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Abstract:  

As a risk factor, obesity is a threat to human well-being and related metabolic disorders such as 

diabetes mellitus and dyslipidemia. adipogenesis is defined as the proliferation and maturation of 

adipocyte predecessor cells to adipocyte. As the adipogenesis process decides adipocyte 

production, it may be considered a therapeutic target for obesity and obesity-related disorders.  

White adipose tissue abnormal expansion increases the size and number of adipocytes. For that 

reason, this review aims to spot the molecular mechanisms implicated in adipogenesis that lead 

to application in the therapeutic targets.  
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Introduction 

Globally, about 39 % and 13% of adults are overweight, obese, respectively (1, 2). As obesity 

has a strong relation with metabolic disorders as diabetes mellitus. It is considered a key factor 

for human well beings (3). Reactive oxygen species excessive production and malfunction of the 

antioxidant system lead to an increment in oxidative stress level, which is coupled with obesity 

(4)  

In addition to energy storage, adipose tissue also considered an endocrine organ that produces 

adipokines, which involved in reactive oxygen species, ant-oxidative ability, and secretion of 
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pro-inflammatory cytokines. Therefore, obesity stimulates the oxidative stress level via chronic 

inflammation, mitochondrial oxidation of fatty acids, and over-utilization of O2 metabolism (5). 

As a risk of obesity and obesity-related disorders, focusing on bodyweight controlling 

mechanisms has a key health advantage. The mechanism of obesity is still inadequately 

documented, and there are very few valuable treatment options for obesity deterrence strategies 

(6). 

In adipocytes, energy is stored in the form of lipids. Unwarranted storage of adipose tissue leads 

to obesity. As a tissue, adipose tissues are classified as brown and white adipose tissues, which 

involved in energy balance via lipid homeostasis and thermogenesis regulation during cold stress 

conditions, respectively. Uncharacteristic extension of white adipose tissue related to obesity 

involves hypertrophy and hyperplasia in adipocytes. Too much storage of fat by itself does not 

damage the adipose tissue function. However, if the amount of fat accumulated beyond the 

adipose tissue storage capability, it may be deposited in other organs like the liver and kidney, 

which interferes with their functions. As the obesity progression increases, adipose tissue turns 

out to be more inflamed, deteriorating the white adipose tissue functionality suppleness, which 

results in metabolic imbalance such as lipidemia (7-10). 

 

 

 

 

 Adipogenesis modulators as options of  obesity treatment  

As a complex process, adipogenesis is the conversion of pre-adipocytes to mature adipocytes. 

Since about 10 % of body fat cells need restoration per year, adipogenesis is a key physiological 

process to refurbish adipose tissue's anatomical nature (11). 

In the adipogenesis process, the pluripotent cells transformed into unipotent pre-adipocyte, and 

then pre-adipocytes specialized into mature adipocytes.  As it is known in an embryological 

description, the pluripotent cells are the origin for all cells through Signaling molecules the 
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pluripotent cell related to preadipocytes undergo anatomical and physiological changes so as to 

prevent differentiation to other cell types (12). 

To conduct research on adipose tissue anatomy, the 3T3-L1 cell lines used as a model, which 

indicate the conversion of pre-adipocytes into mature fat cells. Through the activation of the pre-

adipogenic factor, the 3T3-L1 cell lines undergo a structural change and revealed a gene 

expression profile in white adipose tissue (13). 

In in vitro research work, the adipogenesis process passes in four phases of growth seize, mitotic 

clonal expansion, early differentiation, and late differentiation (14). 

Following the growth arrest of 3T3-L1 pre-adipocytes, the pre-adipocytes specialization is 

tempted via hormones insulin, which promotes cells to engage in glucose utilization and store as 

fat, and dexamethasone, which encourage genes that have roles in the activation of transcription 

factors in adipogenesis (15-17). 

Mitotic clonal expansion is an essential precondition for pre-adipocyte differentiation. 

Throughout Mitotic clonal expansion, cells are inhibited from engaging into the S- phase of cell 

division. Therefore, the pre-adipocytes differentiation would be interrupted via the regression of 

transcription factors expression and regulators of adipogenesis (18) 

To unwind the double-stranded DNA, via cell mitosis, the transcription factors can easily access 

the genes concerned in the differentiation process. Thus, sustaining cells at a certain checking 

point of cell division phases might be considered as a successful option to prevent adipogenesis 

progression (19). 

In the early preadipocytes differentiation, the preadipocytes have circular in shape, while in the 

terminal preadipocytes differentiation rather than round in shape; there are also maturities in 

function as metabolic activation for protein section, lipid synthesis, adipocytes functional 

modifications (Figure 1)(20). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 June 2021                   doi:10.20944/preprints202106.0620.v1

https://doi.org/10.20944/preprints202106.0620.v1


 

Figure 1 various steps of molecular modulators of activation for adipogenesis that showed 

therapeutic options for obesity 

 

 

To sum up, in different stages the adipogenesis is stringently controlled through the 

transcriptional factors cascade like a transient high expression of CCAAT/enhancer-binding 

proteins, C/EBPδ, C/EBPβ,  C/EBPα.  Therefore, these factors considerately encourage the 

differentiation and stimulation of many adipocyte-specific genes, together with lipoprotein 

lipase, adipocyte protein 2, fatty acid synthase, and perilipin in the final stage of differentiation 

(21). 
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Transcription Factors in Adipogenesis 

Transcription factors are vital to modulate the adipogenesis process. Of these, 

CCAAT/Enhancer-Binding Proteins C/EBPβ, and C/EBPδ are the primary transcription factors 

induced immediately after prompt in adipogenic combination. The presence of transcription 

factor, C/EBPβ, in the nucleus makes easy of DNA-binding and leads to transcriptional process 

activation of PPAR and C/ EBPα (22). However, the C/EBPβ level decreased nucleus, and then 

DNA –binding interrupts and leads to interference of gene expression in C/EBPα and PPAR (23). 

Therefore, the eccentricity of the transcription factor, C/EBPβ, possibly will be a key prospective 

target for obesity therapeutic options, as its early transcription factors handling prevent the 

next cascade, and the repress final adipocytes specialization. Moreover, there are also C/EBP 

subsets, as a homologous protein that Integration with C/ EBPα and C/EBPβ, it forms a 

heterodimer, which not involves in bind DNA. So it prevents gene expression in the 

adipogenesis process (24) 

Peroxisome Proliferators-Activated Receptor γ  

As a gene expression control factor, PPARγ modulates adipogenesis, lipid metabolism, and 

inflammation processes. And also, its isoform, PPARγ2, is plentifully activated in the adipose 

tissue, and it is vital for the adipogenesis process (25). Therefore, PPARγ is a target for obesity 

therapeutic options. 

As a Heterodimer, the PPARγ attaches to an explicit DNA sequence with the retinoid X receptor 

and controls the intention transcription of genes (26). 

Studies illustrated that insulin and corticosteroid provokes the activation of PPARγ mRNA 

whereas TNFα suppresses the activation of PPARγ (27, 28)  

Cell Signaling mechanisms in adipogenesis 

In adipogenesis physiological processes, there are many cell signaling transduction mechanisms 

includes bone morphogenic protein signaling, Hedgehog signaling, AMP-activated protein 
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kinase pathways, Wnt signaling pathways, the insulin, and protein kinase B, and mitogen-

activated protein kinase pathways. 

PI3K/AKT and MAPK/ERK Signaling Pathways  

During the early phases of pre-adipocytes differentiation, the hormonal stimulation cocktail 

triggers PI3K/AKT and MAPK/ERK signaling transduction pathways. Within a cytoplasm of the 

cell, the MAPK pathway system is imperative for modulating cell proliferation and specialization 

while ERK expression is vital for the stimulation of mitotic clonal expansion and 

adipogenesis(29). In 3T3-L1 cell lines of preadipocytes, the suppression of the PI3K/AKT 

pathway system prevents adipogenesis (30) 

Conversely, a range of researches revealed that the PPAR is phosphorylated via MAPK pathways 

and decreases its transcriptional commotion and that activation of MAPK upset 3T3-L1 

adipocytic differentiation (31). 

Therefore, comprehensible clarification of MAPK/ERK signaling pathway sound effects on 

adipogenesis possibly will supply therapeutic targets obesity.  

Wnt/β-Catenin Signaling Pathways 

Wnt signaling pathways prevents the expression of PPARγ and C/EBPα that reserves the 

adipocytes precursor cells, preadipocytes, in an undifferentiated stage rather than to being 

mature adipocytes. As a physiological mechanism, Wnt signaling deregulation division, and 

interrupting PPARγ and C/EBPα expression, inhibits adipogenesis. Therefore, disruption of Wnt 

signaling leads to the adipogenesis process (32). 

The phosphorylated glycogen synthase kinase deteriorates the β-catenin that represses the 

Wnt signaling. However, the Wnt signaling endorses β-catenin constancy location, grounds the 

interruption of C/EBPα and PPARγ. Hence, the β-catenin stability via wnt signaling is a key 

target for adipogenesis prevention (33) 

AMP-Activated Protein Kinase Signaling Pathway 
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When the cellular ATP concentration level is minimal, through the phosphorylation process 

there is the activation of AMPK, enhances fatty acid oxidation, and prevents fatty acid synthesis 

(10). As AMPK prevention of energy-consuming process as of adipogenesis, it can be used as 

one of the options for obesity therapeutic target site(34). Furthermore, an adipogenic inhibition 

effect of AMPK is arbitrated by repressing the PPARγ through modulation of p38 MAPK, which 

enhances PPAR phosphorylation and holds back the transcriptional role (35). 

Bone Morphogenic Protein Signaling Pathway 

As superfamily members of TGF-B factors, BMPs exhibit wide-ranging impacts on adipogenesis 

mechanisms. Hence, Generally, TGF-β interrupts the premature adipocytes specialization via 

networking with C/EBP and suppresses transcriptional motion (36) 

The bone morphogenic protein subfamily phosphorylates R-Smads, which binds to Smad 4, 

promotes the transcriptional role of the Smad protein in the nucleus. BMPs can also activate 

the p38MAPK signaling cascade, which regulates mitochondrial biogenesis and glucose 

utilization (44). Moreover, BMP-2 activated to unregulated PPARγ (37). 

 Hedgehog Signaling Pathway 

The activation of the Hh signaling path impairs adipogenesis and lipid storage.  The adipocyte 

differentiation is downregulated. Hh protein inhibits adipogenesis by reducing the expression of 

C/EBPα, PPARγ, and aP2, whereas inhibition of Hh signaling using increases adipogenic 

differentiation in 3T3-L1 (38). 

Other Regulators of Adipogenesis  

Positive and negative Regulators of Adipogenesis  

As revealed in table 1 and 2, there are many factors are identified as positive and negative 

regulators of adipogenesis.  

Table 1: positive molecular regulator of adipogenesis  
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KLF: 

Kruppel-Like Factor Family, SREBP1: Sterol Regulatory Element-Binding Protein 1, CREB: Cyclic 

AMP Response Element-Binding Protein, ZFP423: Zinc Finger Protein 423, FXR: Farnesoid X 

Receptor, LPL: lipoprotein lipase, AP2: adipocyte protein 2, FAS: fatty acid synthase, PPARy 

Peroxisome Proliferators-Activated Receptor γ 

 

 

 

 

Regulators  Mechanism of action  

 KLF5,KLF9,and 

KLF15 

• induced by C/EBPδ/β during the early stages of adipogenesis 

• binds directly to the PPARγ2 promoter, and cooperates with 

C/EBPs(22,31,39-41) 

 SREBP1  • Regulates the expression of FAS and LPL and increases the 

activity of PPARγ. 

•  Promotes adipogenesis(42) 

 CREB • lipid accumulation and the expression of PPARγ and fatty 

acid-binding protein (FABP).(43) 

 ZFP423,  

 

• blocks PPARγ expression and adipogenic differentiation 

•  promote adipogenesis of non adipogenic NIH -3T3 cell lines 

•   its inhibition in 3T3-L1 cells blocks PPARγ expression and 

adipogenic differentiation.(44,45) 

 FXR  

 

• nuclear hormone receptor that inducing PPARγ2 and C/EBPα 

expression 

• promotes adipocyte differentiation(46) 
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Table 2 negative molecular regulation of adipogenesis 

 

Abbreviations: SIRT: Histone deacetylase Sirtuin: DEC: differentiated embryo chondrocyte: TAZ: 

transcriptional-coactivator with PDZ-binding motif, Pref 1: pre-adipocytes factor 

In recent times, scholars have been offered an attention to obesity and obesity associated 

researches as effective genes expression profiles in adipogenesis. The Micro-RNAs, a small 

single non- coded RNA molecules such as miR-21, miR-29b, miR-144-3p, miR148a, miR-210, and 

miR-205-5p augment the adipogenesis via meddlesome with the activation of anti-adipogenic 

signaling pathways like transforming growth factor-β, Tumor necrosis factor -α, and Wnt 

signaling pathways .In contrast, through the transcriptional factors of  C/EBPs and PPARγ 

regulators Mechanism of actions 

KLF2 • inhibition of PPARγ, C/ EBPα, and SREBP1 expression 

• represses adipogenesis(47) 

Pref 1 

 
• Preventing lipid accumulation and expression of PPARγ, C/EBPα FAS, 

and aP2. 

• inhibits adipocyte differentiation(48) 

TAZ • PPARγ activity repression 

• suppresses adipocyte differentiation 

• adipogenic differentiation(49) 

DEC 1 &2 • inhibit the transcriptional activity of C/ EBPβ/α  

• abundantly expressed in pre-adipocytes (50) 

GATA  2 and 3 • suppression of PPARγ expression through PPARγ promoter or the 

formation of protein complexes with C/EBPα and C/EBPβ 

• contribute to adipocyte differentiation 

• inhibits adipogenesis by trapping cells in the pre-adipocyte stage(51,52) 

SIRT1&2 • inhibits adipogenesis and keeps cells at the pre-adipocyte stage 

• an inhibitory effect on adipogenesis by FOXO1 deactivation and 

subsequent PPARγ transcriptional  activity repression(53,54) 

SIRT7 • PPAR expression and proper adipocyte differentiation.(55) 
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mechanisms the  miRNAs like  miR-27a and b, miR-31, miR-128-3p, miR-130a and b; miR- 146a-

5p, miR-155, and miR-540 restrain the adipocyte differentiation (11). Furthermore, the miRNAs 

such as, miR- 103 and miR-107 can control the size of the pre-adipocyte cells in white adipose 

tissue, unswervingly repressing the activation of Wnt3a, hence enhancing the programmed cell 

death in pre-adipocytes (56). Therefore, to evaluate the therapeutic approach obesity, the 

MiRNAs possibly will be used as clinical biomarkers.  

Conclusion  

Now days, adipogenesis is a vital process that consists of various transcription factors, signaling 

molecules for the development of obesity and obesity-associated metabolic diseases. 

Therefore, targeting on these different molecules and signaling pathways would be considered 

as an important option for obesity therapy.  
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