Article

Intercostal Muscles Oxygenation and Breathing Pattern during Exercise in Competitive Marathon Runners

Felipe Contreras-Briceño1,2,4*, Maximiliano Espinosa-Ramírez1, Eduardo Moya-Gallardo1, Rodrigo Fuentes-Kloss1, Luigi Gabrielli1, Oscar Araneda3, and Ginés Viscor2

1 Laboratory of Exercise Physiology, Department of Health Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. Av. Vicuña Mackenna 4860, Zip postal code 7820436; fcontrerasb@uc.cl (F.C.B); maespnosa@uc.cl (M.E.R); eemoya@uc.cl (E.M.) fuentesk@uc.cl (R.F.K).
2 Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain. Diagonal 643, Zip postal code E-08028; fcontrerasb@uc.cl (F.C.B); gviscor@ub.edu (G.V).
3 Laboratory of Integrative Physiology of Biomechanics and Physiology of Effort (LIBFE), Kinesiology School, Faculty of Medicine, Universidad de los Andes, Santiago, Chile. Monseñor Alvaro del Portillo 12.455, Zip postal code 7620001; ofaraneda@miuandes.cl (O.F.A).
4 Advanced Center for Chronic Diseases (ACCDIS). Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. Sergio Livingstone 1007, Zip postal code 838000; fcontrerasb@uc.cl (F.C.B); lgabriel@uc.cl (L.G).
* Correspondence: fcontrerasb@uc.cl; Tel.: 0056 2 23541512

Abstract: The study aimed to evaluate the association between the changes in ventilatory variables (tidal volume (Vt), respiratory rate (RR), and lung ventilation (VE)) and deoxygenation of m.intercostales (ΔSmO2-m.intercostales) during a maximal incremental exercise in nineteen male competitive marathon runners. The ventilatory variables and oxygen-consumption (VO2) were recorded breath-by-breath by exhaled gas analysis. A near-infrared spectroscopy device (MOXY®) located in the right-hemithorax allowed recording SmO2-m.intercostales. To explore changes in oxygen levels in muscles with high demand during exercise, a second MOXY® records SmO2-m.vastus laterallisis. The triphasic model of exercise intensity was used for evaluating changes in SmO2 in both muscle groups. We found that ΔSmO2-m.intercostales correlated with VO2-peak (r=0.65; p=0.002) and the increase of VE (r=0.78; p=0.001), RR (r=0.54; p=0.001), but not Vt (p=0.210). The interaction of factors (muscles X exercise-phases) in SmO2 expressed as an arbitrary unit (a.u) was significant (p=0.005). At VT1 were no difference (p=0.177), but SmO2-m.intercostales was higher at VT1 (p=0.001) and VO2-peak (p<0.001). In competitive marathon runners, the m.intercostales deoxygenation during incremental exercise is directly associated with the aerobic capacity and increased lung ventilation and respiratory rate, but not tidal volume. Besides, it shows less deoxygenation than m.vastus laterallisis at intensities above the aerobic ventilatory threshold.

Keywords: Exercise; Runners; Near-infrared spectroscopy; Respiratory muscles; Respiration.

1. Introduction

During the race, marathon runners use about 75% of oxygen consumption (VO2) and keep lung ventilation (VE) near 80 L·min⁻¹ [1]. This requires the respiratory muscles recruitment (e.g. m.diaphragma, m.intercostales, m.serratus posterior and anterior), leading to an increase in VO2 distributed to these muscles (VO2:30%), which in trained men has proven to reach up to a 10% [2]. This elevated energy cost of breathing (COB) require higher local nutrients and oxygen supply, an aspect that has been reported could diminish blood flow to locomotor muscles, causing intolerance to effort and early end of exercise (metabolic reflex)[2-4].

Different factors are implicated in a high COB by exercise; one theme is the breathing pattern adopted during physical exertion, understood as the relative contribution of Vt and RR to the increase in VE. Few studies have evaluated how the relative changes in these ventilatory variables during exercise could affect the oxygenation of respiratory muscles, a relevant aspect because of the wide variability observed according to the type (running or cycling), duration (short or long-exercise), and intensity (steady-state or incremental) of the physical exercise [5-7].
Evaluating the respiratory muscle’s oxygenation level is difficult due to the complex anatomical arrangement and the considerable variation in muscular recruitment with varying degrees of ventilation. Nevertheless, recently, a new non-invasive method has been proposed to determine the ratio between the supply-to-consumption of oxygen as reflected by muscle saturation (SmO$_2$) evaluated in the m.intercostales, which has great importance in high intensities of exercise; this can be determined by continuous near-infrared spectroscopy (NIRS, 630-850 nm) that measures the changes in oxygenated haemoglobin (O$_2$Hb) and myoglobin (mHb) at a microvascular level [8-10]. In sports science, the changes of SmO$_2$ (deoxygenation, ∆SmO$_2$) during physical effort has been extensively studied in locomotor muscles, with far less attention to respiratory muscles [11-13]. To our knowledge, in competitive marathon runners, it is unexplored how the breathing pattern adopted during physical exertion is associated with SmO$_2$-m.intercostales, a novel aspect requiring attention due to the possible respiratory limitations to exercise that could be modulated by respiratory muscle training.

Thus, the main goal of this study was to evaluate the association between breathing pattern and deoxygenation of the m.intercostales (∆SmO$_2$-m.intercostales) during an incremental physical effort test in competitive marathon runners. Secondly, we aimed to determine the association between oxygen consumption and the relative increase of each ventilatory variable (VE, RR, and Vt), ∆SmO$_2$-m.intercostales and ∆SmO$_2$-m.vastus laterallis. Furthermore, we explore the possible limitation to exercise by comparing the changes between ∆SmO$_2$-m.intercostales, and ∆SmO$_2$-m.vastus laterallis during exercise protocol according to the triphasic exercise intensity model determined by the ventilatory thresholds (VT1 and VT2).

2. Materials and Methods

2.1 Design of study and Participants

A cross-sectional observational study that assessed nineteen healthy male marathon runners (age 22.9±1.9 years; height 173.1±4.2 cm; weight 66.5±6.7 kg; body mass index [BMI] 22.2±2.8 kg·m$^{-2}$; VO$_2$-peak 62.3±4.6 mL·min$^{-1}$·kg$^{-1}$; training volume 125.1±31.4 km·week$^{-1}$), without a history of systemic problems, such as respiratory, cardiovascular, metabolic, musculoskeletal, or neoplastic diseases, or any infectious or inflammatory process, for at least two weeks before measurements (recruitment by convenience). The participants did not consume drugs, antioxidants, or any nutritional support. All the participants were informed of the purpose, protocol, and procedures before informed consent was obtained from them.

2.2 Procedures

The evaluations were done in the Exercise Physiology Laboratory of the Pontificia Universidad Católica de Chile under controlled environmental conditions (room temperature, 20±2°C; relative humidity, 40±2%) and fixed schedule (9:00 to 14:00 hours). All the participants were instructed to avoid physical activity 24 hours before the day of measurement and not to engage in alcohol, caffeine, or other stimulants and food intake for at least three hours before the tests.

2.3 Ergospirometry

The aerobic capacity was assessed by determining the peak oxygen consumption (VO$_2$-peak). This test was performed on a treadmill ergometer (HP Cosmos, Traunstein, Germany) in an incremental exercise until voluntary exhaustion, despite verbal stimuli (respiratory quotient, 1.20±0.05). The exercise protocol consisted of a 3-min rest, 5-min warm-up (8 km·hr$^{-1}$), and subsequent increase of 2 km·hr$^{-1}$ every 150 seconds, until all criteria for stopping the test were met. The treadmill slope throughout the test was fixed at 2%. Heart rate, fingertip oxygen saturation, and ventilatory variables (VE, RR, Vt) were continuously recorded. Ventilatory and spired gas composition data (VO$_2$, VCO$_2$, VE, RR, and Vt) were breath-by-breath obtained using an ergospirometer (MasterScreen CPX, Jaeger™, Germany) and expressed under STPD conditions.

2.4 Triphasic model of exercise intensity determined by ventilatory thresholds
To analyze the changes in the variables measured (SmO\textsubscript{2}, \(\dot{V}E\), RR, and Vt) according to the triphasic model, the ventilatory 1 (VT1) and 2 (VT2) and \(\dot{V}O\textsubscript{2}\)-peak were determined by two experienced and blinded evaluators using the visual method [14]. The VT1 was the initial departure from \(\dot{V}E\) linearity, the beginning of a systematic increase in the ventilatory equivalent of O\textsubscript{2} (\(\dot{V}E\cdot VO\textsubscript{2}\cdot^{-1}\)) and the end-tidal pressure value of O\textsubscript{2} (Pet-O\textsubscript{2}). The VT2 was the secondary increase in \(\dot{V}E\), \(\dot{V}E\cdot VO\textsubscript{2}\cdot^{-1}\), a marked increase in the ventilatory equivalent of CO\textsubscript{2} (\(\dot{V}E\cdot VC\textsubscript{O\textsubscript{2}}\cdot^{-1}\)) and a decrease in the pressure value at the end of CO\textsubscript{2} expiration (Pet-CO\textsubscript{2}) during exercise, above VT1 [15]. In case of a discrepancy between the two evaluators, the opinion of an experienced third blinded evaluator was possible, accepting as the definitive criterion that point at which at least two evaluators agreed [16]. However, none of the cases revealed differences between the two evaluators in this study. Regarding \(\dot{V}O\textsubscript{2}\)-peak, the highest value of the last 30 seconds obtained during the incremental maximum effort test was considered, based on established criteria for the determination [17].

2.5 Measurement of SmO\textsubscript{2}

During the protocol, muscle oxygen saturation (SmO\textsubscript{2}) was non-invasively evaluated using the monitor MOXY® (Fortiori Design LLC, MN, USA), which emits light waves close to the infrared range (Near-Infrared Spectroscopy, NIRS (630–850 nm)) from diodes to the surrounding tissue and records total haemoglobin (THb) and myoglobin (mHb) concentrations at the microvascular level [9]. This device records the amount of light that returns to two detectors placed 12.5 and 25.0 mm from the source, thus locally recording SmO\textsubscript{2} through the interpretation of THb and mHb levels [18]. The SmO\textsubscript{2} data were recorded using the PeriPedal® software (PeriPedal, IN, USA) with sample frequency at 2 Hz [19]. The light penetration depth is half of the distance between the emitting source and the detector (±12 mm) [19]. To determine the SmO\textsubscript{2}-m.intercostales, a MOXY® device was located in the seventh intercostal space of the anterior axillary line of the right hemithorax [20]. A second MOXY® device was placed 5 cm lateral to the midpoint of the imaginary line between the upper edge of the patella and the greater trochanter of the right femur [20]. The position of both MOXY® devices was attached to the skin using the material suggested by the manufacturer, in addition to extra fixation with a cohesive band on the surroundings of the measurement zone, avoiding excessive compression that could alter the SmO\textsubscript{2} record (similar to that used in our previous study) [20]. Figure 1 illustrates the positions of the NIRS devices.

![Figure 1](image)

Figure 1. Placement of the muscle oximetry NIRS devices in the thorax (m. intercostales) and leg (m. vastus lateralis).

2.6 Breathing pattern

To facilitate the interpretation of the breathing pattern of each participant (corresponding to changes in ventilatory variables (\(\dot{V}E\), RR, and Vt) during the exercise protocol), a standardization of the obtained values was performed by
transferring them to arbitrary relative units considering the number of times that each variable increased from rest (taken as the unit (1.0) reference value) to \(\dot{V}O_2 \)-peak phases (n° times = [ventilatory variable value at \(\dot{V}O_2 \)-peak phase – ventilatory variable value at rest phase] \cdot \) ventilatory variable value at rest phase\(^{-1} \)).

2.7 Data analysis

The registration of the variables monitored by using the ergoespirometer and the SmO\(_2\) devices was synchronized. Each participant had an initial record of 90 seconds in the bipedal position, followed by 180 seconds corresponding to the resting phase. The values of ventilatory variables (\(\dot{V}E, RR, \) and \(Vt \)) and SmO\(_2\) considered for calculations correspond to the average of the last 30 seconds of each phase recordings. The maximal deoxygenation (\(\Delta \)) corresponds to (SmO\(_2\) at rest - SmO\(_2\) at \(\dot{V}O_2 \)-peak) \cdot (SmO\(_2\) at \(\dot{V}O_2 \)-peak\(^{-1} \)) (%). To compare the SmO\(_2\) in the muscle groups assessed during the exercise protocol, the data was expressed as an arbitrary unit (a.u) where the value of SmO\(_2\) obtained at the rest phase was considered the maximum or 1, values obtained in other phases were expressed as a ratio (e.g. SmO\(_2\)-m.intercostales at VT1 (a.u) = SmO\(_2\) at VT1 (%) \cdot SmO\(_2\) at rest\(^{-1} \) (%)). These methods of expressing muscle oxygenation are used because SmO\(_2\) values present variability between muscle groups mainly since their analysis includes both haemoglobin and myoglobin quantification (myoglobin level has been reported to correspond to between 30 to 50% of the signal on different muscles) [21], whose concentration is variable depending on the morphofunctional and structural characteristics (such as capillarization and skeletal muscle fiber type composition) of the different muscle groups in each athlete.

2.8 Statistical analysis

Data normality was checked using the Shapiro-Wilk test. The association of \(\dot{V}O_2 \)-peak, the relative increase of \(\dot{V}E, \) RR, and \(Vt \) (breathing pattern), and \(\Delta SmO_2 \) at m.intercostales and m.vastus laterallis were assessed using the Pearson correlation coefficient. Two-way ANOVA test allowed to compare the SmO\(_2\) (a.u) levels between muscles assessed among different exercise protocol phases (VT1, VT2, and \(\dot{V}O_2 \)-peak) when the interaction of the factors (muscles x exercise phases) was significant (\(p<0.05 \)). Subsequent multiple comparisons were analyzed used the Tukey post-hoc test. The level of significance for all analyses was \(p<0.05 \). The statistical software used was GraphPad Prism 7.0 (San Diego, California, USA).

3. Results

The values of SmO\(_2\) (%) (m.intercostales and m.vastus laterallis), total haemoglobin (THb), and ventilatory variables (\(\dot{V}E, RR, \) and \(Vt \)) are shown in table 1.
Table 1. Oxygen consumption, muscle oxygen saturation, total hemoglobin, and ventilatory variables in the different phases of exercise (n=19).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Rest</th>
<th>VT1</th>
<th>VT2</th>
<th>VO₂ peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean ± SD</td>
<td>mean ± SD</td>
<td>mean ± SD</td>
<td>mean ± SD</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>95% CI</td>
<td>95% CI</td>
<td>95% CI</td>
</tr>
<tr>
<td>VO₂ (mL·kg⁻¹·min⁻¹)</td>
<td>6.35 ± 0.75</td>
<td>31.30 ± 4.15*</td>
<td>52.01 ± 3.91*</td>
<td>62.32 ± 4.65*</td>
</tr>
<tr>
<td></td>
<td>[5.99 - 6.71]</td>
<td>[29.3 - 33.3]</td>
<td>[50.1 - 53.9]</td>
<td>[60.2 - 64.7]</td>
</tr>
<tr>
<td>SmO₂·m.intercostales (%)</td>
<td>74.6 ± 10.7</td>
<td>65.1 ± 12.6*</td>
<td>52.9 ± 11.4*</td>
<td>35.2 ± 12.8*</td>
</tr>
<tr>
<td></td>
<td>[69.5 - 79.8]</td>
<td>[59.0 - 71.2]</td>
<td>[47.5 - 54.8]</td>
<td>[28.9 - 41.3]</td>
</tr>
<tr>
<td>∆SmO₂·m.intercostales (%)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>53.4 ± 13.9*</td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>[46.7 - 60.1]</td>
</tr>
<tr>
<td>SmO₂·m. vastus lateralis (%)</td>
<td>63.2 ± 10.9</td>
<td>48.7 ± 9.6*</td>
<td>36.1 ± 10.2*</td>
<td>17.1 ± 7.5*</td>
</tr>
<tr>
<td></td>
<td>[58.0 - 68.4]</td>
<td>[44.0 - 53.3]</td>
<td>[31.2 - 41.0]</td>
<td>[13.4 - 20.6]</td>
</tr>
<tr>
<td>∆SmO₂·m.vastus lateralis (%)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>72.4 ± 13.5*</td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>[46.1 - 60.1]</td>
</tr>
<tr>
<td>THb·m. intercostales (g·dL⁻¹)</td>
<td>12.4 ± 0.5</td>
<td>12.4 ± 0.5</td>
<td>12.4 ± 0.5</td>
<td>12.3 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>[12.2 - 12.6]</td>
<td>[12.2 - 12.7]</td>
<td>[12.2 - 12.7]</td>
<td>[12.0 - 12.6]</td>
</tr>
<tr>
<td>THb·m. vastus lateralis (g·dL⁻¹)</td>
<td>12.6 ± 0.4</td>
<td>12.5 ± 0.4</td>
<td>12.4 ± 0.4</td>
<td>12.6 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>[12.4 - 12.8]</td>
<td>[12.3 - 12.7]</td>
<td>[12.3 - 12.7]</td>
<td>[12.3 - 12.9]</td>
</tr>
<tr>
<td>VE (L·min⁻¹)</td>
<td>10.4 ± 2.5</td>
<td>43.2 ± 10.2*</td>
<td>99.5 ± 18.1*</td>
<td>158.8 ± 18.9*</td>
</tr>
<tr>
<td></td>
<td>[9.2 - 11.6]</td>
<td>[38.3 - 48.2]</td>
<td>[90.7 - 108.2]</td>
<td>[149.7 - 167.9]</td>
</tr>
<tr>
<td>RR (bpm)</td>
<td>13.1 ± 1.7</td>
<td>25.3 ± 7.6*</td>
<td>40.7 ± 6.7*</td>
<td>59.3 ± 6.4*</td>
</tr>
<tr>
<td></td>
<td>[12.5 - 14.4]</td>
<td>[24.2 - 30.0]</td>
<td>[40.0 - 46.8]</td>
<td>[57.4 - 64.5]</td>
</tr>
<tr>
<td>Vt (L)</td>
<td>0.81 ± 0.20</td>
<td>1.75 ± 0.41*</td>
<td>2.47 ± 0.43*</td>
<td>2.71 ± 0.45*</td>
</tr>
<tr>
<td></td>
<td>[0.70 - 0.87]</td>
<td>[1.59 - 1.88]</td>
<td>[2.25 - 2.56]</td>
<td>[2.49 - 2.81]</td>
</tr>
</tbody>
</table>

Data are presented as mean ± standard deviation, plus 95% confidence interval. *: p<0.05 (R.M-ANOVA-test, statistically difference with previous phase)

VO₂: Oxygen consumption; SmO₂: muscle oxygen saturation; ∆SmO₂ (%): ((SmO₂ at rest phase - SmO₂ at VO₂ peak phase) · (SmO₂ in VO₂ peak phase)) / 100; THb: total haemoglobin; VE: lung ventilation; RR: respiratory rate; Vt: tidal volume.

Correlations

The VO₂ peak had a moderate association with the number of times that increased VE (r=0.66, p=0.001) and RR (r=0.53, p=0.001), but not with changes in Vt (p=0.540) (Figure 2).
The ΔSmO₂-\textit{m.intercostales} had a moderate association with \(\dot{V}O_2 \text{peak} \) (\(r=0.65, p=0.002 \)) and ΔSmO₂-\textit{m.vastus lateralis} (\(r=0.61, p=0.005 \)). The ΔSmO₂-\textit{m.vastus lateralis} correlated with \(\dot{V}O_2 \text{peak} \) (\(r=0.61, p=0.005 \)) (Figure 3).

Figure 2. Association between \(\dot{V}O_2 \) (oxygen consumption) with the number of times that increase: a) \(\dot{V}E \) (lung ventilation), b) RR (respiratory rate), and c) Vt (tidal volume).
Figure 3. Association between VO₂ (oxygen consumption) with: a) ∆SmO₂-m.intercostales and b) ∆SmO₂-m.vastus lateralis. c) Association between ∆SmO₂-m.intercostales with ∆SmO₂-m.vastus lateralis.

Finally, ∆SmO₂-m.intercostales had a high association with the number of times that increased VE (r=0.78, p=0.001), and moderate with RR (r=0.54, p=0.001), but did not correlate with changes in Vt (p=0.210) (Figure 4).
Figure 4. Association of ΔSmO$_2$-m.intercostales with the number of times that increase: a) $\dot{V}E$ (lung ventilation), b) RR (respiratory rate), and c) Vt (tidal volume).

Triphasic model of exercise intensity and SmO$_2$

The interaction of factors (muscles X protocol phases) in SmO$_2$ (a.u) was significant ($p=0.005$). At VT1 were not difference ($p=0.177$), but SmO$_2$-m.intercostales was higher at VT1 ($p<0.001$) and $\dot{V}O_2$-peak ($p<0.001$). Regarding comparison to rest phase, the SmO$_2$-m.intercostales was a difference in the VT2 ($p<0.001$) and $\dot{V}O_2$-peak ($p<0.001$) but not in VT1 ($p=0.122$). While in SmO$_2$-m.vastus laterallis, regarding rest was difference in VT1 ($p=0.001$), VT2 ($p<0.001$) and $\dot{V}O_2$-peak ($p<0.001$) (Figure 5).
4. Discussion

The purpose of this study was to evaluate the association between deoxygenation of m.intercostales (ΔSmO₂-m.intercostales) and breathing pattern adopted during maximal effort in competitive marathon runners. Our main finding is that ΔSmO₂-m.intercostales was associated with the number of times that increased the VE and RR (Figure 4a and 4b), but not with Vt changes (Figure 4c). This implies that a breathing pattern determined mainly by RR increase induces higher deoxygenation in m.intercostales. We observed that relative changes in VE, RR, and ΔSmO₂-m.intercostales were directly associated with VO₂-peak (Figure 2a, 2b, 3a). In other words, as expected, as lung ventilation increases, the cost of breathing and oxygen consumption also rises, thus favoring the process of lung diffusion and blood transport of oxygen to the tissues [1].

Concerning the associations found, it has been reported that a breathing pattern driven by higher RR leads to a more significant work of breathing (WOB) than increasing Vt [22]. This seems likely because it has been shown that RR linearly rises with the increase of intensity of exercise, which gives it a fundamental role in the evaluation and prescription of physical exercise, given its high correlation with the Perceived Effort Scale (RPE, r=0.74) [23]. Physiologically, this aspect could be explained because at a high intensity of exercise, once Vt reaches 50-60% of the vital capacity, the increase in VE could be necessarily achieved mainly by increasing RR, thus implying an exponential increase in work of breathing above VT2, due to the lung mechanical compliance that limits the increase in Vt. It is also well known that after VT2, recruitment of the respiratory accessory muscles starts. Therefore, it seems plausible that SmO₂ will decrease, thus showing a tight association with the increase in RR [3]. Thereby, at high exercise intensities, after the exponential increase in RR, there is an increased imbalance in the oxygen supply/consumption relationship into accessory respiratory muscles, demonstrated by the direct association between ΔSmO₂-m.intercostales and the number of times that RR increased.

We also found that the maximum changes (ΔSmO₂) in the m.intercostales and m.vastus laterallis during exercise directly correlate with VO₂-peak (Figure 3a and 3b). Therefore, athletes who showed better aerobic capacity were those who more decreased the O₂ supply/consumption relationship, reaching the highest energy costs in both locomotor and respiratory muscles (ΔSmO₂-m.intercostales and ΔSmO₂-m.vastus laterallis). These findings agree with those previously reported separately in locomotor and respiratory muscles [18]. Moreover, we found a moderate association of maximum SmO₂ changes between muscle groups (Figure 3c). This is consistent with our previous results, where we found a direct association between SmO₂-m.intercostales and SmO₂-m.vastus laterallis in marathon runners, although in such study, the variables were presented as absolute values (%) and not as relative maximal changes (ΔSmO₂) [20]. Furthermore, this seems to be consistent with the physiological responses reported in competitive athletes. In this regard, it has been discussed that in athletes, in addition to central cardiovascular adaptations, other peripheral adaptations are present such as increased conduit artery size, including enlargement of epicardial arteries and those supplying skeletal muscle [24]. However, this appears to be a systemic adaptation more than a local effect, and further studies are required, which could help to explain why in marathon runners, the ΔSmO₂-m.intercostales and ΔSmO₂-m.vastus laterallis are so closely associated at high-intensity exercise levels.
Interestingly, the oxygenation decrease was more significant in locomotor muscles than in respiratory muscles (Figure 5). Therefore, deoxygenation of respiratory muscles does not appear to be a limiting factor of maximal exercise, although it could compete for oxygen supply and thus restrict to some extent for a better O\(_2\) supply/consumption relationship of great locomotory groups such as *m.vastus lateralis* during physical exercise. This approach, and their quantification, requires further study since it has been shown that elite marathon runners present a respiratory limitation to exercise (expiratory flow limitation and high WOB levels) [1, 25], which could be reflected in higher \(\Delta SmO_2\)-*m.intercostales*. Unfortunately, this study’s lack of local blood flow measurements does not allow us to identify whether \(\Delta SmO_2\) variation could be due to the local O\(_2\) delivery or consumption components.

Another novel result in this study is that SmO\(_2\) and THb in both muscle groups showed similar results. SmO\(_2\) decreased in VT1, VT2, and \(\text{VO}_2\text{peak}\) phases compared to rest levels, whereas THb did not change (Table I). These data are consistent with previous reports, confirming the replicability of our exercise protocol [20]. It could be hypothesized that the change in breathing pattern during an incremental exercise in our participants, both before and after reaching VT2, could optimize to the \(\Delta SmO_2\)-*m.intercostales*. Recent reports argue that among the multiple stimuli that cause the increase in VE is the involvement of a “central command” that would allow voluntary control of RR and Vt ventilatory pattern changes. This ability can be trained, ensuring a better O\(_2\) delivery/demand relationship to the locomotor musculature to improve aerobic capacity and sports performance by adjusting the changes in ventilatory response according to the exercise modality [26, 27].

On the other hand, respiratory muscle training could also be an option to optimize oxygenation of respiratory muscles by decreasing \(\Delta SmO_2\)-*m.intercostales*. Concerning this, it has been reported in patients with chronic heart failure (HF) that eight weeks of respiratory muscle training reduced deoxygenation at *m.intercostales* [28]. A possible reason for these results could be attributed to the pathophysiological context of the high basal COB of these patients. In athletes, they found similar results in cyclists after an inspiratory muscle training (IMT), but not during endurance exercise, only at moderate-to-heavy inspiratory loading trials [29]. This study in professional women football players found a decrease in *m.intercostales* oxygenation levels during an incremental exercise after six weeks of IMT [30]. According to this evidence, it could be interesting to investigate the effect of respiratory training on the \(\Delta SmO_2\)-*m.intercostales* during exercise, both in clinical and sports environments employing devices based on different rationale (e.g. inspiratory thresholds, Spirotiger®), to explore changes in the breathing patterns adopted during a physical effort that could influence on the physical performance.

As a limitation of this study, we declare the non-evaluation of adipose tissue at the sites where the portable NIRS devices were placed. So, it was impossible to determine the precise depth of the muscle groups evaluated, making it challenging to assess SmO\(_2\). However, our participants were athletes with a BMI of 22.2±2.8 kg·m\(^{-2}\), and we consider they have a low percentage of subcutaneous adipose tissue, thus minimizing the possibility of incorrect SmO\(_2\) lectures. Also, we consider that it would have been desirable to record oxygenated and deoxygenated hemoglobin levels, thus allowing us to assess the blood flow in the involved muscles. This could help us know if the changes at SmO\(_2\) consequences of excessive oxygen demand or insufficient delivery, or both were.

In future studies, we believe it is essential to incorporate sportswomen as subjects. It is unknown whether there are differences in \(\Delta SmO_2\)-*m.intercostales* in comparison to men. Although there are data that report sex differences when assessing \(\text{VO}_2\text{peak}\) at the level of respiratory muscles [30], women showed higher values at submaximal and maximal intensity. Unfortunately, the protocol applied to evaluate respiratory oxygen consumption was not like that used in the present study, preventing extrapolating the results.

5. Conclusions

The deoxygenation of *m.intercostales* during incremental maximal exercise in competitive marathon runners is directly associated with the respiratory rate but not with changes in tidal volume, thus suggesting that the breathing pattern adopted during physical exercise could play an important role in athletic performance. The deoxygenation of the *m.vastus lateralis* was more significant than *m.intercostales* at intensities above the aerobic ventilatory threshold. This aspect should be investigated by the possible implicate effect of metabolic reflex as a limitation to exercise progression. This study also ratifies the use of portable NIRS devices in the accessory respiratory muscles as a novel way to quantify the local oxygen supply/consumption relationship during maximal effort.

Supplementary Materials: None.

Funding: This research received no external funding. The authors received financial support for translating to the English language from Pontificia Universidad Católica de Chile.

Institutional Review Board Statement: This study was approved by the ethics committee of the Pontificia Universidad Católica de Chile (Institutional Review Board, protocol number 180305007, date of approval: 05/06/2018). The study was carried out according to the Declaration of Helsinki for human experimentation, and we confirm that the study meets the journal’s ethical standards.

Informed Consent Statement: All the participants were informed of the purpose, protocol, and procedures before informed consent was obtained from them.

Data Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request (Felipe Contreras, fcontrerasb@uc.cl)

Acknowledgments: All participants of this study and Mr. Guido Rodriguez, Mr. Felipe Araya, and Mr. Santiago Riquelme for technical support in measurements done at Laboratory of Exercise Physiology from Pontificia Universidad Católica de Chile.

Conflicts of Interest: The authors declare no conflict of interest.

References

