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Abstract: In this review article the study of the development of relativistic cosmology and
introduction of inflation in it is carried out. We study the properties of standard cosmological
model developed in the framework of relativistic cosmology and the geometric structure of spacetime
connected coherently with it. We examine the geometric properties of space and spacetime ingrained
into the standard model of cosmology. The big bang model of the beginning of the universe is based
on the standard model which succumbed to failure in explaining the flatness and the large-scale
homogeneity of the universe as demonstrated by observational evidence. These cosmological
problems were resolved by introducing a brief acceleratedly expanding phase in the very early
universe known as inflation. Cosmic inflation by setting the initial conditions of the standard big
bang model resolves these problems of the theory. We discuss how the inflationary paradigm solves
these problems by proposing the fast expansion period in the early universe.
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1. Introduction

With the advent of general relativity in 1916, spacetime transformed itself into one of the
most fundamental interactions of the universe because the geometrical structure of it was taken
to demonstrate gravity in a dynamical way [1]. The force of gravity was replaced by the curvature
of spacetime mirrored through the structure of metric tensor. Spacetime became an integral part of
the universe and a dynamical medium where the whole phenomenal universe exists. Any solution
of the field equations of general relativity entails a certain structural geometry of spacetime or just a
spacetime that represents a universe itself, therefore determining a solution of the field equations is
like to coming across a specific model of the universe.

Cosmology studies the universe as a whole encompassing its beginning in spacetime or as
spacetime itself, its evolution, and its eventual ultimate fate. The history of cosmology dates back to
ancient Greeks, Indians and Iranians with its roots at that time in philosophy and religion. Before
the modern scientific cosmology emerges, it has been nurtured in the womb of Ibrahamic religions
especially Judaism, Christianity and Islam. Cosmology as modern science begins with the surfacing of
general relativity when Einstein first himself put to use it to formulate a cosmological model of the
universe mathematically. The model brought about a dynamic universe but was rendered to be static
as there was no cosmological evidence of its contraction or expansion at that time [2]. Einstein’s static
model was afterward proved to be inconsistent with cosmological observations and was discarded but
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its formulation as the first mathematical model based on the field equations of general relativity laid
the foundational stone for the inception of modern relativistic cosmology as science.

Cosmology takes into account the largest scale of spacetime that is the causally connected maximal
patch of the cosmos from the perspective of the origin, evolution, and futuristic eventual fate. It gives
the universe a mathematical description as large as the cosmological observational parameters reveal.
Modern relativistic cosmology was established on general relativity which brings forth the big bang
model of the universe. The big bang model was marred with some inward problems in it which were
removed by introducing an exponentially expanding phase in the early universe known as inflation.
de Sitter presented a model of the empty universe with the cosmological constant term retained. The
geometry of the model was proved to be accelerating [3]. The de Sitter universe corresponds to the
specific case related to one of the very early solutions of Einstein’s Field Equations. As the actual
universe must be considered as a local set of perturbations on the geometry of de Sitter having validity
in the large. de Sitter geometry represents Euclidean space with a metric that depends on time. It
was found that the inflation could be the de Sitter geometry or quasi de Sitter geometry which has
an innate impact on the evolution of the geometry of FLRW spacetimes. It further bears its relation
with the late-time accelerated expansion of the universe and the dynamic geometry of the spacetime
innately cohered with it. Inflation as it was propounded, has a profound impact on the evolution of
the universe as the geometry of spacetime. de Sitter universe represents the inflationary phase of the
universe with slightly broken time translational symmetry.

Alexander Friedmann predicted theoretically the universe to be dynamic, the one which can
expand, contract, or even be born out of a singularity [4]. George Lemaitre unaware of Friedmann’s
work at that time independently reached the same conclusion. In 1931 he also proposed a theory of
the primeval atom which later on was known as the big bang theory by Hoyle etc. [5]. Edwin Hubble
first proved the existence of other galaxies besides our’s Milky Way and afterward in 1929 discovered
that the universe is expanding based on observational evidence [6]. In the late 1940s George Gamow
(1904-1968) and his collaborators, Ralph Alpher (1921− 2007) and Robert Herman (1914− 1997)
independently worked on Lemaître’s hypothesis and transformed it into a model of the early universe.
They supposed the initial state of the universe comprising of a very hot, compressed mixture of
nucleons and photons, thereby introducing the big bang model. They did not associate a particular
name with the early state of the universe. Based on this model they were successful in calculating the
amount of helium in the universe but unfortunately, there was no authentic observational evidence
with which their calculations could be compared [7]. The standard relativistic model of cosmology
underpinning big bang theory could not explain the global structure of the universe and the origin
of matter in it. The distribution of matter homogeneously on large scales and spatial flatness also
remained enigmatic. The big bang model just made an assumption about these but could not solve
them. In the frame work of effective field theory, the aspects of nonsingular cosmology were explored
by Yong Cai1 et al. It is shown that the effective field theory assists in having the clarification about the
origin of no-go-theorem and helps to resolve the this theorem [8].

The inflationary era was proposed in the standard model of cosmology which propounds the big
bang theory of the creation of the universe. Inflation solves the problems encountered in the big bang
cosmology. Gliner in 1965 hypothesized an era of exponential expansion for the universe earlier than
any significant inflationary model surfaced [9]. It was found that the scalar fields are dynamic and
it was considered in 1972 that during phase transitions the energy density of the universe as scalar
field changes [10]. Linde in 1974 realized that scalar fields can play an important role in describing the
phases of the very early universe. He speculated that the energy density of a scalar field can play the
role of vacuum energy dubbed as a cosmological constant [10]. In 1978, Englert, Brout and Gunzig [12],
forwarded a proposal of ‘fireball’ hypothesis attempting to resolve the primordial singularity problem.
They basing their investigations on the entropy contained in the universe and with introducing particle
production approached the issue of early evolution of the universe. They inquired into it based on their
hypothesis that the universe undergoing a quantum mechanical effect would itself appear in a state
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of negative pressure subject to a phase of exponential expansion. A work was mentioned by Linde
in his review article [13] where he sought, in collaboration with Chibisov, to develop a cosmological
model based upon the facts known about the scalar fields. They considering the supercooled vacuum
as a self-contained source for entropy tried to cause the exponential expansion of the universe to be
concerned with it, however they found out instantly that the universe becomes very inhomogeneous
after the bubble wall collisions.

Slightly before Alan Guth’s original proposal of inflation surfaced, Alexei Starobinsky in 1980
proposed a model of inflation on the base of a conformal anomaly in quantum gravity. His proposal
was presented in the framework of general relativity where slight modification of the equations of
general relativity was made and quantum corrections were employed to it in order to have a phase of
the early universe. Starobinsky’s model can be considered as the first model of inflation which is of
semi-realistic nature and evades from the graceful exit problem [14]. It was hardly concerned with
the problems of homogeneity and isotropy which occur in the relativistic cosmological model of the
big bang. Starobinsky’s model, as he accentuated, can be considered the extreme opposite of chaos in
Misner’s model. Tensor perturbations that represent gravitational waves have also been predicted in
Starobinsky’s model with a spectrum that is flat.

Alan Guth employed the dynamics of a scalar field and with a clear physical motivation presented
an inflationary model [15] in 1981 on the base of supercooling theory during the cosmic phase
transitions where the universe expands in a supercooled false vacuum state. A false vacuum is
a metastable state containing a huge energy density without any field or particle so that when the
universe expands from this heavy nothingness state its energy density does not change and empty
space remains empty so that the inflation occurs in false vacuum [16]. The inflationary phase in Guth’s
original scenario is too short to resolve any problem and the universe becomes very inhomogeneous
which leads to the graceful exit problem [17,18]. The problem prevents the universe from evolving to
later stages and is inherently existing in the originally proposed version of Guth.

The graceful exit problem was addressed independently by Linde, Steinhard and Albrecht [19–24]
where they introduced the phase of slow roll inflation inclusively known as new inflation. The
resolution of the problem was sought by constructing a new inflationary paradigm where the inflation
can has its inception either in an unstable state at the top of the effective potential or in the state of false
vacuum. In this scenario the dynamics of the scalar field is such that it rolls gradually down to the
lowest of its effective potential. It is of great importance to note that the shifting away of the scalar field
from the false vacuum state to other states has remarkable consequences. When the scalar field rolls
slowly towards its lowest-so called slow roll inflation, the density perturbations are generated which
seed the structure of the universe. The production of density perturbations during the phase of slow
roll inflation is inversely proportional to the motion of the scalar field [25–31]. The basic difference
between the new inflationary scenario and that of the old one is that the advantageous portion of the
inflation in the new scenario, which is responsible for the large scale homogeneity of the universe, does
not take place in the false vacuum state, where the scalar field vanishes. This means that new inflation
could explain why our universe was so large only if it was very large and contained many particles
from the very beginning. In this article we study the standard model of cosmology by investigating the
geometric structure of spacetime. We begin with introducing the structure of Euclidean space and that
of spacetime in special and general theory of relativity with a quick review of their basics. We discuss
problems encountered in the standard big bang cosmology and the inflationary solutions introduced
into it by proposing a phase of accelerated expansion in the early universe.

The layout of the paper follows as: Section 2 discusses the structure of Euclidean space beginning
with the axioms of Euclidean geometry and the significant role played by the Pythagoras theorem to
locate the distance between points of this space. Pythagoras theorem acts fundamentally as a metric
formula or line element for Euclidean space. This section contains 4 subsections that investigate
the structure of spacetime in Newtonian physics, special relativity, and general relativity with a
discussion of the basics of general relativity. Section 3 begins with relativistic cosmology investigating
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cosmological principle, Weyl’s principle, and general relativity in its 3 subsections. In Section 4 we
investigate the standard model in cosmology represented by the FLRW metric. The section comprises
9 subsections that discuss three possible geometries of its spatial part namely spherical, hyperbolic
and Euclidean. We solve the metric using Einstein Field Equations. Section 5 gives the derivation of
Friedmann’s equations and further derive these equations in the presence of the cosmological term
in subsection 5.1. In section 6 we describe how to embed a geometrical object in a space of higher
dimensions. This section has 4 subsections discussing intrinsic geometry, extrinsic geometry, the
geometry of 2-sphere, and geometry of 3-sphere as they get embedded in higher-dimensional space.
Section 7 presents Einstein’s static model and has 2 subsections that discuss the instability of Einstein’s
universe and de Sitter’s empty universe model respectively. In Section 8 we describe conformal FLRW
line elements and discuss vacuum, radiation, and matter-dominated eras. Critical density, density
parameter, deceleration parameter, Friedmann’s equations in terms of density parameter, cosmological
redshift, luminosity distance, and angular distance formula in its 12 subsections. section 9 is devoted
to the discussion of cosmological problems faced by the standard model in its 4 subsections. In Section
10 we embark on inflation and discuss the following topics in its subsections: Starobinsky inflation,
scalar field dynamics, slow-roll inflation, slow-roll parameters, and the number of e-folds that quantify
inflationary period. Section 11 describes how the proposal of exponential expansion in the early
universe solves the cosmological problems. In the last section, we give a summary of the paper. There
are four appendices at the end after refernces given in the paper.

2. Euclidean Space

Euclidean geometry is established on a set of simple axioms and definitions derived from these
axioms. A space at the level of mathematical abstraction is the set of points where each point represents
a specific position in it. When the abstract space is mapped onto physical space each point of it
represents a physical location in physical space. Euclidean space is what entails on the base of axioms
of Euclidean geometry. Geometrically a space can be described by reducing it to a certain specification
of the distance between each pair of its neighboring points. In order to reduce all of the geometry of
a space to a certain specification of the distance between each pair of neighboring points we use the
metric or line element which measures the space and describes its nature. A line element specifies
a certain geometry and its form varies corresponding to different coordinate systems. Five basic
postulate lie at the core of Euclidean space and are the basis of standard laws of geometry.

1. Any two points can be joined by a straight line i.e. the shortest distance between two points is a
straight line. 2. A straight line can be extended to any length. 3. A circle can be drawn with a given a
line segment as radius and one end as centre of the circle. 4. All right angles are congruent. 5. Given a
line and a point not on the line, it is possible to draw exactly one line through the given point parallel
to the line i.e. parallel lines remain a constant distance apart. Pythagoras theorem was known before
Euclid and can also be derived from the five postulates and is used to find distance between any two
points in Euclidean space. A mathematical space is an abstraction used to model the physical space of
the universe.The Euclidean space consists of geometric points and has three dimensions. Now the
Pythagorean theorem for a right triangle describes how to calculate the length of hypotenuse when the
lengths of other two sides namely base and altitude are given.
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Figure 1. Pythagoras theorem: c2 = a2 + b2

d2 = x2 + y2 (1)

Now since space can be expressed everywhere consisting of geometric points. We can define for every
infinitesimally close three points of space forming a right triangle so that we can find distance between
two points with the help of Pythagoras theorem. Using rectangular Cartesian coordinate system we
can express distance between two points in differential form

dl2 = dx2 + dy2 (2)

The distance-measure by pythagoras theorem in Eq. (2) will be known as metric or line element in two
dimensions and defines Euclidean metric for two dimensional space. The distance measured between
two points by the metric in Eq. (2) does not change on rotating the coordinate system in which these
two points are specified. (

x′

y′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x
y

)
(3)

or

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ
(4)

Figure 2. The rotation of two dimensional rectangular coordinate system through angle theta

The distance between two points remains invariant which means that

dx′2 + dy′2 = dx2 + dy2 (5)
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The Pythagorean theorem in three dimensions can be described as

d2 = x2 + y2 + z2 (6)

Three mutually perpendicular planes along three dimensions of the Cartesian coordinate system divide
it in 3-planes.

Figure 3. Three dimensional rectangular Cartesian plane representing Euclidean space-three mutual
perpendicular planes

Now in reference to a coordinate system each point of this space will have three coordinates
(x, y, z) if we approach its structure through Cartesian scheme, i.e. in Cartesian coordinates each point
of it is represented by three coordinates which are the distances measured starting from the origin of
the coordinate axes along the corresponding axes i.e x-axis, y-axis and z-axis respectively. These three
axes stand for three dimensions of space. we find the distance between two points with Cartesian
coordinate for three points separated infinitesimally

dl2 = dx2 + dy2 + dz2 (7)

which gives the metric of three dimensional space The distance between two points with Cartesian
coordinates (x, y, z) and (p, q, r) will be

ds2 = (x− p)2 + (y− q)2 + (z− r)2 (8)

The infinitesimal distance between any two points (x, y, z) and (x + dx, y + dy, z + dz) can be had
using the metric written above in Eq. (7) in three dimensional Euclidean space.

ds2 = [x− (x + dx)]2 + [y− (y + dy)]2 + [z− (z + dz)]2 (9)

ds2 = (−dx)2 + (−dy)2 + (−dz)2 = dx2 + dy2 + dz2 (10)

Or in tensor form
ds2 = δµνdxµdxν (11)

Where δµν is the Kronecker delta function representing a symmetric tensor of rank two and can be
expressed as a 3× 3 matrix form

δµν =

δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

 =

1 0 0
0 1 0
0 0 1

 (12)
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diagonal of
δµν = diag

[
δµν

]
= [+1,+1,+1] (13)

and trace of
δµν = ∑

µ=ν

[
δµν

]
= 1 + 1 + 1 = 3 (14)

Thus δµν = diag (+1,+1............. + 1) in Eq. (13) defines the n-dimensional Euclidean space.
Now Eq. (11) can be expanded using Einstein summation convention

ds2 = δ1νdx1dxν + δ2νdx2dxν + δ3νdx3dxν (15)

ds2 =
(
δ11dx1dx1 + δ12dx1dx2 + δ13dx1dx3)

+
(
δ21dx2dx1 + δ22dx2dx2 + δ23dx2dx3)

+
(
δ31dx3dx1 + δ32dx3dx2 + δ33dx3dx3) (16)

ds2 =
(
(1) dx1dx1 + (0) dx1dx2 + (0) dx1dx3)

+
(
(0) dx2dx1 + (1) dx2dx2 + (0) dx2dx3)

+
(
(0) dx3dx1 + (0) dx3dx2 + (1) dx3dx3) (17)

ds2 =
(

dx1dx1 + 0 + 0
)
+
(

0 + dx2dx2 + 0
)
+
(

0 + 0 + dx3dx3
)

(18)

ds2 =
(

dx1dx1
)
+
(

dx2dx2
)
+
(

dx3dx3
)

(19)

ds2 =
(

dx1
)2

+
(

dx2
)2

+
(

dx3
)2

(20)

ds2 = dx2 + dy2 + dz2 (21)

Eq. (21) can also be expressed in the form

dsds = dxdx + dydy + dzdz (22)

From Eq. (22) we can see that the inner product in three dimensional Euclidean space can be perfectly
described that’s why three dimensional Euclidean space is an example of a complete inner product
space.

2.1. Newtonian Mechanics: The Structure of Space and Time

Space and time are absolute structures in classical physics and can be distinguished from one
another in an independent way. Newton’s Mechanics is based specifically on three laws of motion, law
of gravitation and Galilean principle of relativity which are inherently related with the properties of
space and time. Newtonian space is three dimensional extension around us which constitutes absolute
space. Absolute space in Newton’s own words is described as “Absolute space, in its own nature,
without relation to anything external remains always similar and immovable”, therefore space is rigid,
motionless and can be viewed as colossally empty three dimensional cubic or cuboidal box where
material objects reside and all physical phenomena take place. Newtonian space has the properties
of Euclidean pace where infinitesimal distance between any two points is a straight line and if three
points constitute a right angled triangle, then three sides are related by Pythagoras theorem which
ascribes to it the properties of a flat space. Sum of angles in a triangle in such space is 1800. Newtonian
space is homogeneous and isotropic which entails Newtonian Mechanics. Homogeneity implies
translational invariance of the properties of space which means that it has similar properties at every
point contained in it. The property of being homogeneous is called homogeneity that leads to the
invariance of physical laws performed in two or more coordinate systems. Newton’s 3rd law, law
of conservation of momentum and energy etc. come out as a consequence of homogeneity. It is
also isotropic that implies rotational invariance of the properties of space which means it has similar
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properties in all directions therefore it is direction-independent. Thus isotropy implies homogeneity
but the converse is not true. The absolute time has been enunciated as follows “Absolute time, and
mathematical time of itself and from its own nature flows equably without relation to anything external,
and is otherwise called duration” such time exists independent of space and whatever dynamically
happens in it and flows uniformly in one direction. An interval of time possesses always unchanging
meaning for all times.

Figure 4. Newtonian space

According to Newtonian Mechanics gravitation and relative motion do not affect the rate at which
time flows. From Newton’s 2nd law F = ma, the isotropy of time can be viewed in case the dynamic
system does not change from perpetrating transition from +t to −t since it does not incorporate
the element of time explicitly which implies that past and future are indistinguishable but this is
paradoxical because time is unidirectional and flows always from past to future. Two observers in two
inertial frames of reference in relative motion and equipped with standard measuring clocks record
the spacetime coordinates of an event written as (t, x, y, z) and (t′, x′, y′, z′) respectively. According to
Galilean principle of relativity, the coordinate transformations are

x′ = x− vt

y′ = y

z′ = z

t′ = t

(23)

We can calculate how velocities are added according to these transformations by differentiating the
spatial parts of Eq. (23) with respect to time t, we have

dx′

dt
=

dx
dt
− v

dy′

dt
=

dy
dt

dz′

dt
=

dz
dt

(24)
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Since t = t′, we infer that dx′
dt = dx′

dt′ Likewise, acceleration can also be had by differentiating once again
Eq. (24), we hve

d2x′

dt2 =
d2x
dt2

d2y′

dt2 =
d2y
dt2

d2z′

dt2 =
d2z
dt2

(25)

We can observe from Eq. (25) that the accelerations in both frames are same. The time-coordinate t′

of one inertial frame remains unaffected during transformation to another inertial frame of reference
in classical physics and does not depend on spatial coordinates x, y and z. The set of equations in
Eq. (23) is known as Galilean transformations. The motion along y and z spatial dimensions remains
unaffected and the time coordinates in the two frames are equivalent which implies that time is
absolute as Newton believed meaning that for all the inertial observers the time interval between
any two events would be invariant. We notice that the two events having coordinates (t, x, y, z) and
(t′, x′, y′, z′) respectively with differential of the distance as Euclidean spatial interval described in Eq.
(21) as ds2 = dx2 + dy2 + dz2 and the time interval ∆t = t′ − t both remain separately invariant under
the Galilean transformations in Eq. (23). This fact makes us consider the nature of space and time
as absolute entities in Newtonian Mechanics. We identify the quantity ds2 as square of the distance
between points of three dimensional Euclidean space and invariance of this differential of distance
alludes to the fact that it is geometrical structural property of the space itself in its own right. This
describes the geometry of space and time according to Newton’s views.

2.2. Special Theory of Relativity: The Structure of Spacetime

The theory of special relativity is a theory of the structure of spacetime and in this way constitutes
a geometric theory [32]. The fields and particles grow over this spacetime structure and relativistic
mechanics is developed according to this structure which corresponds to the postulates of special
relativity. According to the Lorentz transformations implied by it space and time are not distinguishable
quantities but constitute innately a single continuum to be known as spacetime. One of the Einstein’s
1905 papers brought forward this theory founded upon two postulates [33]

(1) The principle of special covariance
Since the laws of physics remain form-invariant i.e covariant according to a privileged class of

observers known as inertial frames. This is also called principle of relativity.
(2) The principle of invariance of the velocity of light (c)
These two principles overthrew the pre-relativity notions of absolute space and absolute time

proposing instead relative concepts. In classical physics as we saw earlier the coordinates of two
observers are related by Galilean transformations whereas according to the special relativity the
coordinates in two frames are related using Lorentz transformations.

x′ =
x− vt√
1− v2

c2

y′ = y

z′ = z

t′ =
t− vx

c2√
1− v2

c2

(26)

Lorentz transformations contain all the geometric information about space and time and describe the
structure of spacetime. Further, we can see that space and time coordinates are absolute according to the
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Galilean transformations for two inertial observers which move relative to each other and are connected
through space and time coordinates. Time coordinate has the same magnitude in pre-relativity physics
however according to the special relativity which obeys Lorentz transformations time coordinate in
one coordinate system is connected to the time coordinate of the second coordinate system through
both time and space coordinates which alludes to the fact that space and time coordinates are now to
be dealt on equal footings. It is obvious from the Lorentz transformations that the time coordinates are
not equivalent in two frames i.e. t 6= t′ rather t′ is innately cohered with both of the coordinates of time
and space t and x respectively. It means that time t′ of one coordinate frame converts partially in space
and partially in time coordinates. Therefore t′ does not remain independent but has partially coalesced
with space coordinates losing its absolute nature and the principle of relativity forbade us to locate a
preferred frame of reference ensuing that absolute notion of time disappears logically. This fact was
first perceived by Minkowski when he was recasting the special relativity in the language of geometry.
He has presented a very profound and significant geometrical structure underlying special relativity.
While delivering a lecture at the meeting of the Göttingen Mathematical Society on November 5, 1907,
he introduced the concept of spacetime continuum whereby he asserted that independent space and
time have to doom away into mere shadows and only a union of the two can preserve an independent
reality. Minkowski viewed that the principle of special relativity can be described by the metric
−dt2 + dx2 + dy2 + dz2 on the four-dimensional space R4 which familiarized the concept of spacetime
continuum and paved the way for the formulation of general relativity. A Minkowski metric g on the
linear space R4 is a symmetric non-degenerate bilinear form with signature (−,+,+,+). It means that
there exists a basis {e0, e1, e2, e3} such that g

(
eµ, eν

)
= gµν where µ, ν ∈ {0, 1, 2, 3} and gµν is expressed

in the form

gµν =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (27)

so that an we have orthonormal basis and can construct a system of coordinates of R4 as
(
x0, x1, x2, x3)

such that at each point we can have e0 = ∂t and ∂xj where j = 1, 2, 3. Now with respect to this

coordinate system we can write the metric tensor (0, 2) in the form g = gµνdxµdxν = −dt2 +
3
∑
1

dxj or

ds2 = −dt2 + dx2 + dy2 + dz2 The negative sign with one time component term in the metric indicates
that it is not Euclidean space but represents a pseud-Euclidean known as Minkowski space and also
guarantees that the speed of light is same in all inertial frames. An expanding Minkowskian spacetime
can be expressed in form written below which represents the simplest of all dynamic spacetimes
ds2 = −dt2 + a2(t)

[
dx2 + dy2 + dz2]. It was considered convenient on the dimensional grounds to

introduce the coordinates in the form
(

x0, x1, x2, x3) = (ct, x, y, z). Pythagoras theorem applied in
Euclidean space R3 of three spatial dimensions gives the distance of two points as an invariant as we
observed in previous section.

ds2 = +dx2 + dy2 + dz2 (28)

here ds the length element is a scalar quantity which means that in certain frame of references all the
observers will agree upon the length of the measured object. In 1905, Einstein speculated that the
measurement of the spacetime interval

ds2 = −dx2 − dy2 − dz2 + (cdt)2 = ηµνdxµdxν (29)
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where

ηµν =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (30)

would not result in identical either in space or in time [34] for the observers in relative uniform motion.
However Minkowski noted that the four dimensional entity in Eq. (29) would remain invariant for
all such observers. The basic significant idea which Minkowski took notice of was that the spacetime
interval remains invariant for all the observers in uniform relative motion meaning that it is also a
scalar upon which they all will agree. The metric of Minkowski space which is homogenous and
isotropic is given by

gµν = ηµν = diag (−1,+1,+1,+1) (31)

thus the geometry of spacetime is flat in special relativity. If the Minkowskian geometry of spacetime
has to expand it can be expressed as, however, in special relativity realm it is not expanding.

gµν = ηµν = diag
(
−1, a2(t), a2(t), a2(t)

)
(32)
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Figure 5. a spacetime frame as null cone structure

Figure 6. Structure of spacetime where one second of time along time axis equals 300000 km along the
space axis

2.3. General Theory of Relativity: The Structure of Spacetime

General relativity models gravity into the dynamic structure of spacetime. In general relativity
the structure of spacetime is described by a fundamental quantity called the spacetime metric or line
element which gives the nature of the geometry of spacetime by finding the distance between two
neighbouring points in it. The geometrical structure of spacetime is incarnated in two basic principles
[35] 1-principle of general covariance 2-The spacetime contnuum has, at each of its points, a quadratic
structure of coordinate differentials ds2 = g = gµνdxµdxν known as ’square of the interval’ between
the two points under consideration. We consider a four dimensional continuum every point of which
is distinct from the other with four coordinates-a quadruplet x1, x2, x3, x4 assigned consecutively to
each of them

x′1 = x′1 (x1, x2, x3, x4)

x′2 = x′2 (x1, x2, x3, x4)

x′3 = x′3 (x1, x2, x3, x4)

x′4 = x′4 (x1, x2, x3, x4)

(33)
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It is denoted by gµν. In matrix form with components it is written as

gµν =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 a31 g32 g33

 (34)

The properties of spacetime that intrinsically related to it are completely determined by the spacetime
metric.

Figure 7. Curved spacetime around the Sun-spacetime in general relativity

2.4. The Basics of General Relativity

It would be convenient to have a retrospective look into the basics of general relativity whose
role has been very fundamental to the modern cosmology. We briefly review the structure of the
theory specifically in connection with the geometrical structure of spacetime in it. General relativity
in its core describes that gravity is the geometry of four dimensional spacetime manifested through
its curvature. It is a theory of spacetime and gravitation that are the very basic components of the
universe. Einstein’s journey towards general relativity in order to introduce gravity in his previous
theory sought the fascinating geometry of the structure of spacetime such that gravity as a field force
disappeared and was assimilated in the very geometric structure of spacetime. In constructing the
framework of new theory, Einstein was influenced and governed by Mach’s principle which states
that it is a priori existence and distribution of matter which determines the geometry of spacetime and
in the absence of it there shall be no geometric structure of a spacetime in the universe. Therefore,
there will be no inertial properties in, otherwise, empty universe. In general relativity gravitation and
inertia are essentially indistinguishable. The metric tensor gµν describes the effect of both combinedly
and it is arbitrary to ask which one contributes its effect more and which less, therefore to call it with
single name is suitable either inertia or gravitation [3]. In general relativity gravitation, Inertia and the
geometry of spacetime are coalesced into a single entity represented by a symmetric tensor of second
rank gµν which owes its existence due to presence and distribution of matter which is represented
by an other symmetric tensor Tµν known as energy-momentum tensor. The metric tensor gµν is
the fundamental object of study in general relativity and takes into consideration all the causal and
geometrical structure of spacetime. General relativity underlies five fundamental principles connoted
in it in implicit or explicit manner, which are

1. Mach’s principle
2. principle of equivalence
3. principle of covariance
4. principle of minimal gravitational coupling
5. correspondence principle

In the light of the principle of general covariance, the theory requires that the laws of physics
might be formulated in a coordinate-independent style. The coordinate-independence requires the
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replacement of partial derivatives by covariant derivatives which introduces connection coefficients
Γλ

µν as the 2nd kind of Christoffel symbols. All the geometric structure of spacetime is based on the
existence of these connection coefficients. The field equations of general relativity read as Gµν = 8πTµν,
where Gµν = Rµν − 1

2 gµνR is the Einstein tensor and is expressed in terms of Ricci tensor. metric
tensor and Ricci scalar and Tµν is energy momentum tensor. The spacetime contnuum of general
relativity is postulated as a 4-dimensional Lorentzian manifold (M, g) where M denotes the Manifold
and g is metric defined over it. The geometry of a spacetime is encoded in its metric which has a
geodesic structure, though complex and frequently solved numerically for a specific bunch of geodesics.
These geodesics specify the physical properties of the geometry of spacetime which are interpreted
by drawing graphically in a certain spacelike volume. Gravity is the geometry of spacetime itself
which is described through its dynamic structure in the framework of general relativity. Interaction
between spacetime and the content it contains which mutually form warp and woof of the universe is
the pith and marrow of general relativity. Matter tells spacetime how to curve and spacetime tells the
matter how to move. General relativity thus transforms gravitation from being a force to being it a
property of spacetime, so that gravity does remain a force but curvature of the geometric structure
of spacetime. Einstein worked out a relation between matter-energy content of the universe and its
gravitating effects in the form of geometry of spacetime. He employed the language of tensors to
describe it. The invariant interval between two events separated infinitesimally with coordinates
(t, x, y, z) and (t + dt, x + dx, y + dy, z + dz) has been defined according to special relativity

ds2 = ηµνdxµdxν (35)

Which defines a Lorentz invariant Minkowski flat spacetime whose geometry of spacetime is encoded
in ηµν. Under the change of coordinates ds2 remains invariant and is spacelike for ds2 > 0, timelike for
ds2 < 0 and lightlike for ds2 = 0. Photon path is described by ds = 0 and baryonic matter follows a
path between two events for which ∫

ds = 0 (36)

i.e. it generates stationary values and conforms to the shortest distance between two points to be
straight line which means that there are no external forces to set their path deviated. General relativity
was based on five principles incorporated in it explicitly or implicitly namely equivalence principle,
relativity principle, Mach’s principle, Correspondence principle. Tensors are geometric objects defined
on a manifold M, which remain invariant under the change of coordinates. It is composed of a set of
quantities which are called its components, therefore a it is the generalization of a vector which means
that it has more than three components. They represent mathematical entities which conform to certain
laws of transformations. The properties of components of a tensor do not depend on a coordinate
system which is used to describe the tensors. Transformation laws of a tensor relate its components in
two different coordinate systems. The mathematical representation of a tensor is displayed through
considering usually a bold face alphabetical letter like A, B, T, P etc. with an index or a set of indices in
the form of superscripts or subscripts or both in mixed form. These superscripts and subscripts in case
of a tensor are called contravariant and covariant indices. Contravariant indices of a tensor are used
to give the meaning of a contravariant components of it like Aµ, Aµν, Aµνξ...... Covariant indices of a
tensor are used to signify the meaning of a contravariant components of it like Aµ, Aµν, Aµνξ...... The
indices of both types-contravariant and covariant are used to specify the components of a mixed tensor
like Aν

µ, Aν
µξ , Aνσ

µ , Aνσ...
µξυ.... A mixed tensor is a tensor which has contravariant as well as covariant

components. The number of indices appearing in the symbol representing certain type of a tensor is
known as its rank. The appearing indices in the symbol representing a tensor can be contravariant or
covariant or both type of indices in it. The order of a tensor is the same thing as rank, only the name
differs. The number of components of a tensor is related with its rank or order and the dimensions
of the space in which the is being described. In an n-dimensional space, a tensor of rank, say, k will
have number of components equal to Number of components of a tensor in n-dimensional space is
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equivalent to nk = (number o f dimensions o f space)rank. However, the spacetime of general relativity
is pseudo-Riemannian having four dimensions, three spatial and one temporal. Coordinate patches
are necessarily considered to map whole of the spacetime. Each point-event of a coordinate patch
in the four dimensional pseudo-Riemannian spacetime is labelled by a general coordinate system
, conventionally runs over 0, 1, 2, 3 where 0 stands for time and the rest for space. An inertial or
otherwise frame of reference characterized by a coordinate system can be attached to every point event
of the spacetime and coordinate transformations between any two coordinate systems and can be
written

A′µ =
∂xν

∂x′µ
Aν

B′µ =
∂x′µ

∂xν
Bν

A
′µ
ν =

∂x
′µ

∂xζ

∂xσ

∂x′ν
Aζ

σ

(37)

While switching to Riemannian geometry for non-Euclidean spaces ordinary partial differentiation is
generalized to covariant differentiation and is defined using a semi-colon ; as

Bν;µ = ∂,µBν − Γσ
νµBσ

Bν
;µ = ∂,µBν + Γν

µσBσ
(38)

Where comma , denotes an ordinary partial differentiation with respect to the corresponding variable.
In covariant differentiation indices can also be raised or lowered with metric tensor, however covariant
differentiation of it vanishes. The interval between infinitesimally separated events xµ and xµ + dxµ is
given by

ds2 = gµνdxµdxν (39)

The corresponding contravariant tensor of gµν is given by gµν and they result in Kronecker delta.
Moreover, indices can be lowered or raised using the metric tensor in either form as

gµνgµζ = δ
ζ
ν

gµνBν = Bµ

gµνBν = Bµ

(40)

In general relativity all the geometry of curved spacetime is contained in the second rank symmetric
tensor gµν known as fundamental or metric tensor and is the function of four coordinates gµν =

gµν (x0, x1, x2, x3) and gµν encodes all the information about gravitational field induced by presence of
matter. It governs the other matter as a response mimicking the role of gravitational potential similar
to that of Newtonian gravity so that the paths remain no more straight and the action in Eq. (36)
determines the path of a free particle known as geodesic

d2xµ

ds2 + Γµ
νζ

dxν

ds
dxζ

ds
= 0 (41)

where

Γµ
νζ = gµλΓνζλ =

1
2

gµλ

(
∂gνλ

∂xζ
+

∂gζλ

∂xν
+

∂gνζ

∂xλ

)
(42)

are the Christoffel symbols which through the geodesic equation specify the worldlines of free particles.
The "acceleration due to gravity" in Newtonian gravitation law is described by these symbols in
Einstein’s picture of gravity as the geometric properties of spacetime encoding the similar information.
Locally these symbols vanish in the inertial frame of reference in free fall and under coordinate
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transformation from xµ and x′µ do not constitute components of a tensor and therefore do not represent
a tensor.

Γ′σµν =
∂x′σ

∂xλ

∂xζ

∂x′µ
∂xρ

∂x′ν
Γλ

ζρ +
∂2xζ

∂x′µ∂x′ν
∂x′σ

∂xζ
(43)

The Riemann tensor is defined as

Rσ
µνλ =

∂

∂xν
Γσ

µλ −
∂

∂xλ
Γσ

µν + Γn
µλΓσ

nν − Γn
µνΓσ

nλ (44)

It has symmetry properties and satisfies the following Bianchi identity

Rσ
µνλ;ζ + Rσ

µζν;λ + Rσ
µλζ;ν = 0 (45)

The Ricci tensor is obtained from Riemann tensor contracting

Rµν = gλσRσ
µνλ =

∂

∂xν
Γσ

µλ −
∂

∂xλ
Γσ

µν + Γn
µλΓσ

nν − Γn
µνΓσ

nλ (46)

Another expression of Ricci tensor is written in the form given below when determinant of the metric
tensor gµν is envisaged as a matrix and denoted by g

Rµν = Γλ
µν,λ −

(
ln
√
−g
)

,µν
+
(
ln
√
−g
)

,λΓλ
µν − Γλ

πµΓπ
λν (47)

The Ricci scalar or scalar curvature is described as

R = gµνRµν (48)

Contraction of the Bianchi Identity in Eq. (45) gives

Rµν −
1
2

gµνR (49)

which is Einstein tensor. Now we can write basic equations of general relativity

Rµν −
1
2

gµνR = 8πTµν (50)

or
Gµν = 8πTµν (51)

Gµν ∝ Tµν (52)

These are written with cosmological constant also. From Eq.(52)

Gµν + Λgµν = 8πTµν (53)

Energy-momentum tensor Tµν is the source term for the metric tensor gµν which for a most general
matter-energy fluid that is consistent with the assumption of homogeneity and isotropy represents a
perfect fluid and has the form

Tµν = (ρ + p) uµuν − pgµν (54)

Where uµ = (1, 0, 0, 0) is the four velocity in a comoving frame of reference and

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (55)
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3. Relativistic Cosmology

Relativistic cosmology was founded on three fundamental principles

1. Cosmological princple;
2. Weyl’s principle;
3. General relativity.

which are explicated below.

3.1. Cosmological Principle

The principle states that on sufficiently large scale, the universe is homogenous and isotropic
at any time. The principle is the generalization of Copernican principle and almost all the standard
cosmological models of the spacetime underpin it. It has two forms (1) Cosmological principle
with respect to spatial invariance (2) Cosmological principle with respect to temporal invariance In
spatial invariance we suppose the invariance of space with respect to translational and rotational
properties known as homogeneity and isotropy respectively and the principle may be regarded as
cosmological principle. Under both the invariant properties the space remains isomorphic. A perfect
cosmological principle incorporates temporal homogeneity and isotropy which was employed by
the steady state theory of the eternal universe and was not supported by the observation and was
disfavored. For a local observer the principle might not be satisfied as the Earth and the solar system
are not homogeneous and isotropic since the matter clumps together to form objects like planets, stars,
galaxies with voids of vacuum-like in between them but on the larger scales of about MP>1000 Pc the
universe obeys the cosmological principle. The uniformity of CMBR in all directions (homogeneity
and isotropy) provides the confirmatory proof of the cosmological principle. It is the generalization of
Copernican Principle which incorporates homogeneity and isotropy. Homogeneity means location
independence i.e. all places in the universe at galactic scales are indistinguishable. Isotropy gives
direction independence i.e. in whatever direction we look in the universe it appears same. Certainly
Isotropy connotes homogeneity but vice versa is not true. To better understand its geometric properties,
we begin with 1-dimensional spaces and revise to the four dimensional spaces and then observe how
the four dimensional spacetime geometrical properties can be understood in this perspective. It is
necessary to understand what we mean by embedding of a geometric object in an n-dimensional space
because of the reason FLRW metric incorporates example of embedding three dimensional spaces in
four dimensional spacetime.
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Figure 8. Homogeneity and isotropy of space as implied by cosmological principle

3.2. Weyl’s Principle

Weyl’s principle helps us consider the universal stuff as consisting of fluid, particles of which are
constituted by galaxies. In the cosmological spacetime, the world lines of the fundamental observers
form a smooth bundle of time-like geodesics which would never meet except in the past singularity
from where the universe emerged or at the future singularity if it would happen. The fundamental
observers are those who comove with the cosmic fluid. The world lines of galaxies as fluid particles are
always and everywhere orthogonal to family of spatial hypersurfaces. The postulate was presented by
Hermann Weyl (1885-1955) in 1923 which is essentially about the nature of matter in the universe [36].
He regarded the material content of the universe in the form of fluid whose constituent particles make
a substratum.

Figure 9. Illustration-of-the-Weyl-postulate

It mans that in the substratum of spacetime it allows us to consider the structure of the universe
as fluid. The Weyl principle introduces further symmetry in the structure of spacetime described
by the metric tensor by considering the galaxies as test particles and postulates that the geodesics
on which these galaxies move do not intersect. It states that the world lines of galaxies considered
as ‘test particles’ form a 3-bundle of nonintersecting geodesics orthogonal to a series of spacelike
hypersurfaces.

3.3. General Relativity

General relativity provides the best existing theory of gravitation on cosmological scales and
models it structured into the geometric structure of spacetime. In section III we have discussed its
basic ingredients.
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4. The Standard Model of Cosmology

The standard model in cosmology has been established on the most general
homogeneous and isotropic spacetime. The standard model that propounds the hot
big bang model of the universe is known as Friedmann-Lemaitre-Robertson-walker
(FLRW) line element which reads as in the Cartesian coordinates

ds2 = −dt2 + dx2 + dy2 + dz2 (56)

and in the spherical coordinates, we have

ds2 = g = gµνdxµdxν = −dt2

+ a(t)2
(

1
1− kr2 dr2 + r2dθ2 + r2sin2θdφ2

) (57)

Or equivalently

ds2 =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 =


−1 0 0 0

0 a2(t)
1−kr2 0 0

0 0 a2(t)r2 0
0 0 0 a2(t)r2sin2θ

 (58)

The predictions for the quantitative behavior of the expanding universe is enunciated suitably by
the metric tensor and the scale factor as a function of time i.e. a(t) describes the scale of coordinate
grid interrelating the coordinate distance with physical distance i.e. in a smooth and homogeneously
expanding universe.

4.1. Geometric Properties of the FLRW Line Element

From the line element in Eq. (57)

ds2 = −dt2 + a(t)2
[

1
1− kr2 dr2 + r2dθ2 + r2sin2θdφ2

]
(59)

Since the time flows only in one direction and the space obeys cosmological principe, therefore we
are allowed to separate the metric in temporal and spatial parts. To understand the four dimensional
spacetime geometry of FLRW universe we begin with the geometry of spatial part of the line element
that is

a(t)2
(

1
1− kr2 dr2 + r2dθ2 + r2sin2θdφ2

)
(60)

This is the spatial part of the metric in Eq. (59) and is characterized by the scale factor a(t), which
is the function of time and 2nd curvature of the space k. These are obviously determined by the
self-gravitating properties of the matter-energy content in the universe . The spatial part of the
metric incorporates cosmological principle implying homogeneity and isotropy which provides the
kinematics for the geometry of spacetime while we will observe afterwards that Einstein equations
provide the dynamics into it through the scale factor a (t).

4.2. Comoving Coordinates and Peculiar Velocities

The coordinates (r, θ, φ) form the cosmological rest frame and are known as comoving coordinates.
They can be considered constant because the particles remain at rest in these coordinates. Peculiar
velocity is the motion of the particles with respect to comoving coordinates. Peculiar velocities of the
galaxies and supernovae are ignored in cosmology in the expanding spacetime. since p (a) ∝ 1

a(t) ,
therefore momentum in expanding spacetime is redshifted and freely moving particles come to rest
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in comoving coordinates. Physical distance between two points is calculated as thee scale factor
a (t) times the coordinate distance. The expression without scale factor inside the bracket is the pure
kinematical statement of the geometry of spacetime

1
1− kr2 dr2 + r2dθ2 + r2sin2θdφ2 (61)

and represents the line element of the three dimensional space with hidden symmetry of being
homogeneous and isotropic. It represents three geometries for three values of k.

4.3. The Geometry of Spherical World

For k = +1, the hypersurface is

1
1− r2 dr2 + r2dθ2 + r2sin2θdφ2 (62)

and represents a three dimensional sphere embedded in a four dimensional Euclidean space. This
space is finite and closed.

4.4. The Geometry of Hyperbolic World

For k = −1, the hypersurface is

1
1 + r2 dr2 + r2dθ2 + r2sin2θdφ2 (63)

and represents a three dimensional hypersphere or hyperbola embedded in a four dimensional
pseud-Euclidean space. This space is infinite and open.

4.5. The Geometry of Euclidean World

For k = 0, the hypersurface is

dr2 + r2dθ2 + r2sin2θdφ2 (64)

and represents a three dimensional Euclidean flat space. This space is also infinite and open. Now to
determine Friedmann equations, we write first the components of the metric tensor, since the metric is
diagonal due to homogeneity and isotropy therefore we have these diagonal components

g00 = gtt = −1

g11 = grr =
a2(t)

1− kr2

g22 = gθθ = a2(t)r2

g33 = gφφ = a2(t)r2sin2θ

(65)

Now we turn to solve the FLRW metric and begins with finding Christoffel symbols of 2nd kind or the
affine connections which are given by

Γσ
µν = gσλΓµνλ =

1
2

gσλ

(
∂gµλ

∂xν
+

∂gνλ

∂xµ +
∂gµν

∂xλ

)
(66)

In four dimensions these will have (4)3 = 64 components. The
four generalized cases emerge in four dimensions for µ, ν, λ and σ

Case I: µ = ν = λ
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Γµ
µµ =

1
2

∂

∂xµ log gµµ (67)

In four dimensions
Γ0

00 Γ1
11

Γ2
22 Γ3

33
(68)

will emerge.
Case II: σ = µ, µ 6= ν

Γµ
µλ =

1
2

∂

∂xλ
log gµµ (69)

In four dimensions the following twelve cases

Γ0
01 Γ0

02 Γ0
03 Γ1

10
Γ1

12 Γ1
13 Γ2

20 Γ2
21

Γ2
23 Γ3

30 Γ3
31 Γ3

32

(70)

will emerge.
Case III: σ = µ, µ = λ

Γµ
λλ = − 1

2gµµ

∂gλλ

∂xµ (71)

In four dimensions the following twelve cases

Γ0
11 Γ0

22 Γ0
33 Γ1

00
Γ1

22 Γ1
33 Γ2

00 Γ2
11

Γ2
33 Γ3

00 Γ3
11 Γ3

22

(72)

will emerge.
Case IV: σ 6= µ 6= ν

Γσ
µν = gσλΓµνλ =

1
2

gσλ

(
∂gµλ

∂xν
+

∂gνλ

∂xµ +
∂gµν

∂xλ

)
= 0 (73)

In four dimensions the following twenty four cases

Γ0
12 Γ0

21 Γ0
13 Γ0

31
Γ0

23 Γ0
32 Γ1

02 Γ1
20

Γ1
03 Γ1

30 Γ1
23 Γ1

32
Γ2

01 Γ2
10 Γ2

03 Γ2
30

Γ2
13 Γ2

31 Γ3
01 Γ3

10
Γ3

12 Γ3
21 Γ3

20 Γ3
02

(74)

emerge and vanish.
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4.6. Non-vanishing Christoffel Symbols

Γ1
11 = kr

1−kr2

Γ1
10 = Γ1

01 = Γ2
20 = Γ2

02 = Γ3
30 = Γ3

03 = ȧ(t)
a(t)

Γ2
21 = Γ2

12 = Γ3
31 = Γ3

13 = 1
r

Γ3
32 = Γ3

23 = sin θ
cos θ

Γ0
11 = a(t)ȧ(t)

1−kr2

Γ0
22 = a(t)ȧ(t)r2

Γ0
33 = a(t)ȧ(t)r2sin2θ

Γ1
22 = −r

(
1− kr2)

Γ1
33 = −rsin2θ

(
1− kr2)

Γ2
33 = − sin θ cos θ

(75)

4.7. Riemann Curvature Tensor

The Riemann curvature tensor Rσ
µνλ has (4)4 = 256 components in four dimensions from which

only twenty components can possibly be non-vanishing. The Riemann tensor is given by

Rσ
µνλ =

∂

∂xν
Γσ

µλ −
∂

∂xλ
Γσ

µν + Γn
µλΓσ

nν − Γn
µνΓσ

nλ (76)

The possibly non-vanishing twenty components are given by

R0
110 R0

220 R0
330 R0

221
R0

331 R1
001 R1

221 R1
331

R1
332 R2

002 R2
112 R2

332
R2

021 R3
003 R3

113 R3
223

R3
031

(77)

The non-vanishing components are

R0
110 = − a(t)ä(t)

1−kr2

R0
101 = a(t)ä(t)

1−kr2

R1
010 = − ä(t)

a(t)

R1
001 = ä(t)

a(t)
R0

220 = −a(t)ä(t)r2

R0
202 = a(t)ä(t)r2

R2
020 = R3

030 = − ä(t)
a(t)

R2
002 = R3

003 = ä(t)
a(t)

R0
330 = −a(t)ä(t)r2sin2θ

R0
303 = a(t)ä(t)r2sin2θ

R1
221 = R3

223 = −r2 (k + ȧ2(t)
)

R1
212 = R3

232 = r2 (k + ȧ2(t)
)

R2
121 = R3

131 = k+ȧ2(t)
1−kr2

R2
112 = R3

113 = − k+ȧ2(t)
1−kr2

R1
331 = R2

332 = −r2sin2θ
(
k + ȧ2(t)

)
R1

313 = R2
323 = r2sin2θ

(
k + ȧ2(t)

)

(78)
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4.8. Ricci Curvature Tensor and Ricci Scalar

Ricci tensor
(

Rµν

)
is obtained by contracting Riemann tensor Rσ

µνλ. We contract it by placing

λ = σ, so that Rσ
µνλ = Rλ

µνλ = Rµν In four dimensions it has (4)2 = 16 components. These are

R00 R11 R22 R33 R01

R10 R02 R20 R03 R30

R12 R21 R31 R13 R23

R32

(79)

The non-vanishing components are

R00 = 3 ä
a

R11 = − a(t)ä(t)+2k+2ȧ2

1−kr2

R22 = −r2 (a(t)ä(t) + 2k + 2ȧ2)
R33 = −r2sin2θ

(
a(t)ä(t) + 2k + 2ȧ2) (80)

Ricci scalar (R) is obtained by contracting Ricci tensor

R = gµνRµν (81)

Using double sums and simplifying in four dimensions, we have

R = g00R00 + g11R11 + g22R22 + g33R33 (82)

R = −6

[
ä(t)
a(t)

+

(
ȧ(t)
a(t)

)2

+
k

a2(t)

]
(83)

4.9. Einstein Tensor
(
Gµν

)
Einstein tensor is defined in terms of Ricci tensor Rµν, Ricci scalar R and the metric tensor gµν. It

is expressed as

Gµν = Rµν −
1
2

gµνR (84)

In four dimensions it has (4)2 = 16, components. These are

G00 G11 G22 G33 G01

G10 G02 G20 G03 G30

G12 G21 G31 G13 G23

G32

(85)

The non-vanishing components are

G00 = −3
[( ȧ

a
)2

+ k
a2

]
G11 = g11

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
G22 = g22

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
G33 = g33

[
2 ä

a +
( ȧ

a
)2

+ k
a2

] (86)

In Eq. (86) the spatial components of Einstein tensor can be written in a single equation of tensorial
nature.

Gµν = gµν

[
2

ä
a
+

(
ȧ
a

)2
+

k
a2

]
(87)
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where µ = ν = 1, 2, 3, and mixed Einstein tensor can be found by gζνGµν = Gζ
µ

G0
0 = 3

[( ȧ
a
)2

+ k
a2

]
G1

1 = g11

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
G2

2 = g22

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
G3

3 = g33

[
2 ä

a +
( ȧ

a
)2

+ k
a2

] (88)

Now we calculate the energy-momentum tensor of a perfect fluid in mixed form. Cosmological
principle and Weyl’s postulate imply the material content of the universe to be regarded as perfect
fluid [1]

gζνTµν = Tζ
µ =


T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

 =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 (89)

Non-vanishing components of energy-momentum tensor are

T0
0 = ρ T1

1 = −p
T2

2 = −p T3
3 = −p

(90)

Putting the values of Einstein tensor Gµν and energy-momentum tensor Tµν from Eq. (88) and Eq. (89)
respectively in Einstein field equations

Gζ
µ = 8πTζ

µ (91)

3
[( ȧ

a
)2

+ k
a2

]
= 8πGρ

g11

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
= −8πGp

g22

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
= −8πGp

g33

[
2 ä

a +
( ȧ

a
)2

+ k
a2

]
= −8πGp

(92)

5. Derivation of Friedmann’s Equations

Now using the Einstein field equations, we set to derive the Friedmann’s Equations that describe
the evolution of the universe by relating the large-scale geometrical characteristics of spacetime to the
large-scale distribution of matter-energy and momentum. From Eq. (92), we can write

3

[(
ȧ
a

)2
+

k
a2

]
= 8πGρ (93)

2
ä
a
+

(
ȧ
a

)2
+

k
a2 = −8πGp (94)

For other two components listed in Eq. (92) the 2nd and 3rd components repeat, therefore we will
write only one time from the three components. From Eq. (93) and Eq. (94) we derive the Friedmann’s
Equations and an equation for the conservation of matter. Substituting Eq. (93) in Eq. (94) and
performing simplification we get

ä
a
= −4πG

3
(ρ + 3p) (95)

and from Eq. (93) which is the time-time component of the Einstein Equations.(
ȧ
a

)2
+

k
a2 =

8πG
3

ρ (96)
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for
ȧ
a
= H (97)

which is Hubble parameter and gives expansion rate, The above Eq. (96) can be written as

H2 +
k
a2 =

8πG
3

ρ (98)

differentiating Eq. (97) with respect to time ‘t’

∂tH = ∂t

(
ȧ
a

)
(99)

We obtain
Ḣ =

ä
a
− H2 (100)

which gives

Ḣ + H2 =
ä
a

(101)

So that Eq. (95) takes the form in terms of Hubble parameter.

Ḣ + H2 = −4πG
3

(ρ + 3p) (102)

We can also find
Ḣ = −4πG

3
(ρ + 3p)− H2 (103)

From Eq. (98) H2 = 8πG
3 ρ with k = 0, for flat universe substituting it in Eq. (103) above

Ḣ = −4πG
3

(ρ + 3p)− 8πG
3

ρ (104)

which results in
∂tH = −4πG (ρ + p) (105)

Now differentiating Eq. (93) with respect to time after shifting the factor 3 on the right side, we have

ȧ
a

[
2

ä
a
− 2
(

ȧ
a

)2
− 2

k
a2

]
=

8πG
3

ρ̇ (106)

subtracting now Eq. (93) from Eq. (94), we obtain

2
ä
a
− 2
(

ȧ
a

)2
− 2

k
a2 = −8πG (ρ + p) (107)

substituting Eq. (107) in Eq. (106), after simplification we have

ρ̇ + 3
ȧ
a
(ρ + p) = 0 (108)

Cosmological principle compels us to consider a fluid in which inhomogeneities will be considered
smoothed out and evolution of the universe shall be considered in the form of perfect fluid
characterized by energy density ρ and isotropic pressure p. Further we consider that the pressure of
the fluid depends only on the density neglecting its impact on the volume and the temperature i.e.
p = p (ρ) which defines a barotropic fluid. In addition, pressure and density bear a linear relationship

p ∝ ρ⇒ p = wρ (109)
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where w = p
ρ is a dimensionless constant known as equation of state parameter. Substituting Eq. (109)

in Eq. (108), we have another form of energy conservation for the equation of state parameter w,

ρ̇

ρ
+ 3

ȧ
a
(1 + w) = 0 (110)

Now, Eq. (95), Eq. (96) and Eq. (108) represent two Friedmann’s Equations namely acceleration
and evolution equations and equation of conservation respectively. According to this equation the
evolution of all kinds of matter is determined by the conservation of energy and momentum.

5.1. Friedmann Equations with Cosmological Constant Λ

We have to incorporate dark matter and dark energy in the matter-energy content due to the
significance of their role in current accelerated expansion and the present Minkowskian flat geometry
of the universe. Therefore, their role is however unavoidable in the evolution of the universe. The
solution of FLRW line element gives the Friedman’s equations using Einstein field equations with
cosmological constant Λ written usually in the form

Gµν + Λgµν = 8πTµν (111)

and Friedmann’s equations with cosmological constant Λ can be worked out

ȧ2

a2 +
k
a2 =

8πG
3

ρ +
Λ
3

(112)

ä
a
= −4πG

3
(ρ + 3p) +

Λ
3

(113)

The equation of energy conservation can also be calculated from these Friedman equations in the
presence of cosmological constant Λ. Multiplying Eq. (112) with 3a2, differentiating it with respect to
time and then dividing by ȧ, we have

6ä = 8πGa
(

2ρ +
a
ȧ

ρ̇
)
+ 2Λa (114)

dividing Eq. (114) by a.

6
ä
a
= 8πG

(
2ρ +

a
ȧ

ρ̇
)
+ 2Λ (115)

Substituting now the 2nd Friedman Equation from Eq. (113) in it, we have

6
(
−4πG

3
(ρ + 3p) +

Λ
3

)
= 8πG

(
2ρ +

a
ȧ

ρ̇
)
+ 2Λ (116)

after simplification, we obtain

ρ̇ + 3
ȧ
a
(ρ + p) = 0 (117)

Where ρ and p are contributed by all whatever exists and constitutes the universe.

6. A Geometric Object Embedded in an n-Dimensional Space

An object cannot be placed in a space whose dimensions are equal or less than the object to be
placed, rather the space must have larger number of dimensions in order to let the object allow rest in
it. The presence of an object in a space having larger dimensions than the object is called embedding of
it in that space.
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6.1. Intrinsic Geometry

The properties of the geometry that we have access to, based on visualization of the two
dimensional beings are called intrinsic because two dimensional beings cannot observe how surfaces
are shaped in three or higher dimensional spaces.

6.2. Extrinsic Geometry

The properties of the geometry that we have access to, based on visualization of higher
dimensional creature are called extrinsic because higher dimensional creature can observe how surfaces
are shaped in three or higher dimensional spaces. The geometrical properties related to an object
describing how it has been embedded in some higher dimensional space. Extrinsic geometrical
properties depend on how the bodies are placed in the space and how they affect it. The geometry
which comes into existence due to interaction between space and the body placed in it describes the
extrinsic properties. General relativity considers the geometry of spacetime as the extrinsic property of
an object and owes its existence due to the body being present in it.

6.3. The Geometry of 2-Sphere Embedded in Three Dimensional Space

We consider a three dimensional Euclidean space where three dimensions namely length, width
and height are represented by three coordinate axes respectively, as we know this space consists of
points separate from time, and therefore we do not call its points as events. We assign the triplet of
three Cartesian coordinates (x, y, z) to each point of it, where x, y and z are measured along the three
axes of it.

Figure 10. The geometry of 2-sphere embedded in three dimensional Euclidean space

The line element in this space is given by

ds2 = dx2 + dy2 + dz2 (118)

Considering now a sphere with its center at the origin of this coordinate system and envisaging its
radius to be a, the surface in Cartesian coordinates (x, y, z) where x, y and z are along the three axes of
three dimensional Euclidean space. The equation of sphere of this sphere is

x2 + y2 + z2 = a2 (119)
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Differentiating Eq. (119) with respect to time

2x
dx
dt

+ 2x
dx
dt

+ 2x
dx
dt

= 0 (120)

And in differential form
2xdx + 2ydy + 2zdz = 0 (121)

Solving Eq. (121) for dz, we have

dz = − xdx + ydy
z

(122)

Finding the value of z from Eq. (119)

z =
√

a2 − (x2 + y2) (123)

Substituting in Eq. (122)

dz = − xdx + ydy√
a2 − (x2 + y2)

(124)

The value of dz = − xdx+ydy

[a2−(x2+y2)]
1
2

comes up with a sort of constraint on dz which despite of being

displaced by infinitesimally small amounts dx and dy from an arbitrary point on the surface of the
sphere holds us on the surface of the sphere. Squaring dz in Eq. (124)

dz2 =
(xdx + ydy)2

a2 − (x2 + y2)
(125)

Putting in Eq. (118), the line element takes the form by substituting for dz2

ds2 = dx2 + dy2 +
(xdx + ydy)2

a2 − (x2 + y2)
(126)

The value of the line element in Eq. (126) represents the line element for a sphere in terms of Cartesian
coordinates (x, y, z). We further observe that the line element in Eq. (126) has a coordinate singularity
at a2 = x2 + y2 in correspondence with the equator of the sphere and in relation to the point A,
otherwise at the equator in the intrinsic geometry of 2-sphere there exists no such physical situation.
The embedding scenario manifests how the coordinates (x, y) cover the whole surface of the sphere
uniquely up to this point A. The geometry of 2-sphere in these coordinates becomes geometrically
meaningful in three dimensional Euclidean space. We can transform the line element in Eq. (126)
above into spherical polar coordinates by taking

x = r sin θ cos φ

y = r sin θ sin φ
(127)

where we differentiate each of x and y with respect to θ and φ alternately to find

dx = sin θ cos φdr + r cos φ cos θdθ − r sin θ sin φdφ

dy = sin θ sin φdr + r sin φ cos θdθ + r sin θ cos φdφ
(128)

Adding the values of x, y given in Eq. (127) after taking square of both equations in it, we get

x2 + y2 = r2sin2θ (129)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2021                   doi:10.20944/preprints202106.0597.v1

https://doi.org/10.20944/preprints202106.0597.v1


Journal Not Specified 2021, 1, 0 30 of 82

Adding dx and dy in Eq. (128) after taking square of both equations in it, we possess

dx2 + dy2 = (sin θdr + r cos θdθ)2 + r2sin2θdφ2 (130)

we find the expression

xdx + ydy = (sin θdr + r cos θdθ) (x cos φ + y sin φ)

−r sin θdφ (x sin φ− y cos φ)
(131)

Squaring Eq. (131), we have

(xdx + ydy)2 =

(
(sin θdr + r cos θdθ) (x cos φ + y sin φ)

−r sin θdφ (x sin φ− y cos φ)

)2

(132)

Now substituting Eq. (129), Eq. (130) and Eq. (132) in Eq. (126) and simplifying to have the following
form

ds2 = dr2 + r2dθ2 + r2sin2θdφ2 (133)

The value of the line element in Eq. (133) gives the line element for a sphere in terms of Spherical polar
coordinates (r, θ, φ). The line element in Eq. (126) results in an alternative form for

x = ξ cos φ

y = ξ sin φ
(134)

ds2 =
a2

a2 − ξ2)
dξ2 + ξ2dφ (135)

The line element in Eq. (135) above gives us, in addition, freedom to choose an arbitrary point on
the surface of the sphere by ξ = 0 as the origin of the coordinate system. This freedom connotes
in it as a hidden symmetry. We can develop ξ and φ coordinate curves on the surface of the sphere
by generating a standard coordinate system (ξ, φ) on the tangent plane at the point A that projects
vertically downward onto the surface of the sphere. We further observe that the line element in Eq.
(135) has a coordinate singularity at a = ξ in correspondence with the equator of the sphere in relation
to the point A, otherwise at the equator in the intrinsic geometry of 2-sphere there exists no shade of
occurence of such situation. The embedding picture manifests how the coordinates (ξ, φ) cover the
whole surface of the sphere uniquely up to this point A. The geometry of 2-sphere in these coordinates
becomes geometrically meaningful in three dimensional Euclidean space.

6.4. The Geometry of 3-Sphere Embedded in Four Dimensional Euclidean Space

Spaces with dimensions higher than three are now significant in mathematical sciences to
have proper description of the physical universe. We consider a four dimensional Euclidean space
which can be considered mathematical extension of three dimensional Euclidean space. Minkowski
used a four dimensional spacetime to explain the phenomena of the physical world as required by
special relaticvity. The structure of Euclidean four dimensional space is simple as compared to the
Minkowskian structure of spacetime. Minkowskian four dimensional spacetime is pseudo-Euclidean
space. In four dimensional Euclidean we assign the quadruplet of four Cartesian coordinates (x, y, z, w)

to each point of it, where x, y, z and w are along the four axes of it. The line element in this space is
given by

ds2 = dx2 + dy2 + dz2 + dw2 (136)
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Considering now a sphere with its center at the origin of this coordinate system with radius a,
the surface in Cartesian coordinates (x, y, z, w) where x, y, z and w are along the four axes of four
dimensional Euclidean space. The equation of the sphere reads as

x2 + y2 + z2 + w2 = a2 (137)

Differentiating Eq. (137) with respect to time,

2x
dx
dt

+ 2y
dy
dt

+ 2z
dz
dt

+ 2w
dw
dt

= 0 (138)

And in differential form
2xdx + 2ydy + 2zdz + 2wdw = 0 (139)

Finding out the value of dw from Eq. (138), we get

dw = − xdx + ydy + zdz
w

(140)

Now finding the value of w from Eq. (137)

w =
√

a2 − (x2 + y2 + z2) (141)

Substituting in Eq. (140), we obtain

dw = − xdx + ydy + zdz√
a2 − (x2 + y2 + z2)

(142)

The value of dw = − xdx+ydy+zdz

[a2−(x2+y2+z2)]
1
2

provides a sort of constraint on dw which, though displaced by

infinitesimally small amounts dx, dy, dz from an arbitrary point on the surface of the sphere holds us
stuck on the surface of the sphere. Squaring Eq. (142)

dw2 = − (xdx + ydy + zdz)2

a2 − (x2 + y2 + z2)
(143)

Substituting now in Eq. (136), the line element takes the form for the value of dw2

ds2 = dx2 + dy2 + dz2 +
(xdx + ydy + zdz)2

a2 − (x2 + y2 + z2)
(144)

The value of the line element in Eq. (144) gives the line element for a sphere in terms of Cartesian
coordinates (x, y, z, w), We further observe that the line elements in Eq. (144) has a coordinate
singularity at a2 = x2 + y2 + z2 in correspondence with the equator of the sphere relative to the
point A, otherwise at the equator in the intrinsic geometry of the 3-sphere there does not exist any
situation like this. The embedding picture manifests how the coordinates (x, y, z) cover the whole
surface of the sphere uniquely up to this point A. The geometry of 3-sphere in these coordinates
becomes geometrically meaningful in four dimensional Euclidean space. We transform the line
element in Eq. (144) into spherical polar coordinates which are given below

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

(145)
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Where we differentiate x, and y with respect to θ and with respect to φ each and differentiate z with
respect to θ only to find

dx = sin θ cos φdr + r cos φ cos θdθ − r sin θ sin φdφ

dy = sin θ sin φdr + r sin φ cos θdθ + r sin θ cos φdφ

dz = r cos θ

(146)

Adding x, y and z in Eq. (145) after taking square of all three equations in it to obtain

x2 + y2 + z2 = r2 (147)

Adding now dx, dy and dz in Eq. (146) after taking square of all three equations in it to have

dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2sin2θdφ2 (148)

and the expression we calculate

xdx + ydy + zdz = (sin θdr + r cos θdθ) (x cos φ + y sin φ)

−r sin θdφ (x sin φ− y cos φ) + r cos θ (cos θdr− r sin θdθ)
(149)

Squaring Eq. (149), we have

(xdx + ydy + zdz)2 =

 (sin θdr + r cos θdθ) (x cos φ + y sin φ)

−r sin θdφ (x sin φ− y cos φ)

+r cos θ (cos θdr− r sin θdθ)


2

(150)

Now substituting Eq. (147), Eq. (148) and Eq. (150) in Eq. (144), fter simplification we get

ds2 =
a2

a2 − r2 dr2 + r2dθ2 + r2sin2θdφ2 (151)

It can further be expressed in the form

ds2 =
1(

1− r2

a2

)dr2 + r2dθ2 + r2sin2θdφ2 (152)

It is important to note here that for a→ ∞ in the Eq. (152) above, It reduces to the metric of ordinary
three dimensional Euclidean space

ds2 = dr2 + r2dθ2 + r2sin2θdφ2 (153)

Which we calculated in Eq. (133). The metric in Eq. (151) has a singularity at r = a, which is just a
coordinate singularity and has nothing to do with physical reality of the sphere as we can observe.
The line element in Eq. (152) results in an alternative form for

x = ξ cos φ

y = ξ sin φ
(154)

ds2 =
a2

a2 − ξ2)
dξ2 + ξ2dφ (155)

The line element in Eq. (155) gives us, in addition, freedom to choose an arbitrary point on the surface
of the sphere by ξ = 0 as the origin of the coordinate system. This freedom is implied by it as a hidden
symmetry in it. We can develop ξ and φ coordinate curves on the surface of the sphere by generating a
standard coordinate system (ξ, φ) on the tangent plane at the point A that projects vertically downward
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onto the surface of the sphere. We further observe that the line element in Eq. (155) has a coordinate
singularity at a = ξ with respect to the equator of the sphere in relation with the point A, otherwise
at the equator in the intrinsic geometry of 2-sphere there exists no such situation. The embedding
picture manifests how the coordinates (ξ, φ) cover the whole surface of the sphere uniquely up to the
point A. The geometry of the 2-sphere in these coordinates becomes geometrically meaningful in three
dimensional Euclidean space.

7. Einstein’s Static Universe

It was Einstein who applied general relativity himself to the large scale of spacetime [2] and
presented the very first relativistic model of the universe laying the foundational stone of the modern
theoretical cosmology. The model was later on called as Einstein world or universe. For this purpose
Einstein modified his field equations by proposing an inbuilt energy density known as cosmological
constant Lambda in the geometrical structure of spacetime itself that provides repulsive gravity to keep
the universe from expanding

Gµν + Λgµν = 8πTµν (156)

Eq. (156) when solved for the most homogeneous and isotropic geometry of FLRW spacetime produces
Friedmann equations as we derived earlier(

ȧ
a

)2
+

k
a2 =

8πG
3

ρ +
Λ
3

(157)

ä
a
= −4πG

3
(ρ + 3p) +

Λ
3

(158)

Since for a static universe H = 0, which implies that ä
a = 0. Now a static universe possesses cold

matter which means it does not has pressure i.e. p = 0, so Eq. (157) and Eq. (158) reduce to the form
respectively

8πG
3

ρ +
Λ
3
− k

a2 = 0 (159)

and
− 4πG

3
ρ +

Λ
3

= 0 (160)

From above Eq. (160), we have
Λ = 4πGρ (161)

Substituting this value of Λ in Eq. (159), and having the equation simplified we again get the value of
Λ in terms of the curvature term k and the scalae factor a (t), that is

Λ =
k
a2 (162)

The line element for the static Einstein universe can be written now using FLRW metric. From above
Eq. (162) for k = +1, we have a2 (t) = Λ−1, substituting in Eq. (59), the static solution for closed
universe becomes

ds2 = −dt2 + Λ−1
(

1
1− kr2 dr2 + r2dθ2 + r2sin2θdφ2

)
Using the Schwarzschild coordinates with the rescale of radial coordinate and by defining R = ra,

we have

ds2 = −dt2 +
1

1−ΛR2 dR2 + R2dθ2 + R2sin2θdφ2
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Case-I (empty universe)

substituting Λ = 0 in Eq. (161) gives 4πGρ = 0 ⇒ ρ = 0 which implies that k = 0 a Euclidean
flat universe. It does not belong to Einstein static universe because it is empty.

Case II (non-empty universe)

Einstein universe belongs to Λ 6= 0 and ρ 6= 0 implying that k > 0 which represents a universe
with hypersurface of Riemannian geometry. In Einstein’s universe ρ > 0, therefore a positive
cosmological constant Λ > 0 would be allowed which also implies k > 0.

7.1. Instability of Einstein’s Universe

Equation of energy conservation can be had from Eq. (157) and Eq. (158) by multiplying Eq. (158)
with 3a2, differentiating it with respect to time and then dividing by ȧ, we have

6ä = 8πGa
(

2ρ +
a
ȧ

ρ̇
)
+ 2Λa (163)

Dividing Eq. (163) by a and substituting the 2nd Friedman Equation from Eq. (159) in it, we have

6
ä
a
= 8πG

(
2ρ +

a
ȧ

ρ̇
)
+ 2Λ (164)

6
(
−4πG

3
(ρ + 3p) +

Λ
3

)
= 8πG

(
2ρ +

a
ȧ

ρ̇
)
+ 2Λ (165)

after simplification, we get

ρ̇ + 3
ȧ
a
(ρ + p) = 0 (166)

For the cold matter universe p = 0, with this the resulting equation is a separable universe

ρ̇ + 3
ȧ
a

ρ = 0 (167)

∫
ρ̇

ρ
dt = −3

∫ ȧ
a

dt (168)

ln ρ = −3 ln a + ln Z (169)

ln ρ = ln a−3 + ln Z (170)

ln ρ− ln a−3 = ln Z (171)

ln
ρ

a−3 = ln Z (172)

which gives
ρa3 = Z (173)

where Z is some positive constant of integration Z > 0

ρ =
Z
a3 (174)

Further, since the universe does not expand so that a(t) = a(t0) = a0, therefore replacing a(t) with a0

in Eq. (174)

ρ =
Z
a3

0
(175)
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Substituting the value of ρ from Eq. (176) in Eq. (158) i.e. 2nd Friedmann Equation with p = 0, we
obtain

ä
a
= −4πGZ

3a03 +
Λ
3

(176)

and substituting in Eq. (161) gives

Λ = 4πGρ = 4πG
Z
a3

0
(177)

where 4πG Z
a3

0
> 0 since Z > 0, Now we perturb the solution slightly with the following perturbation

ε << 1 (178)

a(t) = a(t0) + ε(t)a(t0) = a0(1 + ε(t)) (179)

substituting this in Eq. (175), we have

d2

dt2 (a0(1 + ε(t)))
a0(1 + ε(t))

= − 4πGZ

3(a0(1 + ε(t)))3 +
Λ
3

(180)

Or
d2

dt2 (a0(1 + ε(t))) = −4πGZ
3a2

0
(1 + ε(t))−2 +

Λ
3

a0(1 + ε(t)) (181)

Using the Maclaurin series expansion as ε << 1, and (1 + ε(t))−2 = 1− 2ε + O(ε2), Now Eq. (181)
becomes by neglecting O(ε2) since ε << 1, so that

a0
d2ε

dt2 = −4πGZ
3a2

0
(1− 2ε(t)) +

Λ
3

a0(1 + ε(t)) + O(ε2) (182)

ε̈ = −4πGZ
3a3

0
+

8πGZ
3a3

0
ε +

Λ
3

ε +
Λ
3

=

(
8πGZ

3a3
0

+
Λ
3

)
ε +

Λ
3
− 4πGZ

3a3
0

(183)

Using the value of Λ = 4πGZ
a3

0
from Eq. (177) in Eq. (183), it can be expressed in the form

d2ε

dt2 −Λε = 0 (184)

As the cosmological constant is Λ > 0, the solution of above equation will read as

ε = P exp(
√

Λt) + Q exp(−
√

Λt) (185)

Due to existence of the 1st term in the above solution as positive and in the case of an arbitrary
perturbation considered initially, both of the constants P 6= 0, Q 6= 0 will help the perturbation grow
and it will not remain small which will imply that the static solution is unstable, although P = 0 can
be possible only for specialized initial conditions such as singular one.

7.2. de Sitter Universe

In Einstein’s static model with positive cosmological constant when energy density of the matter
is removed de Sitter model results. The de Sitter model of the universe presented in 1917 was proposed
just after Einstein presented his static closed model of the universe. Einstein resorting to the Mach’s
principle was of the view that it is merely matter density in universe that is the cause of inertia
and gravitation. For checking the status of this Einstein’s belief de Sitter posed the 2nd model of
the universe devoid of matter density Tµν = 0, however retaining the cosmological constant that is
Gµν = gµνΛ. de Sitter model is the maximally symmetric solution of the Einstein’s field equations
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with vanishinf matter density. The geometric theoratic structure of sacetime of de Sitter model is
comparatively more complicated than that of Einstein model of the universe. The characteristic of
the de Sitter model is that it predicts redshift despite it contains neither matter density nor radiation.
we reviewe de Sitter model using Fiedmann’s equations, however these equations were worked out
after the development of de Sitter model. We derived Friedmann equations above in the presence of
cosmological constant term Λ which are(

ȧ
a

)2
+

k
a2 =

8πG
3

ρ +
Λ
3

(186)

ä
a
= −4πG

3
(ρ + 3p) +

Λ
3

(187)

de Sitter universe corresponds to ρ = 0, so that k (ρ) = 0, Eq. (186) takes the form

ȧ
a
=

√
Λ
3

(188)

Integrating with respect to time ∫ ȧ(t)
a(t)

dt =

√
Λ
3

∫
dt (189)

a(t) = e
√

Λ
3 t (190)

From Eq. (188), H = ȧ
a , so the Eq. (190) can be expressed as

a(t) = eHt (191)

Which corresponds to the modified Einstein field equations

Gµν = −gµνΛ (192)

8. The Conformal FLRW Line Element

The metric in Eq. (57) can be conformaly recast by defining conformal time as

dτ =
dt

a(t)
(193)

so that
dt = a(t)dτ (194)

After substituting Eq. (194) in Eq. (57) and simplifying, we get the line element in the form

ds2 = −a(τ)2
[
−dτ2 −

(
1− kr2

)−1
dr2 − r2Ω2

]
(195)

Due to conformal time the scale factor a (τ) becomes a factor of spatial as well as temporal components
in the metric. Now a function f (t) which depends upon time can be differentiated as

ḟ (t) = f ′(τ)
a(τ)

f̈ (t) = f ′′(τ)
a2(τ)

− f ′(τ)
a2(τ)
H

(196)
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Where dot ”.” and ”, ” represent derivatives with respect to cosmic and conformal times respectively
andH = a′(τ)

a(τ) . Now replacing f (t) and its derivatives with a (t) both in correspondence with cosmic
time ′t′ and conformal time ′τ′

ȧ (t) =
a′ (τ)
a (τ)

(197)

ä (t) =
a′′ (τ)
a2 (τ)

− H
2

a (τ)
(198)

and
H =

ȧ
a
=
H

a (τ)
(199)

Ḣ =
H′

a2 (τ)
− H2

a2 (τ)
(200)

Similarly

H2 =
8πGa2

3
ρ− k (201)

and
ρ′ + 3H (ρ + p) = 0 (202)

Now we solve the energy conservation equation From Eq. (108)

ρ̇ + 3
ȧ
a
(ρ + p) = 0 (203)

in order to get the relation between energy density ρ, scale factor a and equation of state parameter
w = p

ρ we solve

ρ̇ = −3
ȧ
a
(ρ + p) = −3

ȧ
a

ρ

(
1 +

p
ρ

)
(204)

⇒ ρ̇

ρ
= −3

ȧ
a
(1 + w) (205)

where p
ρ = w. Integrating Eq. (205)

∫ 1
ρ

dρ = −3 (1 + w)
∫ 1

a
da (206)

which gives
ρ = a−3(1+w) (207)

Now from 1st Friedmann equation, after simplification and doing integration, we find

a = t
2

3(1+w) (208)

For w = −1, 0, 1
3 , we find pressure, energy density and scale factor characterizing the expansion of the

universe which depicts three phases of the universe namely vacuum dominated, radiation dominated
and matter dominated respectively.

8.1. Vacuum Domination (Λ-dominated era

) For w = −1
ρ = a−3(1+w) = a0 (209)

and
a = t

2
3(1−1) = t∞ (210)
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8.2. Radiation Domination

For w = 1
3

ρ = a−3(1+ 1
3 ) = a−4 (211)

and

a = t
2

3(1+ 1
3 ) = t

1
2 (212)

8.3. Matter Domination

For w = 0
ρ = a−3(1+0) = a−3 (213)

and
a = t

2
3(1+0) = t

2
3 (214)

8.4. Critical Density (ρc) and Density Parameter (Ω)

Now from 1st Friedman Eq. (112) with Λ = 0 and H = ∂t ln a, we relate the curvature of spacetime
k and the expansion characterized by the scale factor a (t) to the energy density ρ (t) of the universe
and find the expression for the critical density required to keep the current rate of the expansion.

H2 =
8πG

3
ρ− k

a2 (215)

For critical density ρc the curvature of spacetime geometry k must vanish, So that Eq. (215) reduces to

H2 =
8πG

3
ρ (216)

where we obtain the expression for critical density

ρ = ρc =
3H2

8πG
(217)

From Eq. (215) dividing both sides by H2 and rearranging

1 =
8πG
3H2 ρ− k

a2H2 =
ρ(

3H2

8πG

) − k
a2H2 (218)

Where 3H2

8πG = ρc, therefore Eq. (218) becomes

1 =
ρ

ρc
− k

a2H2 = Ω− k
a2H2 (219)

⇒ Ω− 1 =
k

a2H2 (220)

where Ω = ρ
ρc

is the density parameter and we can predict in terms of it about the geometry of universe.
The local geometry of the universe is investigated by this parameter by observing whether the relative
density is smaller than unity, greater than or equal to it.
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Figure 11. The spherical geometry Ω0 > 1 and for hyperbolic geometry Ω0 < 1 and Ω0 = 1 represents
flat geometry

Eq. (220) can also be derived from Eq. (215) in an alternative style. Writing Eq. (215) by
multiplying and dividing the 1st term on the right side with ρc

H2 =
8πGρ

3
ρc

ρc
− k

a2 (221)

Using the density parameter Ω = ρ
ρc

, in Eq. (221) we can write

H2 =
8πG

3
ρcΩ− k

a2 (222)

Now from from the critical density expression in Eq. (217)

⇒ 3
8πG = ρc

H2

⇒ 8πG
3 = H2

ρc

(223)

Substituting the 2nd part in Eq. (223 in Eq. (222) and using the density parameter we get

H2 = H2Ω− k
a2 (224)

which gives the following form similar to Eq. (220)

Ω− 1 =
k

a2H2 (225)

Now
Ω =

ρ

ρc
(226)

is considered decisive in describing the evolution of the universe. The present value of it is denoted by
Ω0 and it gives following three geometries of the universe

Ω0 � 1 (227)

a closed universe implying the universe with spherical geometry

Ω0 ≺ 1 (228)
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an open universe implying the universe with hyperbolic geometry and

Ω0 = 1 (229)

a flat universe implying the universe with Euclidean or Minkowskan geometry. The present value of
critical density can be calculated with present value of Hubble constant H0, gravitational constant G
and π.

ρc,0 =
3H2

0
8πG

= 3()2

8()()
= 1.1× 10−5h2

(230)

where the scaled Hubble parameter h is defined by H = 100hkm s−1 Mpc−1 and H−1 = 9.778h−1 Gyr
H−1 = 2998h−1 Mpc.

8.5. Particle Horizon

When the scale factor a (t) is multiplied with the co-moving coordinates we get the proper
distance. In cosmology causality is one directional since we just receive photons from the outer world
that serves to be self-sufficient approach. The horizon or horizon distance of the universe is defined as
the maximum distance that light could have travelled to our reference Earth since the time after the
beginning of the universe when for the first time it became exposed to electromagnetic radiation [36],
thus horizon represents the causal distance in the universe.

dH(t) = a(t)
∫ t

0

dt′

a(t′)
(231)

Such that dH(t) ∼ H−1(t) Particle horizon is defined to be the distance travelled by a photon from the
time of big bang upto a certaim later time t. Particle horizon puts limits on communication from the
deep inward past.

8.6. Event Horizon

An event horizon defines such a set of points from which light signals sent at some given time
will never be received by an observer in the future. It sets limits on the horizon distance and on
communication to the future so that as long as it exists, the size of the causal patch of the universe will
be finite.

8.7. Deceleration Parameter (q0)

A Taylor series is a series expansion of a function about a given point. We require here a one
dimensional Taylor series which is the expansion of a real function f (x) about a point x = a and is
given by

f (t) = f (x)|x=a = f (a) + f ′ (a) (x− a) + f ′′(a)
2! (x− a)2

+ f ′′′(a)
3! (x− a)3 + · · ·+ f n(a)

n! (x− a)n + · · ·
(232)

We take the function f (x) = a (t) which is scale factor and find its Taylor series expansion about the
present time t = t0

a (t) = a (t)|t=t0
= a (t0) + ȧ (t0) (t− t0) +

ä(t0)
2! (t− t0)

2

+ (t0)
3! (t− t0)

3 + · · ·+ an(t0)
n! (t− t0)

n + · · ·
(233)
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dividing Eq. (233) by a (t0) throughout, we have

a(t)
a(t0)

= a(t0)
a(t0)

+ ȧ(t0)
a(t0)

(t− t0) +
1
2

ä(t0)
a(t0)

(t− t0)
2

+ 1
6

(t0)
a(t0)

(t− t0)
3 + · · ·+ 1

n!
an(t0)
a(t0)

(t− t0)
n + · · ·

(234)

Ignoring the higher terms we have the following remaining expression

a (t)
a (t0)

= 1 +
ȧ (t0)

a (t0)
(t− t0) +

1
2

ä (t0)

a (t0)
(t− t0)

2 (235)

Multiplying and dividing now by ȧ (t) with 3rd term of Eq. (235) on the right hand side

a (t)
a (t0)

= 1 +
ȧ (t0)

a (t0)
(t− t0) +

1
2

ȧ (t0)

a (t)
ä (t0)

ȧ (t0)
(t− t0)

2 (236)

Multiplying again the 3rd term on the right hand side of Eq. (236) with ȧ(t0)
a(t0)

and its reciprocal a(t0)
ȧ(t0)

we
have

a (t)
a (t0)

= 1 +
ȧ (t0)

a (t0)
(t− t0) +

1
2

(
ȧ (t0)

a (t0)
× a (t0)

ȧ (t0)

)
ȧ (t0)

a (t)
ä (t0)

ȧ (t0)
(t− t0)

2 (237)

Putting for ȧ(t0)
a(t0)

= H0, the present value of Hubble parameter and a(t0)ä(t0)

[ȧ(t0)]
2 = −q0, Eq. (237) reduces

to the following

a (t)
a (t0)

= 1 + H0 (t− t0) +
1
2

H2
0 (−q0) (t− t0)

2 (238)

where

q0 = − a (t0) ä (t0)

[ȧ (t0)]
2 = − ä (t0)

ȧ (t0)
H−1

0 = − ä (t0)

a (t0)
H−2

0 (239)

is called the deceleration parameter. It tells us that greater the value of q0, the faster will be speed of
deceleration. It can be further related with the acceleration equation

ä (t)
a (t)

= −4πG
3

(ρ + 3p) (240)

Putting Eq. (240) in Eq. (239)

q0 = −
(
−4πG

3
(ρ + 3p)

)
H−2

0 (241)

With p = 0 for a universe having matter-domination and present energy density ρ = ρ0 with dividing
and multiplying by 2, we possess

q0 =
1
2

8πG
3H2

0
ρ0 (242)

Now the critical density is given by ρc =
3H2

0
8πG from the 1st Friedmann equation. Therefore Eq. (242)

takes the form

q0 =
1
2

(
1
ρc

)
ρ0 =

1
2

ρ0

ρc
=

1
2

Ω0 (243)

The measurement of deceleration parameter q0 determines how bigger was the universe in earlier
times. The explorations of redshift measures of supernovae of Type Ia to measure the value of q0

has shown astoundingly that q0 < 0 at the present which means that the expansion of the universe
is accelerating rather than to be decelerating which affirms that the concept of dark energy must
be acknowledged. Accelerated expansion of the universe corresponds to q0 < 0 whereas q0 > 0
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corresponds decelerated expansion. It is interesting to notice that for all of these components we have
H > 0 i.e. an increasing scale factor which gives the expansion rate of the universe. Moreover, to
get a better understanding of the properties of each species, it is useful to introduce the deceleration
parameter q0 as:

q0 = − äȧ
ȧ2

= − ä
ȧ

a
ȧ

= − ä
ȧ H−1

(244)

such that for both matter-dominated or radiation-dominated universe the expansion is decelerating. It
is also interesting to notice that components with w < − 1

3 give an accelerated expansion.

8.8. Friedmann Equations in terms of Density Parameter

We found earlier Friedmann equations(
ȧ
a

)2
+

k
a2 =

8πG
3

ρ (245)

ä
a
= −4πG

3
(ρ + 3p) (246)

In Eq. (245) in order to incorporate vacuum energy we can write energy density as the sum of all
energy components ρ = ρm + ρr + ρΛ such that the equation can be written as

H2 =
8πG

3
(ρm + ρr + ρΛ)−

k
a2 (247)

where ȧ
a = H is the Hubble parameter, writing ρΛ as ρΛ = Λ = Λ

8πG and ρ = ρm + ρr which further
can be written as the contributing ingredients ρm = ρb + ρCDM and ρr = ργ + ρν, also we found earlier

the critical density to be 3H2

8πG = ρcd, which for the present value can be expressed as ρc,0 =
3H2

0
8πG we find

from it the value of 8πG =
3H2

0
ρcd,0

and substitute in Eq. (247) which comes to be

H2 = H2
0

(
ρm

ρc,0
+

ρr

ρc,0
+

ρΛ

ρc,0

)
− k

a2 (248)

or
H2 = H2

0 (Ωm,0 + Ωr,0 + ΩΛ,0)−
k
a2 (249)

where
Ωm,0 =

ρm

ρc,0
, Ωr,0 =

ρr

ρc,0
, ΩΛ,0 =

ρΛ

ρc,0
(250)

It might be suitable to write the curvature term k in terms of density parameter k = Ωk,0 = ρk
ρc,0

, further
the present value of the scale factor a (t) = 1 so that Eq. (249) takes the form

H2 = H2
0 (Ωm,0 + Ωr,0 + ΩΛ,0)−Ωk,0 (251)

Now for the present value of Hubble parameter i.e. H = H0, Eq. (251) can be written for the curvature
density parameter

Ωk,0 = H2
0 (Ωm,0 + Ωr,0 + ΩΛ,0 − 1) (252)

Eq. (249) can be written in general form i.e. H 6= H0 and a 6= a0 = 1

H2 = H2
0 (Ωm + Ωr + ΩΛ)−

Ωk
a2 (253)
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Eq. (253) can also be written for the present values of all the energy density parameters

H2 = H2
0 (Ωm,0 + Ωr,0 + ΩΛ,0)−

Ωk,0

a2 (254)

We know that energy density ρ for matter, radiation and vacuum domination eras changes with the
scale factor that characterizes the expansion of the universe according to

ρ ∝ a−3

ρ ∝ a−4

ρ ∝ a0
(255)

respectively. So that Eq. (254) takes the following form using Eq. (255)

H2 = H2
0

(
Ωm,0a−3 + Ωr,0a−4 + ΩΛ,0a0

)
−Ωk,0a−2 (256)

The Eq. (256) represents Friedmann equation in terms of density parameters.
For a = a(t)

a(t0)
= 1

1+z , Eq. (256) can be expressed in terms of redshift as follows

H2 = H2
0

(
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0(1 + z)0

)
−Ωk,0(1 + z)2

(257)

We can discuss various models for the universe using Eq. (256) for matter, radiation, Λ and curvature
dominated eras.

For matter domination Eq. (256) with Ωm,0 = 1 and with the rest vanishing gives

a =
( 3

2 H0t
) 2

3

t = 2a
3
2

3H0

(258)

Which gives an expanding universe with expansion rate inversely proportional to time i.e......
For radiation domination Eq. (256) with Ωr,0 = 1 and with the rest vanishing, gives

a =
√

2H0t
t = a2

2H0

(259)

Which gives an expanding universe with expansion rate inversely proportional to time i.e....
For Λ domination Eq. (256) with ΩΛ,0 = 1 and the rest vanishing gives

a = eH0t

t = ∞
(260)

Which gives an expanding universe with expansion rate inversely proportional to time i.e.....
For k domination or otherwise empty universe Eq. (256) with Ωk,0 = 1 and with the rest vanishing

gives
a = H0t
t = ∞

(261)

Which gives an expanding universe with expansion rate inversely proportional to the time i.e. "t"
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8.9. Cosmological Redshift

we considering the FLRW geometry

ds2 = −dt2 + a(t)2
[(

1− kr2
)−1

dr2 + r2dθ2 + r2sin2θdφ2
]

(262)

It is to be remembered here that the coordinates (r, θ, φ) in the metric Eq. (262) are comoving spatial
coordinates, therefore galaxies which are considered as point particles constituting the particles of
cosmological fluid in cosmology remain at fixed coordinates and it is the geometry of the spacetime
that expands itself and is characterized by the scale factor a (t) completely. Three intervals namely i.e
spacelike, timelike and lightlike or null expressed in the form ds2 > 0, ds2 < 0, ds2 = 0 respectively. In
the spacetime geometry light propagates following the interval ds2 = 0 or ds = 0 which means that it
does not travel at all any distance through the spacetime. We consider a ray of light propagating along
the radius since all the points in space are equivalent at a given time from some zero value radius to
some certain value of it in later times. Since the light ray travels radially therefore only one spatial
dimension is retained and vanishing of time dimension follows from ds = 0 and other two spatial
dimensions vanish due to radial propagation of light therefore dt = dθ = dφ = 0, then Eq. (262) gives

0 = −dt2 + a(t)2
(

1− kr2
)−1

dr2 (263)

or
dt

a(t)
=

1√
(1− kr2)

dr (264)

In order to calculate the total time elapsed from r = 0 to some certain later time value r = r0, we shall
integrate Eq. (264) between emission and reception times te and tr respectively.

∫ t=trec

t=temi

(
1

a(t)

)
dt =

∫ r=r0

r=0

(
1√

1− kr2

)
dr (265)

A ray of light, now, given off after a short interval of time dtemi so that time of emission of light
ray becomes temi + dtemi and accordingly we can have the time of reception to be trec + dtrec from an
integral of the same nature given in Eq. (265) because of comoving coordinates the galaxies remain at
the same coordinates, so that ∫ t=trec

t=temi

(
1

a(t)

)
dt =

∫ t=trec+dtrec

t=temi+dtemi

(
1

a(t)

)
dt (266)

now ∫ t=temi+dtemi

t=temi

(
1

a(t)

)
dt =

∫ t=trec+dtrec

t=trec

(
1

a(t)

)
dt (267)

Figure 12. diagrammatic scheme for deriving redshift
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The slices are very narrow, so the area is just the area of a rectangle i.e. width times height i.e.

dtrec

a (trec)
=

dtemi
a (temi)

(268)

For an expanding universe
a (trec) > a (temi) (269)

, it implies from Eq. (268) dtrec > dtemi that as the universe expands the time interval between two rays
increases. We consider now successive crests or troughs of a single ray instead of two rays as we did
earlier so that wave length λ is directly proportional to the time interval between two successive crests
or troughs λ ∝ dt and dt ∝ a(t) and we have

λrec

λemi
=

a (trec)

a (temi)
(270)

We define now the redshift

1 + z ≡ a (trec)

a (temi)
(271)

8.10. Luminosity ((L)), Brightness, Luminosity Distance ((dL)) and Angular Diameter distance (dA)

We can deduce relations from the properties of electromagnetic radiation and the quantities
contained in FLRW line element. The velocity of electromagnetic waves is constant and finite.
Light-an electromagnetic radiation acts as cosmological messenger and all the distances measured
cosmologically are extracted from the properties of it. The velocity of light being finite has to take time
to reach us and universe might have expanded significantly during this time.

8.11. Luminosity L

Luminosity is defined as the absolute measure of the electromagnetic power or energy radiated
per unit time by an astronomical object like star, galaxy or cluster of galaxies. It is denoted by L and is
measure in Loule per second

(
Js−1) which is also known as watts. Usually luminosity is measured in

terms of the luminosity of the sun denoted by L�

8.12. Brightness

It refers to how bright an object appears to an observer and depends upon luminosity, distance
between the observer and the object and absorption of light along the path between observer and the
object.

8.13. Luminosity Distance ((dL))

We consider a point source S radiating electromagnetic light equally in all directions spherically,
the amount of light passing through elements of surface areas varies with the distance of it from the
light source.
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Figure 13. A source S radiating electromagnetic enrgy

In above Fig.13, the light of luminosity L is being radiated. We consider a spherical hollow centered
on the point source S as shown in the Fig. above. The interior of hollow sphere gets illuminated
thoroughly. As radius of the sphere increases, the surface area of the imagined hollow sphere also
increases such that a constant or absolute measure of luminosity has to spread in expanding sphere
illuminating it i.e. as the radius increases the constant luminosity has more and more surface area to
illuminate which leads to decrease in observed brightness. If an observer at a distance equivalent to
the radius of sphere receives the electromagnetic radiation L per unit time and F be the energy flux
per unit time per unit area from the source the point source say O, so that in Euclidean geometry we
would have

F =
L
A

=
L

4πr2 (272)

where, F = Flux density of the illuminated sphere, L = luminosity and A = area of the illuminated
sphere From Eq. (272) for r = dL

F =
L

4πdL
2 (273)

which gives

dL =

√
L

4πF
(274)

We next look how the luminosity distance is related with expansion of the universe. In expanding
sphere we might have its radius as the product of scale factor and the radius i.e. a(t)r = a(t)dL, so that
the energy emitted gets diluted

4πr2 → 4π(a (t) r)2 (275)

and a photon loses energy as F ∝ a(te)
a(t0)

and redshift relation we have 1 + z = λ(t0)
λ(te)

= a(t0)
a(te)

which

implies F ∝ a(te)
a(t0)

∝ 1
1+z Eq. (273) becomes

F =
L

4π(a(t)r)2 (276)

further
a(te)

a(t0)
=

L

4π(a(t)dL)
2 (277)

If L is known for a source, it is known as standard candle. Supernovae type Ia were used as standard
candles for lager cosmic redshifts which led to accelerated expansion.

8.14. Angular Diameter Distance (dA)

It is the ratio of the proper distance measured when the light left the surface of an object to
the later measured distance by redshifting of light in some later time. Certainly the redshift of light
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measured would be smaller measured at the time when the light left the surface of the object to be
measured in later times.

Figure 14. Angular diameter distance

It is defined in terms of objects physical distance known as proper distance and the angular size
of the object seen from the surface of earth. If size of the source be S and angular size θ, then

θ =
S

DA
(278)

Where DA is the angular diameter distance of the source. From FLRW line element for photons
dr2 ≈ dφ2 ≈ 0, we have

ds2 = a2(t)
(

r2dθ2
)

(279)

ds = D = a(t)rdθ (280)

dθ =
D

ra(t)
=

dA
ra(t)

(281)

9. Problems Faced by the Standard Model of Cosmology

From 1st Friedmann equation (
ȧ
a

)2
+

k
a2 =

8πG
3

ρ (282)

we see that curvature k is negligible depending on observation and Ω ' 1 which means it would have
been created tuned finely in the very early universe. From 2nd Friedmann equation

ä
a
= −4πG

3
(ρ + 3p) (283)

we see that if (ρ + 3p) remains positive, the acceleration is negative which means that the expansion of
the universe will go on slowing down. Further far flung parts of the universe display same properties
as observation evidence despite they have not been in causal contact with each other.

9.1. Monopole Problem

The problem is about the question of why do we not observe magnetic monopoles in the universe
today. It results from combining the big bang model with GUT in particle physics, thus it is related
with particle cosmology where during symmetry breaking phase transitions are considered. In the
very early universe when the phase transitions are considered to occur, it is expected that these phase
transitions will create magnetic monopoles with enormous energy density which might dominate
the total energy density of the universe. During symmetry breaking when phase transitions take
place, these give rise to flaws known to be as topological defects. GUT predict that during GUT phase
transitions these point-like topological defects are created which act as magnetic monopoles. It is
considered that the radiation and matter dominated eras could not take place since these monopoles
do not get diluted as they are supposed to be non-relativistic and their energy density would decay like
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a−3 [38] but as we observe the universe evolved to the later eras so question arises how this occurred
which is at the heart of this problem.

9.2. Horizon Problem

On the basis of the standard big bang model it is difficult to understand the uniform distribution
of the temperature of CMB to 1 part in 105. The horizon problem is related with the issue of the causal
contact as it has been revealed by the uniform distribution of temperature of the cosmic background
radiation (CMB) across all parts of the universe. In order to understand the problem we have to
understand the horizon size and causal contact or communication. At any instant of time horizon
size is defined as the largest distance i.e maximall distance over which two events could be in causal
with each other. Therefore it is the maximum distance a photon could have travelled since the birth
of the universe or since the time when the universe became transparent. It can be found from the
FLRW metric to be ds2 = RH = c

∫ t
0

dt
a(t) which reveals the fact that size of the horizon depends

upon the history of the universe as it evolves through time. It is also called comoving horizon as
causal contact develops between two events and the universe is expanding so that they are getting
separated apart mutually. In the standard big bang theory the universe was matter dominated at the
time of last scattering (tls) so that the horizon distance at that time can be approximated by the value
dH (tls) = 2cH−1 (tls). Now the Hubble distance at the time of last scattering was cH−1 (tls) ≈ 0.2Mpc
and the horizon distance at last scattering was dH (tls) ≈ 0.4Mpc. Therefore the points which were
separated more than 0.4Mpc distance apart at the time of last scattering (tls) were not connected
causally in the big bang scenario. Further angular diameter distance (dA) to the last scattering surface
is 13Mpc, therefore points on the last scattering surface that were separated by a horizon distance
shall have angular separation θH = dH(tls)

dA
≈ 0.4Mpc

13Mpc ≈ 0.03rad ≈ 20 as viewed today from the Earth. It

means that the points separated by an angle as small as ∼ 20 on the last scattering surface were not in
causal contact with each other when CMB emitted with temperature fluctuations. However, we come
to know that δT

T is as small as 10−5 on the scales with angular separation θH > 20. So here we state the
problem that the regions which were not connected through causal contact with each other at the time
of last scattering have similar properties homogeneously.

9.3. Flatness Problem

When we consider Friedmann’s equations evolve in a universe where only radiation and baryonic
matter exist without vacuum energy density present there, then flatness problem arises in such a
universe [39]. From 1st Friedmann Equation

H2 =
8πG

3
ρ− k

a2 (284)

1 =
8πG
3H2 ρ− k

a2H2 =
ρ(

3H2

8πG

) − k
a2H2 (285)

Where 3H2

8πG = ρc, therefore Eq. (285) becomes

1 =
ρ

ρc
− k

a2H2 = Ω− k
a2H2 (286)

⇒ Ω− 1 =
k

a2H2 (287)

so that the spatial curvature of the universe is related to the density parameter Ω through Friedmann’s
equation. Observational evidence shows that the universe is nearly flat today i.e. ρ = ρc,⇒ Ω = ρ

ρc
≈ 1.

This means that the value of Ω would have to be very close to 1 at Planck era tpl . This means that
the initial conditions of the universe were tuned finely. Due to this reason flatness problem is also
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known as fine tuning problem and the flatness problem arises because in a comoving volume the
entropy remains conserved. Further From Eq. (284) above, the energy density of the universe without
considerations of vacuum energy as is the case of big bang model is ρ = ρR + ρM and we can also
write

H2 =
8πG

3
(ρR + ρM)− k

a2 (288)

The term − k
a2 is clearly proportional to a−2, while the energy density terms ρR and ρM fall off faster

than scale factor a(t) i.e. ρR ∝ 1
a3(t) and ρM ∝ 1

a4(t) . This ratio

(
k

a2(t)

)
( 8πG

3 (ρR+ρM))
=

(
k

a2(t)

)
(

ρ

3M2
pl

) then is much

smaller than unity when the scale factor a(t) has increased by a factor of 1030 since the Planck era.

9.4. Entropy Problem

The adiabatic expansion of the universe following the first law of thermodynamics is related to
the flatness problem [40] discussed above. Temperature plays a significant role in the early universe
because at early epoches the age and expansion rate H = ∂t ln a are described in terms of it with the
number of relativistic degrees of freedom. From 1st Friedmann’s equation we have the expression
for density parameter Ω − 1 = k

a2(t)H2 and expansion rate in radiation-dominated era in terms of

temperature is H2
ρR
≈ 8πGT4 = T4

M2
pl

, so that the density parameter expression becomes Ω− 1 =
kM2

pl
a2(t)T4 .

Now the entropy density is s ∼ T3 and the entropy per commoving volume S ∝ a3(t)s ∝ a3(t)T3

and we have Ω− 1 =
kM2

pl

S
2
3 T2

. The entropy per commoving volume Sremains constant throughout the

evolution of the universe as the hypothesis of adiabaticity requires so that we |Ω− 1|t=tpl
=

(1)M2
pl

S
2
3
U T2

pl

≈

10−60. It comes clear that at early epochs the value of Ω− 1 is very close to zero as the total entropy of
the universe is very large.

10. Introduction to Inflation

Inflation is the period of superluminally accelerated expansion of the universe taking place
sometime in the very early history of the universe. It is now a widely accepted paradigm which is
described as the monumental outgrowth gushing out during the tiniest fraction of the first second
between

(
10−36 − 10−32

)
seconds. Inflation maintains that just after the occurrence of the big bang,

exponential stretching of spacetime geometry took place i.e. becoming twice in size again and again at
least about (60− 70) times over before slowing down. Alexei Strobinsky approached the exponentially
expanding phase in the early universe by modifying Einstein Field Equations whereas Alan Guth
approached the scenario in the realm of particle physics proposing a new picture of the time elapsed in
the very small fraction of the first second in the 1980s. He suggested that the universe spent its earliest
moments growing exponentially faster than it does today. There is a large number of inflation models
in hand today but every model has its own limitations to draw the true picture of what happened
actually in the early universe.

As the theory of inflation is recognized today, it has myriad models describing inflationary phase
in the early universe. From amongst the heap of these competing models which differ slightly from
one to the other, no model can claim a complete and all embracing prospectus of what happened
actually in the universe so that the fast expansion of or in spacetime takes place. All the energy density
that can be adhered to the early exponentially expanding phase of the universe was in the very fabric
of spacetime itself despite to be in the form of radiation or particles. The early accelerating phase can
be now best described with de Sitter model with slightly time symmetry broken. With the creation of
spacetime that purports to be the earliest patch of the universe that comes to being would be stretched
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apart in an incredibly small time span of the order of a tiniest fraction of first second to such a colossaly
larger size that its geometry and topology would be hardly indiscernible from Euclidean geometry. It
will logically ensue similar initial conditions for the energy density to be dispersed at every point in
the fabric of spacetime and the same will be the condition of temperature in this early phase. That’s
why the quantum fluctuations which seed in later times the structure formation in the universe impart
the uniform temperature to all parts of the universe thereby resolving the homogeneity problem of
the universe. This is because all the quantum fluctuations which cause the observable universe were
once causally connected in the deep past of the universe. It might have attained a highest temperature
which was within or lesser than the limits of Planck scale (that 1019 GeV. The energy scale mentioned
earlier when the inflation comes to an end and transforms into the uniform, very hot, largely dense
that is a cooling and expanding state we ascribe to the hot big bang. This will take place for a universe
inflating from a lower entropy state to an entropy state at higher level in the panorama of the hot big
bang, where the entropy would carry on to get larger as it happens in our observed universe. The
point of time in the earliest where the universe can be viewed approximately and hardly as classical is
known as the Planck Era. It is thought that prior to this era the universe might be described as the
hitherto unsuspected theory of certain quantum nature like quantum gravity etc. This era corresponds
to EP ∼ 1019GeV > E > EGUT ∼ 1015GeV and the energies, temperature and times of particles are
EP ∼ 1019GeV, TP ∼ 1032K, tP ∼ 10−43s respectively. Grand unified theories describe that at high
energies as described above the electroweak and strong force are unified into a single force and that
these interactions bring the particles present into thermal equilibrium Electroweak Era corresponds to
phase transitions that occur through spontaneous symmetry breaking(SSB) which can be characterized
by the acquisition of certain non-zero values by scalar parameters known as Higgs fields. Until the
Higgs field has zero values symmetry remains observable and spontaneously breaks the moment at
least one of the Higgs field becomes non-zero. The idea of phase transitions in the very early universe
suggests the existence of the scalar fields and provides the motivation for considering their effect on
the expansion of the universe.

The power spectrum of CMBR is calculated by measuring the magnitude of temperature variations
versus the angular size of hot and cold spots. During these measurements, a series of peaks with
different strengths and frequencies are determined which conforms to the predictions of inflation
theory which confirms that all sound waves were indeed produced at the same moment by inflation.
It is believed that inflation might have given rise to sound waves-waves traveling in the primordial
vacuum-like medium with different frequencies after the big bang at 10−35s starting in phase and
would have been oscillating in radiation era for 380000 years. Now in the acoustic oscillations of the
early universe, these must be measurable as power spectrum similar to that of measuring the sound
spectrum of a musical instrument

Figure 15. Inflationary universe
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Figure 16. History of the universe beginning with big bang and expanding with inflation

Figure 17. How scalar field drive inflationary era

10.1. Starobinsky R2-Inflation

Alexei Starobinsky suggested a cosmological inflationary phase of the universe shortly before
Alan Guth in 1980 working in the framework of general relativity. The model has been founded on
the semiclassical Einstein field equations which provide a self-consistent solution for an exponentially
accelerating era [41]. Starobinsky modified the general relativity to describe the behavior of very
early universe undergoing an exponential period by suggesting quantum corrections to the energy
momentum tensor. Quantum corrections are calculated by taking the expectation value of the energy
momentum tensor. We begin with Einstein equations

Gµν = 8πTµν (289)

Rµν −
1
2

gµνR = −8π < Tµν > (290)

Where < Tµν > represents the expectation value of the energy momentum tensor. The expectation
value of energy momentum tensor is the probabilistic value of a result or measurement which is
fundamentally rooted in all quantum mechanical systems. Intuitively it is the arithmetic mean of
a large number of independent values of that variable. The energy momentum tensor Tµν usually
takes care of classical stuff of the universe in the form of matter and radiation and there is concerned
with flat spacetime as the observations evidenced in recent data. In the case of curved spacetimes
, nonetheless Tµν might be vanishing and < Tµν > must be imparted contributions from quantum
regime non-trivially. In absence of classical stuff of universe in the form of matter and radiation, the
curvature of spacetime from quantum fluctuations of matter fields contribute to < Tµν > non-trivially
which starobinsky utilized and are known as quantum corrections to Tµν. Quantum fluctuations of
matter fields give non-trivial contributions to the expectation value of the energy momentum tensor
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< Tµν > in the presence of cosmologically curved spacetime despite matter and radian do not exist in
classical style. In the background we consider FLRW spacetime

ds2 = −dt2 + a(t)2
((

1− kr2
)−1

dr2 + r2dθ2 + r2sin2θdφ2
)

(291)

The spatial part
(

1
1−kr2 dr2 + r2dθ2 + r2sin2θdφ2

)
of the metric represents the three geometries

depending on the values of k. For k = +1, it represents a spherical geometry of 3-sphere which is finite,
closed and without boundary. For k = 0, it represents a flat Euclidean geometry of 3-planes which is, in
principle, infinite in extent, open and without boundary. k = −1, it represents a hyperbolic geometry of
3-hyperboloids which is infinite, open and without boundary. In the presence of conformally-invariant,
free and massless fields, the quantum corrections adapt a simple form such that we can express the
expectation value of energy momentum tensor as

< Tµν >= k1Hµν + k2Hµν (292)

where k1 and k2 are numerical coefficients in standard notation. In order to find < Tµν > we have
to compute constants these constants k1 and k2 and Hµν and Hµν. The coefficient k1 is determined
experimentally and can assume any value Hµν is a tensor and is conserved identically when expressed
as the action given below and varied with respect to metric tensor

√−g, i.e.

Hµν =
2√−g

δ

δgµν

∫ (
d4x
√
−g
)

R2 = 0 (293)

Hµν = 2R,µ,ν − 2gµνR,λ
,λ + 2RRµν −

1
2

gµνR2 (294)

The coefficient k2 of Hµν is defined uniquely in following form

k2 =

(
N0 +

11
2

N1/2
+ 31N1

)
1

1440π2 (295)

Where N0, N1/2
and N1 denote the number of quantum fields with the subscripts of all three N′s 0,

1
2 and 1 representing spins of zero, half and one respectively. In certain GUT theories due to larger
multiplier factor of N1, the value of k2 is majorly contributed by vector fields. Now Hµν is also a tensor
and it does not conserve generally but conserves only in those spacetimes which are conformally flat
like FLRW spacetimes in particular and cannot be obtained by varying a local action as in the case of
Hµν. The Eq. (292) multiplying with 8πG to both sides can be written as

8πG < Tµν >= 8πGk1Hµν + 8πGk2Hµν (296)

or
8πG < Tµν >=

48πG
6

k1Hµν + 8πGk2Hµν (297)

Now we introduce the following parameters for convenience

M =
√

1
48πGk1

H0 =
√

1
8πGk2

(298)

Where both the parameters are positive i.e. H0 > 0 and M > 0. Now Eq. (297) takes the form

8πG < Tµν >=
1
6

M−2Hµν + H−2
0 Hµν (299)
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Eq. (299) can serve as reasonable approximation in case of certain GUT models for the limit R > µ2,
where µ represents the unified energy scale. Conformally invariant field equations usually describe
the spinor and massless vector fields and contribute to < Tµν > in the form of Eq. (299). Further, if the
number of matter fields is sufficiently bigger then the corrections to Einstein’s field equations due to
gravitons can also be ignored.

10.2. Trace-anomaly

The trace of expectation value of energy-momentum tensor < Tµν > does not vanish instead has
a non-zero anomalous trace and this is what we call as trace-anomaly. It is although interesting here to
note that the trace of energy-momentum tensor without expectation value i.e Tµν, vanishes for those
classical fields which are conformally invariant. Thus the trace of < Tµν > is given by

< Tν
ν >= M−2

pl

[
H−2

0

(
1
3

R2 − RνσRνσ

)
−M−2R;ν

;ν

]
(300)

The masses of the fields can be looked over in the limit of higher curvature i.e. when R� m2 and in
the same limit it remains true for the case of asymptotically free gauge theories where interactions
between the fields become negligible. In de sitter space we can have

Rµν =
1
4

Rgµν (301)

where R is constant. Substituting now Eq. (300) and Eq. (301) in Eq. (290), we have R = 12H2
0 for

non-trivial solution and the corresponding de Sitter solutions come about for k = 0, +1,−1 respectively

a(t) = a0etH0 (302)

a(t) =
1

H0
cosh (tH0) (303)

a(t) =
1

H0
sinh (tH0) (304)

Eq. (302) corresponds to k = 0 and gives a flat universe, Eq. (303) gives a closed solution for k = +1
and the 3rd Eq. (304) for k = −1 propounds the open de Sitter model of the universe. These solutions
are impelled completely by the quantum corrections rendered to classical EFE and serve the purpose
of inflationary epoch in the very early universe. Starobinsky inflation corresponds to a potential

parameterized in terms of scalar field φ is V (φ) = 3
4

(
1− e−

√
2
3 φ
)2

.

10.3. Inflation and de Sitter Universe

In a very shorter period of time about 10−35 after the springing out of the spacetime into being,
the inflationary era of accelerating superluminal expansion known to be de Sitter phase took place. de
Sitter phase removed all the wrinkles of curvature and warpage of spacetime so that the universe is to
be observed flat. It further smoothed out all energy density stuff for the distribution of radiation and
matter. One significant remnant as the traces of this fast expansion remains there known later on to
be cosmic background radiation. In de Sitter universe there exists no ordinary matter, however, de
Sitter retained cosmological constant which represents vacuum energy smeared out into the structure
of spacetime. We can define the energy density of this non-relativistic matter

ρΛ =
Λ

8πG
(305)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2021                   doi:10.20944/preprints202106.0597.v1

https://doi.org/10.20944/preprints202106.0597.v1


Journal Not Specified 2021, 1, 0 54 of 82

Since pΛ = −ρΛ which gives an exotic form of matter with negative pressure, that is where the scale
factor a(t) goes on increasing but ȧ(t) is decreasing. We write(

ȧ
a

)2
=

8πG
3

ρΛ −
k
a2 (306)

ä
a
= −4πG

3
(ρΛ + 3pΛ) (307)

And
ρ̇Λ + 3H (ρΛ + pΛ) = 0 (308)

From Eq. (308) with ρ̇Λ = dρΛ
dt = 0 and pΛ

ρΛ
= w

3H (ρΛ + pΛ) = 0 (309)

or
3HρΛ (1 + w) = 0 (310)

Now from Eq. (307) for pΛ
ρΛ

= w
ä
a
= −4πG

3
ρΛ (1 + 3w) (311)

For w = −1, Eq. (311) becomes

ä
a
= −4πG

3
ρΛ (1− 3) =

8πG
3

ρΛ (312)

or
d2a
dt2 −

8πG
3

ρΛa = 0 (313)

Eq. (313) is the equation of a harmonic oscillator. From Eq. (306) for vanishing curvature i.e. k = 0
where Λ dominates and ȧ

a = H

H2
Λ =

8πG
3

ρΛ (314)

Finding the value of ρΛ

ρΛ =
3H2

Λ
8πG

(315)

Substituting Eq. (315) in Eq. (313), and simplifying we have

d2a
dt2 −

8πG
3

(
3H2

Λ
8πG

)
a = 0 (316)

or
d2a
dt2 − 3H2

Λa = 0 (317)

We can write the solution of above Eq. (317) as

a(t) = C1 exp (HΛt) + C2 exp (−HΛt) (318)

Differentiating Eq. (318) twice with respect to time ′t′

ȧ(t) = C1HΛ exp (HΛt)− C2HΛ exp (−HΛt) (319)

again
ä(t) = C1H2

Λ exp (HΛt) + C2H2
Λ exp (−HΛt) (320)
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Using Eq. (318) in Eq. (320), we can write

ä(t) = H2
Λ (C1 exp (HΛt) + C2 exp (−HΛt)) = H2

Λa(t) (321)

Substituting the value of ρΛ from Eq. (315) in Eq. (306), we have(
ȧ
a

)2
=

8πG
3

(
3H2

Λ
8πG

)
− k

a2 = H2
Λ −

k
a2 (322)

simplifying Eq. (322) gives
k = H2

Λa2 − ȧ2 (323)

Substituting the values of a(t) and ȧ(t) from Eq. (318) and Eq. (319) in above Eq. (323)

k = H2
Λ(C1 exp (HΛt) + C2 exp (−HΛt))2

−(C1HΛ exp (HΛt)− C2HΛ exp (−HΛt))2 (324)

Simplification gives
k = 4H2

ΛC1C2 (325)

Eq. (325) means that the curvature term k depends upon the constants of integration C1 and C2. For
flat universe either C1 = 0 or C2 = 0. The solution in Eq. (318) becomes accordingly

a(t) = C2e−HΛt (326)

and
a(t) = C1eHΛt (327)

Further Einstein equations are given by

Gµν + Λgµν = 8πTµν (328)

where
Gµν = Rµν −

1
2

gµνR (329)

and the form of solution of these equations upon which big bang standard cosmology is based, as
worked out by Alexander Friedman (1922), George Lemaitre (1927) and afterwards by Robertson and
Walker (1935) independently on the base of cosmological principle which put to use the homogeneity
and isotropy, is

ds2 = −dt2 + a(t)2
((

1− kr2
)−1

dr2 + r2dθ2 + r2sin2θdφ2
)

(330)

Where Ω2 = dθ2 + sin2θdφ2. The metric in Eq. (330) is characterized by scale factor a(t) and the
curvature of spacetime k which are obviously determined by the self-gravitation of all the matter-energy
content in the universe. We have incorporated dark matter and dark energy in the matter-energy
content because their role is not avoidable at all in accelerated expansion and the present Minkowskian
flat geometry of the universe. The solution of this line element gives Friedman equations using Einstein
field equations that govern the time evolution of the universe and are given as

ȧ2

a2 +
k
a2 =

8πG
3

ρ +
Λ
3

(331)

and
ä
a
= −4πG

3
(ρ + 3p) +

Λ
3

(332)
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The presence of cosmological term Λ in above equations would be equivalent to that of a fluid having
an equation of state p = −ρ which is satisfied by

ρ + 3p > 0 (333)

Looking at the things classically we may approach the classical period of exponential expansion by
using the first Friedmann equation by vanishing density ρ of radiation and baryons and the entailing
curvature k in Λ-dominated Era which corresponds to equivalently having a fluid with p = −ρ, thus
Eq. (331) becomes

ȧ2

a2 +
(0)
a2 = 8πG

3 (0) + Λ
3

ȧ2

a2 = Λ
3

ȧ = da
dt =

√
Λ
3 a

da
a =

√
Λ
3 dt

(334)

After integrating and simplifying, we get

a = e
√

Λ
3 t (335)

Eq. (335) gives the exponential expansion of the scale factor. It describes the fact that when the universe
was dominated by cosmological constant Λ, the rate expansion was much faster than the present day
scenario. From Eq. (332)

ä = −4πG
3

(ρ + 3p) a +
Λ
3

a (336)

Considering a closed volume with energy U = ρV = ρ 4π
3 a3 and now we see how inflationary period

is obtained in the perspective of particle physics where a negative pressure is achieved for it to take
place. Friedmann solved EFE with Λ = 0, so

ȧ2

a2 +
k
a2 =

8πG
3

ρ (337)

ä
a
= −4πG

3
(ρ + 3p) (338)

Eq. (338) is known as acceleration equation. The inflationary period, as its definition implies, is
the acceleratingly expanding phase of the universe in a very small fraction of first second, since the
expansion is characterized by the scale factor a, therefore, we have such an era as

ä > 0 (339)

thus Inflationary era
⇔ ä > 0 (340)

Dividing both sides of Eq. (317) by scale factor a

ä
a
> 0 (341)

Which is LHS of Eq. (338) Eq. (341) imposes the condition on RHS of Eq. (338)

− 4πG
3 (ρ + 3p) > 0

⇒ ρ + 3p < 0
⇒ p < − 1

3 ρ

⇒ ρ > −3p

(342)
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For the inflation to occur and set the universe in an accelerating phase we require the matter to possess
an equation of state with negative pressure. The possibility of this negative pressure p which is less
than negative of one-third of density is in perspective of symmetry breaking in modern models of
particle physics. From

ȧ2

a2 +
k
a2 =

8πG
3

ρ (343)

ȧ2 =
8πG

3
ρa2 − k (344)

For ä > o, the scale factor shall increase faster than a (t) ∝ t and the term 8πG
3 ρa2 shall increase during

this accelerated era such that the curvature term k will become negligibly small and shall vanish.
Inflationary era is also defined by considering the shrinking of Hubble Sphere [43] due to its direct
linkage to the horizon problem and due to providing a fundamental role in producing of quantum
fluctuations. Shrinking Hubble Sphere is defined as

d
[
(aH)−1

]
dt

< 0 (345)

d
[
(aH)−1

]
dt

=
d
[(

a ȧ
a
)−1
]

dt
=

d
[
(ȧ)−1

]
dt

= − ä
a2 (346)

− ä
a2 < 0 (347)

which will imply accelerated expansion
ä > 0 (348)

At t = 0, the scale factor a characterizing expansion of the universe comes out to be of a specific value.
In Eq. (337), when ρ = ρφ is of very larger value and the scale factor a dominates over the curvature
term k, then we have (

ȧ
a

)2
= H2 =

8πG
3

ρφ (349)

a = a0eHt (350)

de Sitter line element is given by

ds2 = −dt2 + e2Ht
(

dx2 + dy2 + dz2
)

(351)

inflation has to terminate and H is constant which means that de Sitter phase cannot give perfect
inflationary era, however for Ḣ

H2 it would compensate. It would be interesting here to note that Z. G.
Lie and Y.S. Piao have shown that the universe we observe today may have emerged from a de Sitter
background without having the requirement of a large tunneling in potential and with low energy
scale. [42]

10.4. The Conditions Under Which the Inflation Occurs

Shrinking Hubble sphere has been considered as basic definition of inflationary era due to its
direct connection to the horizon problem and with mechanism of quantum fluctuation generations
[43]. differentiating the comoving Hubble radius (aH)−1 with respect to time we find the acceleratedly
expanding Hubble sphere

∂t(aH)−1 = − ä
ȧ2 (352)
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We see that − ä
ȧ2 < 0, multiplying the inequality by −1 and simplifying, we have

ä > 0 (353)

which means that shrinking comoving Hubble sphere (aH)−1 points toward accelerated expansion
ä > 0. Since Hubble sphere H remains nearly constant, in order to understand the meaning of nearly
constant we see how its slow roll variation takes place, so taking H as variable

∂t

(
1

aH

)
= − ȧH + aḢ

(aH)2 = −1
a

(
1 +

Ḣ
H2

)
(354)

where Ḣ
H2 = −ε known as slow roll parameter. It can be inferred that Ḣ

H2 < 0 implies shrinking Hubble
sphere.

10.5. Slow Roll Inflation-The Dynamics of Scalar Field

Elementary particles in modern physics are represented by quantum fields and oscillations of
these fields are translated as particles. Scalar fields represent spin zero particles in field theories and
look like vacuum states because they have same quantum numbers as vacuum. The matter with
negative pressure ρ = −p represents physical vauum-like state where quantum fluctuations of all
types of physical fields exist. These fluctuations can be considered as waves of all possible wavelengths
related with physical fields i.e. wavy physical fields moving freely in all directions. The negative
pressure violates the strong energy condition which is necessary for the inflation to occur. To keep
things simpler a single scalar field namely inflaton φ = φ (x, t) is considered present in the very early
universe. Since the value of the scalar field depends upon position x in space which assigns potential
energy to each field value. It is also dynamical due to being function of time t and has kinetic energy as
well i.e energy density ρ (φ) associated with the inflaton φ is ρ (φ) = ρp + ρk. The ratio of the potential
and kinetic energy terms of φ = φ (x, t), decides the evolution of the universe. The Langrangian of the
scalar inflaton field φ is expressed as the energy difference between its kinetic and potential terms.

L =
1
2

(
gµν∂2φ−V(φ)

)
(355)

It is assumed that the background of FLRW universe has been sourced by energy-momentum associated
with the inflaton which dominates the universe in the beginning. We shall observe under what
conditions this causes accelerated expansion of the FLRW universe.

S =
∫

d4x
√
−gL =

∫
d4x
√
−g
[

1
2

(
gµν∂2φ−V(φ)

)]
(356)

The energy-momentum tensor of the inflaton field is given as

Tµν = ∂µφ∂νφ− gµν (L) (357)

Tµν = ∂µφ∂νφ− gµν (L) (358)

Which for µ = 0, ν = 0 results as

T00 =
1
2

φ̇2 +
1

2a2∇
2φ + V(φ) (359)

and for µ = ν = j

Tjj =
1
2

φ̇2 − 1
6a2∇

2φ−V(φ) (360)
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The gradient term vanishes, in otherwise condition, the pressure gained is much less than the required
value to impart impetus for inflation to take place, therefore we obtain the following values for energy
density and pressure

ρφ = T00 =
1
2

φ̇2 + V(φ) (361)

and
pφ = Tjj =

1
2

φ̇2 −V(φ) (362)

The condition V(φ) >> φ̇2 corresponds to the negative pressure condition ρφ = −pφ which means
that the potential (vacuum) energy of the inflaton derives inflation. Now using Euler-Langrange
equations

∂µ δ (
√−gL)
δ∂µφ

− δ (
√−gL)

δφ
= 0 (363)

we can find equation for inflaton field that comes to be

φ̈ + 3
ȧ
a

φ̇− 1
a2(t)

∇2φ + V,φ(φ) = 0 (364)

It can also be computed from the energy density and the pressure terms given in Eq. (361) and Eq.
(362) respectively by substituting in equation of energy conservation

dρ

dt
+ 3H (ρ + p) = 0 (365)

Eq. 365 in terms of inflation field φ

dρφ

dt
+ 3H

(
ρφ + pφ

)
= 0 (366)

By substituting Eq. (361) and eq. (362) in Eq. (366), we have

d
(

1
2 φ̇2 + V(φ)

)
dt

+ 3H
(

1
2

φ̇2 + V(φ) +
1
2

φ̇2 −V(φ)

)
= 0 (367)

(
φ̈ + V′(φ) + 3Hφ̇

)
φ̇ = 0 (368)

φ̈ + V′(φ) + 3Hφ̇ = 0 (369)

Where V′(φ) = dV(φ)
dφ and 3Hφ̇ is known as friction term which offers friction to the inflaton field

when it rolls down (φ̇) its potential during expansion of the universe H = ȧ
a .

Figure 18. how the universe springs into being through sclar field
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Figure 19. how inflation ends-slow roll inflation

10.6. Conditions of the Slow Roll Inflation

According to the big bang model, that is the currently accepted model, the universe is about 14
billion years old. At the point of creation the curvature of spacetime was very large or equivalently
can described in other words that space was largely warped and curved where only quantum effects
can prevail and the question of time to exist is likely to become absurd. From this state how the very
brief era of exponential expansion can be had is fulfilled by assumption of scalar field which take
the responsibility of such state mentioned. we know from the 2nd Friedmann’s equation which is
acceleration equation

ä
a
= −4πG

3
(
ρφ + 3pφ

)
(370)

For ä > 0
ρφ + 3pφ < 0⇒ pφ <

1
3

ρφ (371)

From Eq. (361) and Eq. (362), substituting for pφ and ρφ in Eq. (371)(
1
2

φ̇2 −V(φ)

)
< −1

3

(
1
2

φ̇2 + V(φ)

)
(372)

Solving the inequality and keeping in mind that φ̇ is a squared term, we have

φ̇2 << V(φ) (373)

which means that the inflaton field is slowly rolling down its potential. Differentiating Eq. (373) with
respect to time, we have

φ̈ <
1
2

V′(φ) (374)

Now from Eq. (369), we obtain
φ̈ + V′(φ) = −3Hφ̇ (375)

We neglect the acceleration providing term φ̈ = d2φ

dt2 as the inflaton field has to roll now slowly to
escape from graceful exit problem in inflation i.e. deceleratingly, so we write

V′(φ) = −3Hφ̇ (376)

plugging Eq. (376) in Eq. (374)

φ̈ <
1
2
(−3Hφ̇) (377)

On neglecting the constant factor, it gives

φ̈ << 3Hφ̇ (378)
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differentiating now Eq. (376) with respect to time,

3
(

Ḣφ̇ + Hφ̈
)
= −V′′(φ)φ̇ (379)

Since H remains constant during inflation, therefore Ḣ vanishes and we have

φ̈ = −V′′(φ)φ̇
3H

(380)

Putting Eq. (380) in Eq. (378), we have

− V′′(φ)φ̇
3H

<< 3Hφ̇ (381)

It gives
V′′(φ) << H2 (382)

10.7. Parameters for the Slow Roll Inflation

Two slow roll parameters ε and η are defined in terms of Hubble parameter H as well as potential
V which quantify slow roll inflation.

εH = − Ḣ
H2 (383)

Using the relation a(t) ∝ e−N ⇒ N = ln a, it can also be expressed in the form

εH = −d (ln H)

dN
(384)

where N is the number of e-folds And 2nd is defined as

ηH = −1
2

Ḧ
ḢH

(385)

From 1st Friedmann equation (
ȧ
a

)2
− k

a2 =
8πG

3
ρ (386)

For ρ = ρφ and from Eq. (361) ρφ = 1
2 φ̇2 +V(φ), Since during inflation V (φ) >> φ̇2, so that ρφ = V(φ)

also curvature term k is negligibly small, so that Eq. (386) becomes

H2 =
8πG

3
V (φ) (387)

differentiating Eq. (387) with respect to time and simplifying

Ḣ =
4πG
3H

V′ (φ) (φ̇) (388)

And from Eq. (376) substituting in Eq. (388), we have

Ḣ = −4πG
(

φ̇2
)

(389)

Substituting above in Eq. (383), we have

εH = − Ḣ
H2 = −

−4πG
(
φ̇2)

H2 =
4πG
H2 φ̇2 (390)
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Again from Eq. (376) we have

φ̇ = −V′(φ)
3H

(391)

squaring

φ̇2 = −V′2(φ)
9H2 (392)

substituting in Eq. (390)

εH =
4πG
H2

(
−V′2(φ)

9H2

)
=

4πGV′2(φ)

9(H2)
2 (393)

From Eq. (387) putting for H2

εV =
4πGV′2(φ)

9
(

8πG
3 V(φ)

)2 =
1

16πG

(
V′(φ)
V(φ)

)2

=
M2

pl

2

(
V′(φ)
V(φ)

)2

(394)

ηH can also be expressed as

ηH = − φ̈

Hφ̇
(395)

ηV =
1

8πG

(
V′′(φ)
V(φ)

)
= M2

pl

(
V′′(φ)
V(φ)

)
(396)

From Eq. (387) H2 = 8πG
3 V(φ), which gives 8πGV(φ) = 3H2 substituting above in Eq. (396), we have

ηV =
V′′(φ)
3H2 (397)

10.8. Number of e-folds

It is usual practice to have the inflation quantified and the quantity which does this is called
number of e-fold denoted by N before the inflation ends. As the time goes by N goes on decreasing
and becomes zero when inflation ends. It is counted or measured backwards in time from the end of
inflation which means that N = 0 at the end of inflation grows to maximal value towards the beginning
of inflation. It measures the number of times the space grows during inflationary period. The amount
of e-folds necessarily required to resolve the big bang problems of Horizon, Flatness, Monopole and
Entropy etc is N ∼ 60− 75 depending upon the different models and on the reasonable estimation of
the observational parameters. To find the number of e-folds between beginning and end of inflation
we know that during inflation the scale factor evolves as

a (t) = a (t0) eHt (398)

or
a (t) = a (t0) eH(t−ti) (399)

The factor Ht constitute the number of e-folds denoted by N i.e.

N = Ht (400)

Differentiating Eq. (400) with respect to time

dN
dt

= H = ∂t ln a (401)

N =
∫ t f

ti

Hdt =
∫ t f

ti

ȧ
a

dt = ln
( at f

ati

)
(402)
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Further, the relation between Hubble parameter H and the number of e-folds N can be written We
have derived earlier the evolution equation for inflaton field to be

φ̈ + 3Hφ̇ + V,φ = 0 (403)

During slow roll inflation φ̈ = 0, so that Eq. (403) becomes

3Hφ̇ + V,φ = 0 (404)

3Hφ̇ = −V,φ (405)

And during slow roll the Friedmann’s 1st equation evolves as with k = 0 and ρ = V(φ) + 1
2 φ̇2

H2 =
8πG

3

(
V(φ) +

1
2

φ̇2
)

(406)

During slow roll (φ̇)2
<< V (φ)and only φ̇ works, thus Eq. (406) becomes

H2 =
8πG

3
V(φ) (407)

Dividing Eq. (405) by Eq. (407)
φ̇

H
= −

V,φ

8πGV (φ)
(408)

Now from Eq. (400), we can write because t = t f − ti, so t =
∫ t f

ti
dt and with dividing and multiplying

by dφ

N = Ht =
∫ t f

ti

Hdt =
∫ t f

ti

H
dt
dφ

dφ (409)

Where φ̇ = dφ
dt , Eq. (409) takes the form

N =
∫ φ f

φi

H
φ̇

dφ (410)

Substituting from Eq. (408) after inverting

N =
∫ φ f

φi

(
−8πGV (φ)

V,φ

)
dφ = −8πG

∫ φ f

φi

V (φ)

V,φ
dφ (411)

or

N = 8πG
∫ φi

φ f

V (φ)

V,φ
dφ (412)

Thus number of e-folds can be found in terms of potential of the inflaton field. Further slow roll
parameter εH can be described in terms of number of e-fold N, we know

εH = − Ḣ
H2 = − 1

H2
dH
dt

= − 1
H2

dH
dN

dN
dt

(413)

εH = − 1
H2

d ln N
dt

(414)

11. Inflationary Solutions to the Big Bang Problems

Horizon, flatness, entropy and monopole problems are initial value problems which inflation
solves in one go. Inflation explains why the observable universe is spatially flat, isotropically
homogeneous and so large in size.
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11.1. Inflation and Horizon Problem

We consider that the inflation begins at a time (ti) and comes to an end at some time
(

t f

)
and the

expansion rate H = ∂t ln a, curvature term k and energy density of matter and radiation ρ = ρM + ρR
during inflation vanishes, we know that

a(t) = a(t)eHt = a(t)eH(t−ti) (415)

and
a(t) = a(t)eHt = a(t)eH(t f−t) (416)

We will find how long the inflation must sustain to resolve the horizon problem. We can find the
corresponding e-folding number N that is

N = Ht =
∫ t f

ti

Hdt (417)

Since H = ȧ
a ,

N =
∫ t f

ti

ȧ
a

dt =
∫ t f

ti

da
a

(418)

N = ln a|t f
ti
= ln

(
a f − ai

)
(419)

or a f

ai
= eN (420)

or
ai
a f

= e−N (421)

Now the horizon scale observed today H−1
0 was reduced during inflation to a value of λH0(ti) which

is smaller than the horizon length during inflation.

λH0(ti) = RH0

(
ati

at0

)
(422)

Dividing and multiplying Eq. (422) by at f

λH0(ti) = RH0

(
ati

at0

×
at f

at f

)
(423)

Now from Eq. (421) ai
a f

= e−N and using the relation between scale factor and temperature during this

phase a ∼ 1
T⇒ ai ∼ 1

Ti
and⇒ a f ∼ 1

Tf
so that we have

λH0(ti) = H−1
0

T0

Tf
e−N (424)

Where RH0 = H−1
0 . Now λH0(ti) < H−1

I where H−1
I is the horizon length during inflation. So Eq. (424)

can be expressed as

H−1
0

T0

Tf
e−N ≤ H−1

I (425)

H−1
0

H−1
I

T0

Tf
≤ eN (426)
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or

eN ≥

(
T0
H0

)
( Tf

HI

) ⇒ N ≥ ln

(
T0
H0

)
( Tf

HI

) (427)

N ≥ ln
(

T0

H0

)
− ln

( Tf

HI

)
(428)

or

N ≈ 67 + ln

(
HI
Tf

)
(429)

N ≥ 70 (430)

11.2. Inflation and Flatness Problem

From 1st Friedmann equation

H2 +
k
a2 =

8πG
3

ρ (431)

We found the density parameter expression

Ω− 1 =
k

H2a2(t)
(432)

During the inflationary period Hubble parameter giving expansion rate remains almost constant so
that Eq. (432) is

Ω− 1 =
k

H2a2(t)
∝

1
a2(t)

(433)

We observed earlier that
|Ω− 1|t=tpl

≈ 10−60 (434)

Which means that to have the value of the density parameter as observed today i.e. Ω0 to be of the
order of unity, the initial value of Ω at the beginning of the radiation-dominated era must be same as
given in Eq. (434) above. and from Eq. (432) we can write for the time at the beginning of inflationary
era

|Ω− 1|t=ti
=

k
H2

I a2
i (t)

(435)

and for the time when inflationary period comes to end

|Ω− 1|t=t f
=

k
H2

I a2
f (t)

(436)

Further the beginning of the radiation-dominated era can be recognized with the beginning of
inflationary phase such that it is required

|Ω− 1|t=t f
= 10−60 (437)

Dividing now Eq. (436) by Eq. (435)

|Ω− 1|t=t f

|Ω− 1|t=ti

=

k
H2

I a2
f (t)

k
H2

I a2
i (t)

=

(
a2

i (t)
a2

f (t)

)
(438)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2021                   doi:10.20944/preprints202106.0597.v1

https://doi.org/10.20944/preprints202106.0597.v1


Journal Not Specified 2021, 1, 0 66 of 82

We calculated ai
a f

= e−N , the above Eq. (438) takes the form

|Ω− 1|t=t f

|Ω− 1|t=ti

=
(

e−N
)2

(439)

e−2N =
|Ω− 1|t=t f

|Ω− 1|t=ti

(440)

With taking |Ω− 1|t=ti
≈ 1,

N ≈ −1
2

ln |Ω− 1|t=t f
(441)

N ' 70 (442)

11.3. Inflation and Entropy Problem

Entropy problem can be resolved if a large amount of entropy is created in the very early universe
non-adiabatically [39] which is accomplished by inflationary era in a finite time in the early history
of the universe. Let the entropy at the end of inflation is S f and in the beginning it was Si such that
S f ∝ Si, then

S f = M3Si (443)

Where M is the numerical factor with value M3 = 1010 ⇒ M = 1030. Now S f = SU . We know that
S ∼ (aT)3, so that we can write for

Si ∼ (aiTi)
3 (444)

and for
S f ∼

(
a f Tf

)3
(445)

where Ti and Tf are the measures of temperature at the beginning and end of the inflationary period.
Dividing Eq. (445) by Eq. (444) we have

S f

Si
≈
( a f

ai

)3(Tf

Ti

)3

(446)

or ( a f

ai

)3
≈

S f

Si

(
Ti
Tf

)3

(447)

a f

ai
≈
(S f

Si

)3 Ti
Tf

(448)

Now
a f
ai

= eN , and considering that at the beginning of inflationary phase the total entropy of the
universe was of the order 1 i.e. Si ∼ 1, and S f = SU thus Eq. (448) takes the form

eN ≈ (SU)
3 Ti

Tf
(449)

N ≈ ln (SU)
3 Ti

Tf
(450)

N ∼ 70 (451)

therefore, entropy problem is resolved by inflationary period.
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11.4. Inflation and Monopole Problem

In grand unified theories(GUT), the standard model SU (3)× SU (2)×U (1) in particle physics
emerges out of a simple symmetry group breaking. In these theories some very density particles known
as magnetic monopoles are predicted to be created. Cosmological monopoles prior the period of
inflation takes place are allowed supposedlyly to exist. Monopoles are supposed to form in symmetry
breaking during phase transitions and where the inflationary era is supposed to take place just after it.
Inflation dilutes the density of these magnetic monopoles nmp ∝ Nmp

a3 → 0 to the negligibly small size
such that these become so small to be detected today [44]. During inflation monopoles collapse in an
exponential way and their abundant presence falls to the level of being hardly detectable.

12. The Line Element of the Perturbed Universe

When the perturbations of inflaton field φ are considered the energy momentum tensor Tµν is
also perturbed. The perturbations of inflaton field thus are consequently reflected through the metric
tensor gµν such that δφ ⇔ δgµν. We discuss here only the scalar perturbations for which the metric
takes the form as

ds2 = a2(t)

[
(−1− 2A) dτ2 + 2∂iBdτdxi + (1− 2ψ) δij
+DijE)dxidxj

]
(452)

δgµν = a2(t)

(
δg00 δg0i
δgi0 δgij

)
= a2(t)

(
1− 2A ∂iB

∂iB
(
(1− 2ψ) δij + DijE

)) (453)

12.1. Inverse of δgµν

Let the inverse of δgµν be δgµν and we write

δgµν = 1
a2(t)

(
δg00 δg0i

δgi0 δgij

)

=

( 1
a2(t) (−1 + X) 1

a2(t)∂iY
1

a2(t)∂iY 1
a2(t)

(
(1 + 2Z) δij + DijK

)) (454)

We find the inverse of Eq. (454) that is gµν, so that we have

gµζ gζν = gµζ
0 g0

ζν = δ
µ
ν(

gµζ
0 + δgµζ

) (
g0

ζν + δgζν

)
= δ

µ
ν

gµζ
0 g0

ζν + gµζ
0 δgζν + δgµζ g0

ζν + δgµζδgζν = δ
µ
ν

(455)

where δ
µ
ν is the Kronecker delta function and is defined as

δ
µ
ν =

{
1, if µ = ν

0, if µ 6= ν
(456)

and gζν is the simply unperturbed FLRW line element described as

ds2 = a2(t)
[
−dt2 + δijdxidxj

]
(457)

g0
µν = gµν = a2(t)

(
g00 g0i
gi0 gij

)
= a2(t)

(
−1 0
0 δij

)
(458)
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The inverse of g0
µν = gµν is simply gµν

0 = gµν since for diagonal unperturbed metric gµν = 1
gµν

, so that
we can write

gµν
0 = gµν =

1
a2(t)

(
g00 g0i

gi0 gij

)
=

( 1
a2(t) 0

0 1
a2(t) δij

)
(459)

For µ = 0, ν = 0 in Eq. (455), we have(
g00

0 g(0)00 + g0i
0 g(0)i0

)
+
(

g00
0 δg00 + g0i

0 δgi0
)
+
(

δg00g(0)00 + δg0ig(0)i0

)
+
(
δg00δg00 + δg0iδg0i

)
= δ0

0

(460)

which give
δg00δg00 + δg0iδgi0 = 1 (461)

substituting the values, we have

− 1
a2(t)

(−1 + X) a2(t) (−1− 2A) +
1

a2(t)
∂iY

(
a2(t)∂iB

)
= 1 (462)

Simplifying and neglecting second order product terms −2AX and ∂iY · ∂iB, we get

X = 2A (463)

Again from Eq. (455) for µ = 0, ν = i, we have after simplification(
g00

0 g(0)0i + g0i
0 g(0)ji

)
+
(

g00
0 δg0i + g0i

0 δgji
)
+
(

δg00g(0)0i + δg0ig(0)ji

)
+
(
δg00δg0i + δg0iδgji

)
= δ0

i

(464)

δg00δg0i + δg0jδgji = 0 (465)

Substituting the values

1
a2(t)

(−1 + X) a2(t)∂iB +
1

a2(t)
∂jY

(
a2(t) (1− 2ψ) δji + DjiE

)
= 0 (466)

neglecting the higher product terms 2A · ∂iB, ∂iY · 2ψ and ∂jDjiY · E, we have

− ∂iB + ∂iY = 0 (467)

integrating we get
Y = B (468)

Now from Eq. (455) for µ = i, ν = j, we have(
gi0

0 g(0)0j + gij
0 g(0)ij

)
+
(

gi0
0 δg(0)0j + gij

0 δg(0)ij

)
+
(

δgi0g(0)0j + δgijg(0)ij

)
+
(
δgi0δg0j + δgijδgij

)
= δi

j

(469)

The non-vanishing terms are
δgi0δg0j + δgikδgkj = δi

j (470)

Substituting values suitable change of indices

1
a2(t)

(
∂iY
)

a2(t)∂iB + 1
a2(t)

(
(1 + 2z) δik + DikE

)
·a2(t)

(
(1− 2ψ) δkj + DkjE

)
= δi

j

(471)
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using properties δikδkj = δi
j, δikDkj = Di

j, δkjDik = Di
k and neglecting the higher order product terms

∂iB · ∂jB, −4Zψ, 2ZDi
jE, −2ψ · Di

jK and Di
jKE, we have

(1− 2ψ + 2Z) δi
j + (E + K) Di

j = δi
j + 0Di

j (472)

Comparing the coefficients of δi
j and Di

j, we get Z = ψ and K = −E, so that inverse metric of the
perturbed line element becomes

δgµν = 1
a2(t)

(
δg00 δg0i

δgi0 δgij

)

=

( 1
a2(t) (−1 + 2A) 1

a2(t)∂iB
1

a2(t)∂iB 1
a2(t)

(
(1 + 2ψ) δij − DijE

)) (473)

12.2. The Unperturbed Line Element

The unperturbed line element is given by

ds2 = a2(t)
[
−dt2 + δijdxidxj

]
(474)

or

g0
µν = gµν = a2(t)

(
g00 g0i
gi0 gij

)
= a2(t)

(
−1 0
0 δij

)
(475)

The inverse of g0
µν = gµν is simply gµν

0 = gµν since for diagonal unperturbed metric gµν = 1
gµν

, so that
we can write

gµν
0 = gµν =

1
a2(t)

(
g00 g0i

gi0 gij

)
=

( 1
a2(t) 0

0 1
a2(t) δij

)
(476)

We calculate now affine connections-the 2nd kind of Christoffel symbols

Γσ
µν = gσλΓµνλ =

1
2

gσλ
(

gµλ ,ν + gνλ ,µ + gµν ,λ

)
(477)

We can compute the following possible components

Γ0
00 Γi

ii Γj
jj Γi

00

Γj
00 Γi

0j Γj
i0 Γ0

ij

Γ0
0i Γ0

0j Γi
jk Γj

ik
Γk

ij

(478)

For σ = µ = ν = 0, we have

Γ0
00 = − 1

2a2(t)
∂,0g00 =

ȧ
a

(479)

For σ = i, µ = 0, ν = j, we have

Γi
0j =

1
2a2(t)

δik∂,0

(
a2(t)δjk

)
=

ȧ
a

δi
j (480)

For σ = 0, µ = i, ν = j, we have

Γ0
ij =

1
2a2(t)

∂,0

(
a2(t)δij

)
=

ȧ
a

δij (481)
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For σ = i, µ = 0, ν = 0, we have

Γi
00 = 0 (482)

and
For σ = 0, µ = 0, ν = i, we have

Γ0
0i = 0 (483)

and for σ = i, µ = j, ν = k, we have
Γi

jk = 0 (484)

Now we can calculate perturbed element when we have necessary components of perturbed and
unperturbed metric and its inverse metric tensor components,

δΓσ
µν = δ

(
gσλΓµνλ

)
= 1

2 δ
(

gσλ
(

gµλ ,ν + gνλ ,µ + gµν ,λ

))
= 1

2 δgσλ
(

gµλ ,ν + gνλ ,µ − gµν ,λ

)
+ 1

2 gσλ
((

δgµλ

)
,ν + (δgνλ),µ +

(
δgµν

)
,λ

) (485)

We are on our stake now to calculate the following components

δΓ0
00 δΓi

ii δΓj
jj

δΓi
00 δΓj

00 δΓi
0j

δΓj
i0 δΓ0

ij δΓ0
0i

δΓ0
0j δΓi

jk δΓj
ik

δΓk
ij

(486)

The non-vanishing components are For σ = µ = ν = 0, we have

δΓ0
00 = Ȧ (487)

For σ = i, µ = 0, ν = j, we have

δΓi
0j = −ψ̇δi

j +
1
2

DijĖ (488)

For σ = 0, µ = i, ν = j, we have

δΓ0
ij = −2

ȧ
a

Aδij − ∂i∂jB− 2
ȧ
a

ψδij − ψ′δij −
ȧ
a

DijE +
1
2

DijĖ (489)

For σ = i, µ = 0, ν = 0, we have

δΓi
00 =

ȧ
a

∂iB + ∂i Ḃ + ∂i A (490)

and For σ = 0, µ = 0, ν = i, we have

δΓ0
0i = ∂i A +

ȧ
a

∂iB (491)

and for σ = i, µ = j, ν = k, we have

δΓi
jk = −∂jψδi

k − ∂kψδi
j + ∂iψδjk − ȧ

a ∂iBδjk +
1
2 ∂jDi

kE
+ 1

2 ∂kDi
jE−+ 1

2 ∂iDjkE
(492)

Now unperturbed Ricci tensor is given

Rµν = gλσRσ
µνλ = ∂,νΓσ

µλ − ∂,λΓσ
µν + Γn

µλΓσ
nν − Γn

µνΓσ
nλ (493)
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For µ = 0, ν = 0, we have

R00 = ∂,σΓσ
00 − ∂,0Γσ

0σ + Γn
µλΓσ

nν − Γn
µνΓσ

nλ = 0 (494)

For µ = 0, ν = i, we have

R0i = ∂,σΓσ
00 − ∂,0Γσ

0σ + Γn
µλΓσ

nν − Γn
µνΓσ

nλ = 0 (495)

For µ = i, ν = j, we have

Rij = ∂,σΓσ
00 − ∂,0Γσ

0σ + Γn
µλΓσ

nν − Γn
µνΓσ

nλ = 0 (496)

Now we calculate the perturbed Ricci tensor components

δRµν = ∂,νδΓσ
µλ − ∂,λδΓσ

µν + δΓn
µλΓσ

nν + Γn
µλδΓσ

nν − δΓn
µνΓσ

nλ

−Γn
µνδΓσ

nλ

(497)

For µ = 0, ν = 0, we have

δR00 = ∂,νδΓσ
µλ − ∂,λδΓσ

µν + δΓn
µλΓσ

nν + Γn
µλδΓσ

nν − δΓn
µνΓσ

nλ

−Γn
µνδΓσ

nλ = ȧ
a ∂i∂

iB + ∂i∂
iB′ + ∂i∂

i A + 3ψ′′ + 3 ȧ
a ψ′ + 3 ȧ

a A′
(498)

For µ = 0, ν = i, we have

δR0i = ∂,νδΓσ
µλ − ∂,λδΓσ

µν + δΓn
µλΓσ

nν + Γn
µλδΓσ

nν − δΓn
µνΓσ

nλ

−Γn
µνδΓσ

nλ = ä
a ∂iB +

( ȧ
a
)2

∂iB + 2∂iψ
′ + 2 ȧ

a ∂i A + 1
2 ∂kDk

i E′
(499)

For µ = i, ν = j, we have

δRij = ∂,νδΓσ
µλ − ∂,λδΓσ

µν + δΓn
µλΓσ

nν + Γn
µλδΓσ

nν − δΓn
µνΓσ

nλ − Γn
µνδΓσ

nλ

=

(
− ȧ

a Ȧ− 5 ȧ
a ψ̇− 2 ä

a A− 2
( ȧ

a
)2 A− 2 ä

a ψ− 2
( ȧ

a
)2

ψ− ψ̈

+∂k∂kψ− ȧ
a ∂k∂kB

)
δij

−∂i∂j Ḃ + ȧ
a DijĖ + ä

a DijE +
( ȧ

a
)2DijE + 1

2 DijË + ∂i∂jψ− ∂i∂j A
−2 ȧ

a ∂i∂jB + 1
2 ∂k∂iDk

j E + 1
2 ∂k∂jDk

i E− 1
2 ∂k∂kDijE

(500)

Unperturbed Ricci scalar is obtained by contracting unperturbed Ricci tensor

R = gµνRµν (501)

Using double sum and simplifying, we have

R = g00R00 + g11R11 + g22R22 + g33R33 = 6
ä
a3 (502)

and perturbed Ricci scalar, using double sum and simplifying, we have

δR = δgµνRµν + gµνδRµν = δg00R00 + δg11R11 + δg22R22

+δg33R33 + g00δR00 + g11δR11 + g22δR22 + g33δR33

= −6 ȧ
a3 ∂i∂

iB− 2
a2 ∂i∂

iB− 2
a2 ∂i∂

i A− 6
a2 ψ̈− 6 ȧ

a3 Ȧ− 18 ȧ
a3 ψ̇

−12 ä
a3 A + 4

a2 ∂i∂
iψ + 1

a2 ∂k∂iDk
i E

(503)

now unperturbed Einstein tensor is

Gµν = Rµν +
1
2

gµνR (504)

For µ = 0, ν = 0, we have
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G00 = R00 +
1
2

g00R = 3
(

ȧ
a

)2
(505)

For µ = 0, ν = i, we have

G0i = R0i +
1
2

g0iR = 0 (506)

For µ = i, ν = j, we have

Gij = Rij +
1
2

gijR =

(
−2

ä
a
+

(
ȧ
a

)2
)

δij (507)

Now perturbed Einstein tensor at first order of perturbation is

δGµν = δRµν −
1
2
(
δgµνR + gµνδR

)
(508)

For µ = 0, ν = 0, we have

δG00 = δR00 − 1
2 (δg00R + g00δR) = −2 ȧ

a ∂i∂
iB− 6 ȧ

a ψ̇

+2∂i∂
iψ + 1

2 ∂k∂iDk
i E

(509)

For µ = 0, ν = i, we have

δG0i = δR0i − 1
2 (δg0iR + g0iδR) = −2 ä

a ∂iB +
( ȧ

a
)2

∂iB
+2∂iψ̇ + 1

2 ∂kDk
i Ė

+2 ȧ
a ∂i A

(510)

For µ = i, ν = j, we have

δGij = δRij − 1
2
(
δgijR + gijδR

)
=

(
2 ȧ

a Ȧ + 4 ȧ
a ψ̇ + 4 ä

a A− 2
( ȧ

a
)2 A + 4 ä

a ψ− 2
( ȧ

a
)2

ψ + 2ψ̈

−∂k∂kψ + 2 ȧ
a ∂k∂kB + ∂k∂k Ḃ + ∂k∂k A + 1

2 ∂k∂ρDk
ρE

)
δij

−∂i∂j Ḃ + ȧ
a DijĖ− 2 ä

a DijE− ∂i∂j A + ∂i∂jψ +
( ȧ

a
)2DijE

+ 1
2 DijË− 2 ȧ

a ∂i∂jB + 1
2 ∂k∂iDk

j E + 1
2 ∂k∂jDikE− 1

2 ∂k∂kDijE

(511)

Now unperturbed stress energy tensor is

Tµν = ∂µφ∂νφ− gµν

(
1
2

gσρ∂σφ∂ρφ−V (φ)

)
(512)

For µ = 0, ν = 0, we have

T00 = ∂0φ∂0φ− g00

(
1
2

gσρ∂σφ∂ρφ−V (φ)

)
=

1
2

φ̇2 + a2(t)V (φ) (513)

For µ = 0, ν = i, we have

T0i = ∂0φ∂iφ− g0i

(
1
2

gσρ∂σφ∂ρφ−V (φ)

)
= 0 (514)

For µ = i, ν = j, we have

Tij = ∂iφ∂jφ− gij

(
1
2

gσρ∂σφ∂ρφ−V (φ)

)
=

(
1
2

φ̇2 − a2(t)V (φ)

)
δij (515)

Now perturbed stress energy tensor at first order of perturbation is
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δTµν =

∂µ (δφ) ∂νφ + ∂µφ∂ν (δφ)− δgµν

(
1
2 gσρ∂σφ∂ρφ + V (φ)

)
−gµν

(
1
2 δgσρ∂σφ∂ρφ + gσρ∂σ (δφ) ∂ρφ + gσρ∂σφ∂ρ (δφ)

+∂φδV (φ) + ∂φV (φ) δφ

)
(516)

For µ = 0, ν = 0, we have

δT00 = φ̇δφ̇ + 2a2(t)AV (φ) + δφa2(t)Vφ (φ) (517)

For µ = 0, ν = i, we have

δT0i = φ̇∂i (δφ) +
φ̇2

2
∂iB− a2(t)V (φ) ∂iB (518)

For µ = i, ν = j, we have

δTij =
(
φ̇δφ̇− φ̇2 A− a2(t)Vφ(φ)δφ− φ̇2ψ + 2a2(t)V(φ)ψ

)
δij

−a2(t)V(φ)DijE + 1
2 φ̇2DijE

(519)

Therefore, The perturbed Einstein field equations are

δGµν = 8πδTµν (520)

Comparing the corresponding components, we have

−2 ȧ
a ∂i∂

iB− 6 ȧ
a ψ̇ + 2∂i∂

iψ + 1
2 ∂k∂iDk

i E
= 8πφ̇δφ̇ + 2a2(t)AV (φ) + δφa2(t)Vφ (φ)

(521)

−2 ä
a ∂iB +

( ȧ
a
)2

∂iB + 2∂iψ̇ + 1
2 ∂kDk

i Ė + 2 ȧ
a ∂i A

= 8π
(

φ̇∂i (δφ) +
φ̇2

2 ∂iB− a2(t)V (φ) ∂iB
) (522)

(
2 ȧ

a Ȧ + 4 ȧ
a ψ̇ + 4 ä

a A− 2
( ȧ

a
)2 A + 4 ä

a ψ− 2
( ȧ

a
)2

ψ + 2ψ̈

−∂k∂kψ + 2 ȧ
a ∂k∂kB + ∂k∂k Ḃ + ∂k∂k A + 1

2 ∂k∂ρDk
ρE

)
δij

−∂i∂j Ḃ + ȧ
a DijĖ− 2 ä

a DijE− ∂i∂j A + ∂i∂jψ +
( ȧ

a
)2DijE

+ 1
2 DijË− 2 ȧ

a ∂i∂jB + 1
2 ∂k∂iDk

j E + 1
2 ∂k∂jDikE− 1

2 ∂k∂kDijE

= 8π

( (
φ̇δφ̇− φ̇2 A− a2(t)Vφ(φ)δφ− φ̇2ψ + 2a2(t)V(φ)ψ

)
δij

−a2(t)V(φ)DijE

)
+ 1

2 φ̇2DijE

(523)

perturbed equations can also be determined in mixed tensor form. Expressing Eq.(520) in mixed form
and working out on the same lines as we did earlier

δGν
µ = 8πδTν

µ (524)

13. Summary

Relativistic cosmology was founded on the general theory of relativity with introducing
cosmological principle and Weyl’s principle implicitly implied. In the beginning, Einstein and de
Sitter cosmological models were presented, though now of historical interest, yet they both are very
significant as the first initiates the modern cosmology relativistically and scientifically and the latter,
later on, was used to provide the initial conditions of the big bang model with a slight change. The
first theoretical models for the possibility of dynamic universe evolved beginning with Friedmann,
Lemaitre and were observationally determined by E. Hubble. In 1929, E. Hubble found exactly the
same expanding universe that Friedmann did theoretically in 1922. Therefore it was Friedmann who
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championed the cause of dynamical universes, however his work was recognized later when he
was no more in the world. The theory of big bang based on the standard cosmological model faces
Horizon, Flatness, and Entropy problems etc. To resolve these problems a phase of exponentially
expanding universe was introduced in its very early history which occurred in a very small fraction
of time (about 1

1043 s of the very 1st second after time creation) known as inflation. The inflation is
identified as the initial conditions under which the big bang might have taken place. The introduction
of inflation caused the name inflationary cosmology and it is about fourty years since its birth to date.
The inflationary paradigm stands now on firm observational footing and is accepted irrevocably in
cosmology as the viable description for the early universe. Starobinsky, Guth, and Linde are credited
with setting the foundations of inflationary cosmology. The inflationary cosmology is being hailed as
successful in explaining the origin of structure formation through cosmological quantum fluctuations
as relicts of cosmic inflation. The observations conducted on microwave background radian and
the recent discoveries of gravitational waves and black holes lend the confirmatory support to the
underlying principles of the inflationary cosmology .
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Appendix A Space, Time and Spacetime

A background arena of space and time is necessarily required for all the physical phenomena to
play over it and the compatibility of the known physical laws is made with structure of space and time.
Space, time and motion are concomitant ingredients cohered to matter and can never be disengaged
from each other. universe exists in space and evolves in time so that universe, space and time are in
separable from each other and are coherently related to each other. Space is understood as possessing
three dimensions and time is speculated to have only one dimension. Therefore Newtonian Mechanics
has been formulated in such a way to consider the spatial dimensions existing independently from the
only one dimension of time. The Euclidean geometry provides necessary mechanism in dealing with
such notions of space and time. In this regard Euclidean space becomes important which proposes
three independent perpendicular dimensions of space and the dimension of time does not get affected
by it. space and time are envisaged as independent absolute entities which are not affected by each
other. The Euclidean structure of space is flat and distances are measured by using the standard
Pythagoras theorem for three dimensions as

ds2 = x2 + y2 + z2, (A1)
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or in differential of the distances
ds2 = dx2 + dy2 + dz2, (A2)

where ds = (x, y, z) or ds = (dx, dy, dz) respectively. The time coordinate does appear anywhere in
this distance-measuring formula which means in the geometry of space, the dimension of time will
be dealt separately. Newton’s notions of space and time as described in Principia Mathematica are
given as "Absolute space, in its own nature, without regard to anything external, remains always
similar and immovable. Relative space is some movable dimension or measure of the absolute spaces
which our senses determine by its position to bodies: and which is vulgarly taken for immovable
space. Absolute motion is the translation of a body from one absolute place into another: and relative
motion, the translation from one relative place into another" and absolute time is defined in these
words "Absolute, true and mathematical time, of itself, and from its own nature flows equably without
regard to anything external, and by another name is called duration. Relative, apparent and common
time, is some sensible and external (whether accurate or unequable) measure of duration by the means
of motion, which is commonly used instead of true time"

In 1905, Einstein’s paper entitled "On the electrodynamics of moving bodies" put forth on the
base of two postulates that time might be dealt on equal footing with space as one of the dimensions
of space. Minkowski (1864-1909), translated the mixing of space and time coordinates as requiring
a four dimensional scenario where physical phenomena take place and the geometry of such four
dimensional spacetime, where time is one dimension, is described by spacetime interval which is the
generalized form of Pythagoras theorem

ds2 = −dt2 + dx2 + dy2 + dz2 (A3)

or
ds2 = ηµνdxµdxν (A4)

where

ηµν =


η00 η01 η02 η03

η10 η11 η12 η13

η20 η21 η22 η23

η30 η31 η32 η33

 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (A5)

Minkowski first understood that the spacetime interval given in Eq. (A3) remains invariant for all the
observers and carries the similar meaning for all the observers in uniform relative motion, however,
Einstein considered either with respect time or space the interval does not remain identical for all
relative observers in uniform motion. Minkowski avowedly said in a conference addressing to the
German scientists that "Ladies and gentlemen! the views of space and time which i wish to lay before
you have sprung from the soil of experimental physics, therein lies their strength, they are radical.
Henceforth space by itself and time by itself are doomed to fade away into mere shadows and only a
union of the two will preserve an independent reality" [34]. general relativity was formulated on the
base of four dimensional spacetime as Minkowski has laid it but in order to incorporate the gravity
into it Einstein utilized the power of tensors and modeled the curved geometry of spacetime describing
its curvature as gravity. The geometry of curved spacetime is encoded into a two rank symetric tensor
known as fundamental tensor and given as the spacetime metric or line element as

ds2 = gµνdxµdxν (A6)
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Where gµν is given by

gµν =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 =


g00 0 0 0
0 g11 0 0
0 0 g22 0
0 0 0 g33

 (A7)

In the absence of matter, the curvature of spacetime vanishes and the geometry of spacetime becomes
flat i.e. gµν = µµν, yet non-Euclidean that is required by the special relativity.

Appendix B Maximally Symmetric 3-Space (Spherically
Symmetric Space)

In order to have a space more symmetrical we require comparatively lesser number of functions as
much as possible to determine its properties. It is the curvature of a space and its nature that determines
how much the space is symmetric maximally. If the curvature K of a space under consideration does
not depend upon the coordinates of the points constituting it and has a constant value, then the space
shall be maximally symmetric and the spaces possessing the curvature of this kind logically entail
cosmological principle i.e. homogeneity and isotropy. Spacelike coordinates

(
x1, x2, x3) obviously

span 3-space which we require to be maximally symmetric. The Riemann curvature tensor Rσ
µνρ in

three dimensional space has 34 = 81 components which depend on the coordinates. From these only
six components are independent and are the functions of coordinates and require six functions to be
described in order to specify intrinsically the geometric properties of the three dimensional space. The
Riemann curvature tensor Rσ

µνρ depends on curvature K and the metric tensor gµν for the maximally
symmetric spaces which is the simplest form for it to adopt. It is given by

Rµνζπ = K
(

gµζ gνπ − gµπ gνζ

)
(A8)

gµπ Rµνζπ = Kgµπ
(

gµζ gνπ − gµπ gνζ

)
= K

(
gµπ gµζ gνπ − gµπ gµπ gνζ

)
(A9)

Rνζ = K
(

δπ
ζ gνπ − δ

ζ
ζ gνζ

)
= K

[
gνζ −

(
δ1

1 + δ2
2 + δ3

3

)
gνζ

]
(A10)

Rνζ = K
[
gνζ − 3gνζ

]
= K

(
−2gνζ

)
(A11)

Then, Ricci scalar or curvature scalar from above Eq. (A11) can be had by contraction with inverse
metric tensor gνζ

gνζ Rνζ = −2gνζ gνζ K (A12)

R = −2δ
ζ
ζ K = −2

(
δ1

1 + δ2
2 + δ3

3

)
K = −2 (1 + 1 + 1)K = −6K (A13)

The metric of an isotropic 3-space must depend on rotational invariants given by

~x~x = r2

d~xd~x, ~xd~x
(A14)

and in spherical polar coordinates (r, θ, φ), it should take the form

dσ2 = C (r) (~xd~x)2 + D (r) (d~xd~x)2 (A15)

dσ2 = C (r) r2dr2 + D (r)
(

dr2 + r2dθ2 + r2sin2θdθ2
)

(A16)

Redefining the radial coordinate r̄2 = r2D (r) and dropping the bars on the variables, we can write the
above Eq. (A16) in the form

dσ2 = B (r) dr2 + r2dθ2 + r2sin2θdθ2 (A17)
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where B(r) is an arbitrary function of r. solving the metric in Eq. (A17)

g11 = B(r)
g22 = r2

g33 = r2sin2θ

(A18)

Non-vanishing Christoffel symbols we find, are

Γ1
11 = Γr

rr =
1

2B(r)
dB(r)

dr

Γ1
22 = Γr

θθ = − r
B(r)

Γ1
33 = Γr

φφ = − rsin2θ
B(r)

Γ2
13 = Γθ

rφ = 1
r

Γ3
13 = Γφ

rφ = 1
r

Γ2
33 = Γθ

φφ = − sin θ cos θ

Γ2
32 = Γφ

φθ = cot θ

(A19)

Now from the Ricci tensor

Rµν = ∂νΓρ
µρ − ∂ρΓρ

µν + Γσ
µρΓρ

σν + Γσ
µνΓρ

σρ (A20)

We calculate non-vanishing components

R11 = Rrr = − 1
rB

dB
dr

R22 = Rθθ = −1 + 1
B −

r
2B2

dB
dr

R33 = Rφφ = Rθθsin2θ =
(
−1 + 1

B −
r

2B2
dB
dr

)
sin2θ

(A21)

and Ricci scalar is
R = −2δ

ζ
ζ K (A22)

1
rB

dB
dr = 2KB(r)

1 + r
rB2

dB
dr −

1
B = 2Kr2 (A23)

Integrating 1st part of Eq. (A23), we obtain

B(r) =
1

A− Kr2 (A24)

where A being a constant of integration can be found by substituting Eq. (A24) into 2nd part of Eq.
(A23), we get

1− A + Kr2 = Kr2

A = 1
(A25)

so we obtain the metric

dσ2 =
dr2

1− Kr2 dr2 + r2dθ2 + r2sin2θdθ2 (A26)

Eq. (A26) incorporates a hidden symmetry characterized by homogeneity and isotropy and represents
the line element of a maximally symmetric 3-space. Due to arbitrary origin of radial coordinate system
we considered and due to symmetry of space we can take all the points of this space equivalent and
the origin of this coordinate system can be chosen arbitrarily at any point which means that there
exists no center in this space. Therefore the maximally symmetric space is infinite and open. Further
the line element is equivalent perfectly to the metric of a 3-sphere embedded in a four dimensional
Euclidean space which has spherical symmetry as well.
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Appendix C Spectrum of the Black Body

A blackbody can absorb hypothetically radiation of all wavelengths falling on it and reflecting
nothing at all.

Figure A1. radiation distribution of blackbody at different wavelengths

In the early universe when matter and radiation decoupled from each other, the so-called
decoupling, the primordial radiation given off gives a snapshot of the universe at that time and
is known as cosmic microwave background radiation (CMBR) observed accidentally in the 60s. The
recent observations conducted on cosmic microwave background radiation reveals the fact that this is
the perfect black body radiation with a temperature of 2.7255 Kelvin on average. We know that the
wavelength distribution of a black body is given by

u (λ, T) dλ =
8πhc

λ5

(
1

e
hc

λkBT−1

)
dλ (A27)

Where u (λ, T) dλ is the energy per unit volume of the radiation with wavelength between λ and
λ + dλ emitted by a blackbody at temperature T. We consider now a black body radiation from the
big bang when the universe first became transparent to photons after 400000 years after big bang to
this time about 4000000000 years. The wavelength of the primordial photons λ is Doppler shifted to
λ′ due to expansion of universe ,certainly λ′ > λ. Let f (λ′, T′) dλ′ be the current per unit volume of
the residual big bang radiation as measured from the earth. since the shell of charged particles that
emitted the radiation is moving away from the Earth at extremely relativistic speed so we should use
the relativistic Doppler shift for light from a receding source to relate λ′ to λ that is

λ′ =

√
1 + v/c√
1− v/c

λ = Bλ (A28)

Where we put B =
√

1+v/c√
1−v/c

, and v is the speed of recession of the charged shell. Since v < c, Clearly

λ′ > λ by a factor √
1 + v/c√
1− v/c

(A29)

Eq. (A29) can be interpreted by generalization that all the distances have grown since first radiation
emitted. In order to have a relation between currently observed spectrum f (λ′, T′) dλ′ and original
black body radiation distribution

u (λ, T) dλ (A30)
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we put from Eq. (A28) λ = λ′
B into Eq. (A27)

u (λ, T) dλ =
8πhc(

λ′
B

)5

 1

e
hc

λ′
B kBT

−1

 dλ′

B
(A31)

u (λ, T) dλ

B4 =
8πhc
λ′5

(
1

e
hc

λ′kBT′ −1

)
dλ′ (A32)

Where T′ = T
B and RHS of Eq. (A32) can be identified with current black body spectrum f (λ′, T′) dλ′

which has standard functional form of a blackbody spectrum with wavelength λ′ and temperature T′.
Eq. (A30) becomes

u (λ, T) dλ

B4 = f
(
λ′, T′

)
dλ′ (A33)

Eq. (A33) says that the radiation from a receding blackbody has same spectral distribution as yet but
its temperature T′ and energy

u (λ, T) dλ (A34)

dropped by factors of B and B4 respectively.

Appendix D Big Bang Theory of Creation

A theory coming forth on the base of the standard cosmological model describes that our universe
had had a beginning and had erupted from an extremely dense, pointlike singularity about 14 billion
years ago. At the singularity state, all basic interactions of nature had coalesced symmetrically where
all the matter-energy melted down into an indistinguishable quark-gluon primordial soup. Historically
the name of this theory as big bang is due to Fred Hoyle (1915-2001), one of the inventors and staunch
proponents of steady state theory who coined the term accidentally with showing abhorrence towards
it. The steady state theory, once a rival theory of the big bang lends support to an eternally evolving
universe without a beginning and an end. It is speculated that during the Planck time of the order
of 10−43s all the forces of nature namely electroweak nuclear, strong nuclear, electromagnetic and
gravitational were so merged into one another such that they were indistinguishable bearing perfect
symmetry. From the beginning of time, t = 0s to Planck time tp ∼ 10−43s within the time span of
very first second is known as the Trans-Planckian era whose physics is yet incomplete and is open
hitherto to investigation. It is being conjectured that during the time ranging from 10−43s to 10−35s,
the gravitational force freed itself from the rest of interactions, and during this period there exist
the particles that supersymmetry predicts and are known as quarks, leptons, their antiparticles, and
some certain massive particles. After the time interval that begins with 10−35s to some shortly later
time 10−32s, the universe expanded exponentially and gradually cooled down where the strong and
electroweak forces get separated from the rest. As the universe continues to cool after the big bang,
around the time 10−10s, the electroweak force splits into weak force and electromagnetic force and
within few minutes after it, protons and neutrons start to condense out of the cooling quark-gluon
plasmic soup. During the first half of creation, the universe can be viewed as a thermonuclear bomb
fusing protons and neutrons into deuterium and then helium producing most of the helium nuclei
that exist now. After the big bang until about 400000 years radiation-dominated era prevailed. Vibrant
photonic radiation halted itself to become a clumped matter rather even forming single atom hydrogen
or helium due to photon-atom collisions which would result in ionization instantly in the case if
any atom happened to form, therefore no chance occurs for the formation of atoms and the universe
remains opaque to electromagnetic radiation due to incessant Compton scattering experienced by
photons with free electrons that abound in. On further cooling electrons could bind to protons forming
helium nuclei with the reduction in the number of charged particles, absorption or scattering of
photons consequently the universe suddenly became transparent to photons and radiation dominated
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era diminishes and neutral matter domination begins in the form of atoms, molecules, gas clouds, stars
and in the end galaxies-the universe today. This is the whole saga of the big bang theory of creation.
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