (Left), selected section featuring concave regions of the

polyhedron (Right).

©

aggregates are visualised using the open-source software Paraview using the decimate
filter. By varying the number N of cuts and the aspect ratio ¢, we can obtain different types
of concrete aggregates ranging from smooth-surfaced pebbles to sharp-edged aggregates
that can be spherical, flat or elongated.

Number of cuts

Figure 5. Influence of the number of cuts (N) and the elongation on the aggregate shape. The
elongation corresponds to the value 1/¢.

2.2. Generating a Concrete Mesostructure

Once the aggregate is generated, it is assembled into the concrete mesostructure
with a mortar matrix. The mesostructure includes both the mortar host material and
aggregate inclusions in voxel format. At a given voxel position, the mortar host phase
is represented with value zero and the aggregate phase with a non-zero value. The size
of the voxel domain can be varied based on the requirement of the resolution and size
of the mesostructure. The CMG assembly algorithm first initialises a voxel domain to
the required size (Lx/h, Ly/h, L;/h) rounded to the nearest integer filled with voxels
of zeros representing the mortar host phase. Then, inclusions are generated using the
aforementioned aggregate generation procedure and assembled into the domain. The basic
requirements of a packing algorithm (see for e.g. [34,35]) are as follows: a) Ensuring that the
aggregates do not overlap, b) ensuring random spatial distribution, ¢) providing maximum
packing density, and d) that the mesostructure at the boundaries must be periodic.

The random sequential adsorption (RSA) algorithm [36] is used as the basis for the
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assembly procedure. In this algorithm, starting with the homogeneous voxelised domain,
representing the mesostructure containing only the host phase, inclusions are generated
and randomly placed in the domain. A random location from the 3D domain is identified
and an attempt is made to include an aggregate (also in voxel format) at this location. The
aggregate candidate is embedded into the current domain if there is no overlap of the
aggregates. To check for overlapping, one to one comparison of the voxels between the
inclusion matrix and that of the mesostructure matrix at the proposed assembly location
is made. If all the voxels at the assembly location in the mesostructure matrix have the
value of zero, then assembly is executed. According to the original RSA algorithm, if there
is interference with an already assembled aggregate, a new random point is chosen and
the same procedure is repeated until the particle finds a new position without any overlap
with other aggregates. Once assembled, the same procedure is repeated for the newly
created aggregate inclusion until the required maximum volume fraction of each inclusion
size is achieved. To achieve the fastest possible assembly and higher packing density, the
aggregates are assembled sequentially in a hierarchic manner according to the aggregate
size from largest to the smallest.

As the hosting domain is incrementally populated with aggregates, the probability of
finding free space to embed a new aggregate becomes increasingly small. In the original
(sub-optimal) MATLAB implementation of the model, the RSA algorithm, even though it
generates statistically equivalent mesostructures by randomly distributing the aggregates
in the mesostructure, achieving a packing density of more than 30%, requires a significant
time for computations since the assembly procedure is completely random. Hence, to
achieve a higher packing density in less computation time, the algorithm was modified
from a random to a semi-random assembly algorithm (SRSA). According to SRSA, if the
aggregate to be assembled does not find free space in the current random position, instead
of finding a new random position, the current aggregate is incrementally translated along an
orthogonal plane (either xy, xz, or yz) until the non-overlapping condition fulfilled. SRSA
was four times faster than the RSA algorithm in the Matlab implementation. However,
in the current python implementation available in [37] we observed no significant speed
up as the base code was already significantly improved and optimised. The assembly

Figure 6. (Left) Virtual concrete mesostructure RVEs generated by the CMG. Visualisation of concrete
mesostructures with aggregates only (Center) and visualisation of the mortar matrix (Right).

algorithm also implements periodic boundary conditions. Figure 6 shows typical concrete
mesostructures showing the aggregate phase, the mortar matrix phase and the concrete
mesostructure generated by the CMG. The parameters used to generate this mesostructure
are presented in the following section.

2.3. Data for the calibration of the CMG

At the mesoscale, the internal material structure of concrete is characterised by a
large volume fraction of aggregates (up to 60 - 70 %) of different sizes, embedded in the
cementitious matrix. One of the most conventional aggregate size distribution curves is that
of standard DIN-1045 or the Fuller curves. As a result, a realistic virtual concrete sample
should statistically represent such a distribution. To this end, the concrete standard AB16
(according to DIN-1045) with the largest aggregate size of 16 mm is considered. The voxel
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size is chosen to be 0.5 mm, i.e. the parameter corresponding to the resolutions 1 = 0.5.
Only coarse aggregates of size larger than 3 mm onwards are explicitly resolved. The fine
aggregates are embedded in the hardened cement paste to form the mortar material.

A detailed quantification of aggregate size distribution for AB16, together with the
measurement of elastic properties of the investigated concrete samples were performed
in the laboratory. The aggregates size distribution obtained from the measurements is
summarised in Table 2. This data serves as the direct input for the packing algorithm,
resulting in a total aggregate volume fraction of 48,29% that will be explicitly resolved.

Table 2: The composition of standard AB16 obtained from laboratory measurements.

Ceme.nt Fine aggregates Coarse aggregates

matrix
Size [mm] - 00630125 025 [ 05 | 1 | 2 28 | 4 [ 56 [ 8 [112] 16
Volume fraction [%] | 29.259 [ 1.504 | 1.619 | 1.758 | 1.758 | 3.634 | 12.174 | 5.0626 | 5.146 | 6.743 | 16.606 | 2.904 | 11.832
Total [%] 29.259 22448 48.292
Total [%] 29.259 70.741

The procedure for the calibration of the parameters defining the morphology of the
aggregates is as follows: For each particle, the two most important parameters are the
aspect ratio and the number of faces of the polyhedron N. As it was found, that the
aggregates of larger size exhibit a wider range of aspect ratio, the aspect ratio of aggregates
greater than 8 mm is randomly chosen from 1.75 to 3.25. Similarly, the aspect ratio range of
aggregate sizes from 4 mm to 8 mm is within 2 to 3 and for a size 3 mm is within 1 to 2. The
number N for each size is determined by multiplying the aggregate size (in terms of voxel)
by a factor whose value is either 0.5 or 0.625. It is to be noted that, this range of values was
chosen after performing several trials to obtain a realistic geometry. With regards to the
concave depression in the aggregates, only aggregates larger than 12 mm are assumed to
exhibit such a feature, with the prescribed values of 5 concave surfaces, 3 mm in width, and
2.5 mm in depth per aggregates particle. The variance parameter of the surface was chosen
as ¢ = 10. This choice of the value provided the most realistic concave depressions for the
considered aggregate sizes. For each successful placement of an aggregate, statistical data,
such as volume fraction and number of particles of each size, are recorded as a footprint of
the numerical sample. CMG can also be used as a tool for testing a certain distribution of
aggregates before the actual production of concrete samples.

2.4. Comparison of simulations vs laboratory measurements

In order to test the capability of the method to generate virtual AB16 mesostructures
using the data from previous section, three sample sizes of 5, 10, and 20 cm were considered.
From each sample size, three specimens are generated to capture the possible stochastic
fluctuation of the samples, analogous to experimental practice. The visualisation of each
size is shown in Figure 7, together with the statistical information, number of particles, and
volume distribution with respect to particles size. It can be seen that, in most samples, the
distribution curve is in agreement with the actual grading curve obtained from laboratory
measurements. The average total number of particles for each size are 1039, 7838, 62553
particles. The total volume fraction of these nine specimen range from 47.3 % to 49.95 %
due to the stochastic nature of the random operations, which is acceptable, considering the
computational efficiency and the large number of aggregates.

Figure 8 shows the actual concrete mesostructure image (Left) compared with the
virtual mesostructure image (Right) generated by the CMG. Comparing the aggregate
shapes, orientations, and distributions, the mesostructure image from the CMG and the
actual concrete image are very similar. We can observe in both the images that the particle
shapes range from a almost circular surface to highly elongated sharp-edged surfaces and
that the packing density varies from less concentrated aggregate regions to densely packed
regions. One can also observe concave depressions on the actual concrete image similar
to the CMG mesostructure. Figure 9 shows large-sized virtual concrete mesostructures
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Figure 7. Visualisation of virtual concrete samples of size 5, 10, 20 cm (Top), and their associated
statistical data, namely particle size distribution curve (Center). Absolute volume fraction and
particle counts with respect to size (Bottom).
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Size [mm]
Figure 8. (Left and Center) Qualitative comparison of an actual concrete slice and the statistically
equivalent virtual concrete generated by the CMG. (Right) Statistical data of the cumulative volume
fraction of aggregates (laboratory measurements of AB16 vs. virtual AB16).

according to the AB16 standard with maximum aggregate size of 16 mm.

The time required for generating a mesostructure of resolution 101 x 101 x 101 ona 6
year old Intel(R) Core(TM) i5-4210U CPU @ 1.7GHz laptop for various volume fraction of
aggregates is shown in Figure 9. Computation times are hardware specific and the values
shown here are expected to be the lower bound on the expected time for generating a
virtual mesostructure using PyCMG ([37]).
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Figure 9. (Left) Virtual concrete specimens of size 10 x 10 x 40 cm discretised by 200 x 200 x 800
voxels. (Right) Specimen of size 60 x 60 x 30 cm, constructed by stacking 8 identical periodic blocks
of virtual concrete mesostructures of size 30 x 30 x 15cm .
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Figure 10. Time required to generate a virtual mesostructure using PyCMG ([37]) as a function of the
volume fraction of aggregates on a 6 year old Intel(R) Core(TM) i5-4210U CPU @ 1.7GHz laptop.

3. Estimation of the elastic properties using computational homogenisation

In this section we compute the elastic properties of the virtual AB16 mesostructure
using computational homogenisation and validate the results with data from the laboratory.
First we describe the data for model validation and then we compare this data with model
predictions.

3.1. Data for model validation

In order to validate CMG, a series of tests were conducted to determine the effective
properties of concrete and aggregates. The investigated concrete samples are made of
Portland cement of type CEM 152.5 R with w/c = 0.45 and one type of aggregates (Quartz)
with a maximum size of 16 mm. The Young’'s modulus and Poisson ratio of Quartz
aggregates are measured as 84.6 GPa and 0.12. The measurement of the average Young's
modulus for the concrete samples is obtained from an uniaxial compression test. Two
samples of size 10 cm were loaded using displacement control with a displacement rate 0.1
mm/h. Teflon sheets were placed between the sample and the loading platens to simulate
the frictionless boundary condition. To accurately measure the true axial deformation of
the sample, two external strain gauges (DD1 Displacement Transducers) were installed.
The Young’s modulus was estimated using a linear regression between two points from


https://doi.org/10.20944/preprints202106.0669.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 June 2021 d0i:10.20944/preprints202106.0669.v1

110f18

the stress-strain curve, at 10% and 30% of the maximum compressive stress. Table 3
summarises the data obtained from laboratory measurements.

Table 3: Material properties of concrete and its constituents. [1]-Material parameters of
cement paste is taken from [38]

R(egr;;?], Young[éll,i; (])dulus Poisson’s ratio
Cement paste! 1898 18.7 0.24
Quartzitic aggregate 2560 84.6 0.12
Concrete 2378 48.03 0.15

3.2. Computational Modeling

i

N
)
(A
S

N

(a) Sample 1 (a) Sample 2 (a) Sample 3

Figure 11. Visualisation of virtual concrete samples of size 5 cm used in the homogenisation
procedure.

The elastic properties of the virtual concrete mesostructures are computed by directly
using voxelised data from the CMG in a Lippmann-Schwinger based computational ho-
mogenisation scheme (LS-FFT) ([39]) and a Finite-Cell Homogenisation scheme (FCH)
([40,41]). As the authors have access to both these methods, and as these methods are
highly suited for voxelised data, we decided to use both these methods to compute the
elastic properties of the virtual concrete mesostructure. A total of three virtual concrete
samples of size 5 cm? are generated (Figure 11). The aggregate volume fraction ranges from
49.66 % to 47.74 %, which is slightly higher than the value corresponding to laboratory
measurements. This is a consequence of the preprocessing procedure in the current imple-
mentation. Before assembling the aggregate into the mesostructure, the algorithm loops
over the prescribed list of aggregate sizes starting from the largest aggregate. For each
size, a virtual aggregate is generated, and its volume fraction is computed. Then, the total
number of aggregates in this family is estimated by dividing the total aggregate volume
fraction with the volume fraction of that aggregate sample size. This value is rounded to
the nearest integer as this corresponds to the number of aggregates. Thus, the total volume
fraction of aggregates in the virtual concrete samples with the same prescribed grading
curve would also slightly vary.

The elastic material parameters for the voxels representing the aggregate material
are set to E; = 84.6 GPa and v; = 0.12, taken directly from the laboratory measure-
ments. The material properties of the voxels representing the mortar host are specified
as Eportar = 29.67 GPa and vyortsr = 0.206. These values were obtained using the Mori-
Tanaka homogenisation scheme (see Appendix A for further details).

Table 4 summarises the results of model predictions and the data from laboratory
measurements. The FCH homogenisation was performed using a grid size of 70 cells with
polynomial degree 1 and space-depth value 2. In the FFT based Lippmann-Schwinger ho-
mogenisation, the virtual concrete samples of size 5 cm? are discretised using 201 x201 x201
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Table 4: Comparison of model predictions from two homogenisation methods (LS-FFT and
FCH) and measured data (Lab.) for the elastic properties of concrete.

Vol. Frac. [%] Youngs modulus [GPa] Poisson’s ratio
’ ’ LS-FFT | FCH Lab. | LS-FFT FCH Lab.
Sample 1 49.67 49468 | 51.817 0.1679 0.16
Sample 2 48.73 48.983 | 51.331 | 48.03 | 0.1687 | 0.1607 | 0.15
Sample 3 47.64 48.407 | 50.566 0.1697 0.1621
Average 48.68 48.952 | 51.238 | 48.03 | 0.16876 | 0.16093 | 0.15

voxels with voxel size 0.25 mm. In all cases, the predicted Ej,,,, is slightly over-estimated
but generally still in very good agreement with the data from laboratory measurements.
The Poisson’s ratio is estimated as 0.169 and 0.160 by LS-FFT and FCH respectively. Once
the morphology of a certain concrete mix is fully characterised for a given experimental
mixture, this comparison demonstrates, that the virtual sample generated using CMG is
highly realistic and representative and can provide important insight in computational
simulations of microstructural damage of concrete, where the local behavior (distributed
damage around aggregates) governs the overall behavior of the material.

4. Direct computation of elastic properties

In this final section we explore the potential of training an artificial neural network
using data generated from the numerical simulations for predicting stiffness and the pois-
son ratio of concrete. The aim is to directly predict the elastic properties using virtual
mesostructure data i.e. directly from CMG. Machine learning (ML) techniques have suc-
cessfully established linkages between the microstructure and the macroscopic property of
several materials based on the data acquired from experiments and numerical simulations.
Once trained, the ML model can predict the material properties at speeds comparable to
that of analytical methods. Hashemi et al. [42] used Artificial Neural Networks (ANNs)
along with FEM to perform real-time homogenisation of liver tissue for simulated surgery.
Yang et al. [43] developed structure-property linkages for high phase contrast composites
using a convolutional neural network (CNN). Recently, Rao et al. [44] employed 3D-CNN
to predict macroscopic properties of micro- and mesostructures filled with spherical inclu-
sions. However, efforts to build structure-property relations for concrete with a realistic
representation of its mesostructure are limited. To build a ML model for the direct up-
scaling of concrete mesostructures, a database of realistic mesostructures along with their
corresponding macroscopic properties is essential. To this end, in the following section,
first, the data generation process and architecture of the ML model are explained. Then, the
trained model is verified by comparing the predicted values with results from high-fidelity
simulations.

4.1. Data generation and pre-processing

Assuming concrete to be an isotropic material, a 3D-convolutional neural network is
trained to predict the elastic modulus (Ej,,,) and the Poisson ratio (vj,,,) of concrete directly
from voxel data of the material phases. To train the model, two types of concrete standards,
9 volume fractions, 4 phase contrasts, and 20 samples for each of theses types are used. A
summary of these parameters is given in Table 5. First, 360 mesostructures are generated
using the CMG by varying the underlying standard, the sample count and the volume
fraction according to Table 5. These mesostructures are then homogenised for 4 phase
contrasts using FCH to calculate the elastic modulus and Poisson ratio. Hence, in total,
there are 360 x4 = 1440 data points to train the model. Homogenisation is performed using
a FCH grid size of 40x40x40 cells, since this size has a good trade-off between accuracy
and computational time for the considered volume fractions. Using mesostructures of size
100x100x100 from CMG as inputs and 2 homogenised values from the FCH simulations as
outputs, the 3D-CNN model is trained to learn structure-property relationships. However,
to incorporate phase-contrast information into the input data for the 3D-CNN model, before
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feeding the data to the 3D-CNN model, the mesostructure from CMG is preprocessed to
represent phase-contrast values by the voxel values of the mesostructure. Voxel values of
the aggregates is set to a value corresponding to the phase-contrast value p and the value
of the matrix = 1. Thus, for a mesostructure with phase contrast 4, voxel values at the
aggregate positions are represented by a value 4 and voxels corresponding to the mortar
phase are set to 1.

Table 5: Parameter variations for generating the dataset.

Parameters Values
Standard ABS8, AB16
Sample count 20

Volume fraction vr 0.05,0.1,0.15,0.2,0.25, 0.3, 0.35,0.40, 0.45
Phase-contrast p 2,345
total 2x20x9 x4 = 1440 mesostructures

4.2. 3D-CNN architecture

Training the 3D-CNN model involves choosing a set of parameters (e.g. CNN type,
number of layers, filter size, stride size, activation function, loss function, etc.) depending
on the application. The requirement at hand involves building a link between volumet-
ric features of the mesostructure, such as volume fraction, shape, and distribution of
aggregates, along with phase contrast information, to the elastic concrete properties.

It can be argued that 2D slices can be used to train a 2D-CNN for generating the
structure-property relationship, as this would be much cheaper. However, a 2D image
analysis of virtual concrete mesostructures generated by CMG (Figure 12) shows, that the
volume fraction of the mesostructure can vary up to 10% from the expected value for a
mesostructure of size 100x100x 100 voxels when represented as 2D images. It is observed
that samples of smaller sizes exhibit higher deviation in the 2D volume fraction around its
mean values, in comparison to larger sized samples (see Figure 12). Even though a sample
of 20 cm appears to have a more regular distribution throughout the volume element, a
difference up to 5.2 % is still encountered. Since this would deteriorate the accuracy of the
CNN model and, most importantly, as this is inconsistent with the physics of the problem,
a 3D-CNN model is chosen for our application.
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Figure 12. 2D volume fraction of samples (5,10,20 cm) at different slicing position and the corre-
sponding standard deviation of 2D volume fraction.

In order to choose the optimal parameters for the model, we performed a preliminary
study, based on which we finally selected two 3D convolutional layers with two max-
pooling layers. The architecture of the layers is given in Figure 13 and the corresponding
details are summarised in Table 6. The first convolutional layer has 10 filters of size
10x10x10 and strides of size 3x3x3, the second layer has 20 filters of size 5x5x5 with
strides of size 2x2x2 and one maxpool layer of size 2x2x2 after each convolutional layer.
Following these layers, a flattened layer and two dense layers of size 20 and 2, respectively,
are considered. The final layer is of size 2x1. A Rectified Linear Unit (ReLU) activation
function is employed for all the layers. Optimisation is performed using the stochastic
gradient descent (SGD) algorithm with the mean squared error (MSE) chosen as the loss
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function with learning rate of 0.0005. This 3D-CNN architecture for homogenisation is
implemented using Keras, a high-level neural networks API, using Python 3.7.

RelLU
3D Convolutional (20 Filters)
RelLU
Flatten
Dense layer
RelLU
Dense layer

| 3D Convolutional (10 Filters) |

Input Layers Output

Figure 13. 3D-CNN architecture used for training and prediction of an ML model for predicting the
elastic concrete properties directly from the mesostructure of the material.

Table 6: 3D-CNN architecture

Layer No. Layer details Input size Output size
1 Conv3D, 10 filters (10%), strides (3%), 'ReLU’ 100x100x100x1 31x31x31x10
2 Maxpooling 3D 2% 31x31x31x10 15x15x15x10
3 Conv3D,20 filters (5°), strides (23), 'ReLU’  15x15x15x1 6Xx6x6x20
4 Maxpooling 3D (22) 6Xx6x6x20 3x3x3x20
5 Flattening 3x3x3x20 540
6 Dense layer, '‘ReLU’ 540 20
7 Dense layer 20 2
4.3. Results

Training of the 3D-CNN model was performed on 80 Intel R Xeon R Gold 6148 CPUs.
The total time for training the model was approximately 22 hours for 500 epochs with
batch size of 32. The total dataset of 1440 mesostructures with the corresponding labels (the
elastic properties) is split into 1080, 180 and 180 batches for training, validation, and testing,
respectively. The testing batch is used for testing the performance of the trained model
since these mesostructures are completely unseen by the CNN model during training and
validation. Figure 14 (left) shows how the current 3-D CNN model captures the volumetric
information of the mesostructure in each CNN layer. The accuracy metric i.e. the evolution
of the mean squared error (MSE) vs. epochs is plotted in Figure 14 (right). Since the
errors are mean squared values, in order to achieve a high accuracy in the predictions,
training was carried out up to 500 epochs. According to the graph, the CNN model have
"learned’ the structure-property link in a mere 100 epochs with an exponential learning
trend, however, comparing MSE at 100 and 500 epochs shows, that the error metric value
reduced by almost 50% (from 0.0034 to 0.0015), demonstrating the importance of training
for higher epochs.

Once the model was trained, the macroscopic properties of the new RVEs from
the training set are predicted, and results are compared with actual values from FCH
simulations. The mean squared error (MSE) calculated between the actual results from
FCH simulations and the predicted values from the 3D-CNN are found to be 0.0048,
showing an excellent prediction accuracy. It can also be seen in Figure 15 that the predicted
values from the 3D-CNN are very close to the high-fidelity results obtained from FCH
simulations for all volume fractions (left)) and phase contrasts (right) used in the dataset.
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Figure 14. Visualisation of input slice of mesostructure with outputs from each 3D-CNN layer (Left);
Evolution of the mean squared error (MSE) vs. epochs (Right).
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Figure 15. Comparison of homogenised results from FCH simulations (high-fidelity) and the ML
model (3D-CNN) for various volume fractions (Left) and phase-contrasts (Right).

5. Conclusions

In this paper, we have presented a computational tool, denoted as Concrete Mesostruc-
ture Generator (CMG) for generating realistic virtual mesostructures for application in
computational mesoscale simulations of concrete. CMG is open-source, implemented in
Python and available for all users working on mesoscale analysis of concrete structures. The
results of the virtual RVE’s using the CMG have been validated by comparing the elastic
properties obtained from laboratory measurements with results from two different methods
of computational homogenisation (Finite-Cell Homogenisation and Lippmann-Schwinger
based scheme) of the virtual mesostructures. An excellent agreement was obtained for
both homogenisation methods. Finally, we have developed a 3D-Convolutional neural
network model able to generate the elastic properties directly from virtual mesostructure
images in voxel format. The output from the trained CNN model shows an excellent
agreement with results from computational homogenisation. It is concluded, that the tool
can be used to rapidly estimate the elastic properties of a real concrete mesostructure given
either the design data from specific concrete designs, such a the grading curve, or directly
using data obtained from CT scans in voxel format. The application and use of CMG
in mesoscale models that simulate distributed damage and damage identification using
diffuse ultrasonic waves will be presented in a subsequent publication.
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Abbreviations

The following abbreviations are used in this manuscript:

CMG Concrete Mesostructure Generator
CT Computed Tomography

ANN Artificial Neural Network

1TZ Interfacial-Transition Zone

RSA Random Sequential Adsorption

SRSA Semi-Random Sequential Adsorption

LS-FFT  Lippmann-Schwinger - Fast Fourier Transform based homogenisation
FCH Finite Cell Homogenisation

MT Mori-Tanaka homogenisation

3D-CNN 3 Dimensional Convolutional Neural Network

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent
ReLU Rectified Linear Unit

MSE Mean Squared Error

ML Machine Learning

Appendix A Analytical homogenisation of mortar matrix

As shown in Table 2, a threshold of 3 mm is set to distinguish between coarse and fine
aggregates. Fine aggregates and coarse aggregate are 22,44 %, and 48.292 %, respectively.
Subsequently, a homogenised mortar material consists of 56.59 % cement matrix and 4.,41
% fine aggregates. Fine aggregates are generally modeled as hard spherical inclusion of
stiffness C; and volume fraction ¢;. According to the Mori-Tanaka homogenisation scheme,
the effective stiffness tensor is computed as

CYf = Cp — ¢:C : Ay, (A1)

where C¢/f, C,, denotes the Elasticity tensor of mortar and harden cement matrix. The
so-called Mori-Tanaka concentration tensor A ;7 ; of inclusions i can be computed with the
help of Eshelby solution S. [45]

Ayt = Ap,: (Api +Tdm) ", (A2)
Ap;i=(Cu—C)) 1 :Cp: ((Cu—C;)) 1 Cu —Sy) % (A3)

Using data given in Table 2, Young’s modulus and Poisson’s ratio of mortar with
approx. 43.51% Quartz volume fraction are estimated as:

Emortar = 29.67 GPa,  Vpostar = 0.2058
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