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Abstract: Recent progress in deep learning has led to accurate and efficient generic object detection
networks. Training of highly reliable models depends on large datasets with highly textured and rich
images. However, in real-world scenarios, the performance of the generic object detection system
decreases when (i) occlusions hide the objects, (ii) objects are present in low-light images, or (iii)
they are merged with background information. In this paper, we refer to all these situations as
challenging environments. With the recent rapid development in generic object detection algorithms,
notable progress has been observed in the field of object detection in challenging environments.
However, there is no consolidated reference to cover state-of-the-art in this domain. To the best of
our knowledge, this paper presents the first comprehensive overview, covering recent approaches
that have tackled the problem of object detection in challenging environments. Furthermore, we
present the quantitative and qualitative performance analysis of these approaches and discuss the
currently available challenging datasets. Moreover, this paper investigates the performance of current
state-of-the-art generic object detection algorithms by benchmarking results on the three well-known
challenging datasets. Finally, we highlight several current shortcomings and outline future directions.

Keywords: Object detection; challenging environments; low-light; image enhancement; complex
environments; state-of-the-art; deep neural networks; computer vision; performance analysis.

1. Introduction

Object detection is considered as one of the most important and elementary tasks in the
field of computer vision. The problem of object detection deals with the identification and
spatial localization of objects present in an image or a video [1]. The task of object detection
covers wide-range of many other computer vision tasks, such as instance segmentation
[2—4], visual question answering [5], image captioning [6,7], object tracking [8], activity
recognition [9-11] and so on.

Object detection is a complex problem because of underlying high intra-class and
low inter-class variance [12,13]. High intra-class variance is the consequence of different
objects belonging to a single class, for instance, different poses of humans or humans
wearing different clothes in an image. Low inter-class variance is the outcome of similar-
looking objects belonging to different classes such as samples of class chair can easily be
misclassified into the class bench and vice-versa.

One of the earlier approaches for object detection algorithms relied on sliding win-
dows, applying classification on each window to find objects [14-16]. Later sliding window
concept was replaced with region proposals to narrow the search before applying classifi-
cation [17-21]. The recent surge in deep learning has given fresh blood for object detection
systems along with other fields.

The prior published work in object detection can be further classified into three
categories which are explained below. Figure 1 depicts the basic difference between them:
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1. Object Detection (OD): OD aims at detecting objects regardless of their class category
[22,23]. OD algorithms [24-27] generally propose a large number of possible region
proposals, from which later on, the best possible candidates are selected according to
certain criteria.

2. Salient Object Detection (SOD): SOD algorithms use the human attention mechanism
concept to highlight and detect the objects in a picture, or video [28,29].

3. Category-specific Object Detection (COD) : COD aims at detecting multiple objects.
Unlike OD and SOD, COD has to predict the category class and the location of the
object in the image or video [30,31].

Figure 1. Visual demonstration of the possible three directions in the domain of object detection. Ob-
ject detection (OD): objects are detected, Salient Object Detection (SOD): human attention mechanism
is applied to detect objects, Category-specific object detection (COD): Object detection along with the
class prediction. Image is courtesy of [32].

The deep learning-based object detection algorithms are categorized into two-stage
object detectors and one-stage object detectors. Two-stage object detection architectures like
R-CNNJ33], Fast R-CNN[34] and Faster R-CNN[24] segregate the task of object localization
from object classification task. They employ region proposal techniques to find possible
regions where the likelihood of an object’s existence is maximum. Later segmentation
output and better detection pooling [35] techniques were introduced with Mask R-CNN
[36]. On the other hand, one-stage object detection algorithms first generate candidate
regions, and then these regions are classified as object/no-object. For instance, one-stage
detectors like YOLO [37—40] and SSD [27] work with feature pyramid networks (FPNs) [41]
as a backbone to detect objects at multiple scales in a single pass rather than first predicting
regions and then classifying them.

Analogous to other domains of computer vision, the output of object detection is
highly dependent on spatial features. Hence, the performance of the object detection
system decreases when the occlusions hide the objects, objects have different sizes or are
merged with background information. In real-time scenarios, it is frequent that the input
images received by the object detection network are not rich with information, or they
are captured under low-light conditions. This paper has referred to all these situations
in a challenging environment. Figure 2 illustrates the problem of object detection in a
challenging environment. This survey paper investigates the approaches that have worked
on detecting objects in such environments by leveraging deep neural networks.
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Figure 2. Graphical illustration of object detection in a challenging environment (left image), whereas
object detection in a conventional environment is shown in the right image. There are two objects:
bicycle and bus are present in the challenging left image while the cow is a targetted object in the
right image.

Different pre-processing techniques have been applied to improve image quality to
improve object detection performance in challenging environments over the years. Figure
3 illustrates the comparison between the flow of traditional approaches and deep learning-
based methods. Traditional methods rely on improving image quality through image
enhancement and manual feature selection methods [1,14,42,43]. Later these techniques are
replaced with Deep Neural Networks (DNNs) because of their robust and generalization
capabilities.
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Processing Objects
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Figure 3. Pipeline comparison of traditional and deep learning approaches for object
detection. In traditional approaches, generally, image enhancement is applied before
feature extraction to improve object detection performance. Unlike traditional approaches,
deep learning methods can find required features for detecting objects without relying on
traditional rule-based methods.

1.1. Contributions

This survey paper focuses on the recent works that have tackled object detection
in a challenging environment by employing deep neural networks. With the modern
advancement of deep learning-based object detection approaches, a noticeable surge has
been observed in the field of object detection under a complex environment, as illustrated
in Figure 4.
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Figure 4. A timeline view of different deep learning approaches developed recently to
improve object detection in challenging environments.

To summarize, our contributions are as follows:

1. We present a unified framework that explains object detection in a challenging envi-
ronment.

2. We give an overview of all the publicly available datasets that have been published to
detect objects in challenging scenarios.

3.  We summarize the advantages and limitations of the discussed methods in order to
improve object detection in a challenging environment.

4. Webenchmark current state-of-the-art generic object detection algorithms on the three
well-known challenging datasets.

The remainder of the paper is organized as follows: Section 2 briefly discusses previous
surveys conducted on object detection in challenging environments. Section 3 provides
an exhaustive discussion on recently applied approaches to solving problems of object
detection in difficult environments. Figure 5 explains the structural flow of mentioned
methodologies. Section 4 provides details about publicly available datasets for challenging
object detection tasks. Section 6 explains well known evaluation metrics and provides
performance of all the discussed approaches in Section 3. Section 7 highlights the current
challenges and suggest future directions, whereas Section 8 concludes the paper.

2. Related Surveys on Object Detection

There are many surveys carried out on the topic of object detection [44—47]. This
section covers some of the prior surveys.

Han et al. [32] organized the survey in which deep learning techniques for salient
and category-specific object detection are reviewed. In 2019, Zou et al.[48] performed an
extensive survey on object detection methods that have been proposed in the last 20 years.
The authors discussed all the types of object detection algorithms proposed over the years
and highlighted their improvements.

Another survey organized by [iao et al. [49] discussed various deep learning-based
methods for object detection. The proposed work provided a comprehensive overview of
traditional and modern applications of object detection. Moreover, The authors discussed
methods for building better and efficient object detection methods by exploiting existing
architectures. Arnold et al. [50] surveyed 3D object detection methods for autonomous
driving. The proposed work compared various 3D object detection-based approaches.

It is vital to mention that all of the prior surveys have focused on the general problem
of object detection. Although these surveys explain how object detection has improved
over the years, they do not cover the challenges and solutions to improve object detection
performance in a challenging environment such as low light, occlusions, hidden objects,
and so on. To the best of our knowledge, we provide the first survey that reviews the per-
formance of deep learning-based approaches in the field of object detection in a challenging
environment.
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Figure 5. Organization of explained methodologies in the paper. The problem of object
detection in challenging environments has been tackled by employing various deep
learning concepts. In this paper, we categorize these methods according to the utilized
architectures.

3. METHODOLOGIES
The process of detecting an object is divided into the following steps:

—_

Find regions as object/no-object.
2. Classify the detected regions where objects exist.

This section discusses the various approaches that have tackled object detection prob-
lems under complex scenarios by employing deep neural networks. As explained earlier
in Section 1, Various object detection-based algorithms and a few semantic segmentation-
based approaches have been exploited in the recent past to develop object detection systems
under challenging situations. For convenience, we have categorized the methodologies
according to the employed architectures. Figure 5 exhibits the structure of this section,
whereas the categories of the explained methods are illustrated in Figure 6. Furthermore,
Table 1 summarizes the main advantages and limitations of the mentioned approaches.
Moreover, Figure 7 exhibits the generic mechanism of the recently proposed approaches in
this domain.

Single Stage Deep Pyramid Single Shot YOLO RFB-NET
Detectors > Single Shot > Detector > (2020) > (2020)
(2019) (2019)
Two Stage Deep loU EM- 3 Mask R-CNN o Faster R-CNN
Detectors Merger (2020) (2020)
(2019)
Generic Object A . .
Detection Semantic Image Deep Saliency > SegNetUnet o  ShuffleSeg Fully Convolutional
Segmentation Networks (2019) (2019) Siamese Networks
(2019) (2019)
Salient Object =» Attention Based
Detection Networks
(2020)

Figure 6. Different object detection algorithms approaches are categorized into four
categories. One-stage detectors are fast but lack accuracy, whereas two-stage detectors
are slow but accurate. Semantic image segmentation deals with pixel-level detection, and
salient object detection deals with detecting objects by applying an attention mechanism.
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Figure 7. The generic mechanism of the proposed approaches that have tackled the problem of object
detection in a challenging environment. Image-enhancement networks extract important features
from the input images. Object detectors employ these features to retrieve final predictions.

3.1. One-Stage Detectors

One-stage detectors predict the candidate regions without taking aid from region pro-
posal networks. Compared to two-stage detectors [24,26], they are efficient and widely ex-
ploited in developing real-time object detection systems [51-53]. The architectural overview
of one-stage detectors is depicted in Figure 8. Researchers have proposed approaches to
detect objects in arduous environments by adopting one-stage detectors. This section
further arranges the approaches according to the operated one-stage object detectors.

3.1.1. YOLO

You Only Look Once (YOLO) [25] has been widely applied to develop real-time object
detection systems in various domains [51-53]. Unlike region-based convolutional neural
networks, YOLO only takes a single look and divides the image into S x S grid of cells. For
each object that exists on the image, one grid cell is supposed to be responsible for having
that object at its center. Figure 9 illustrates the main idea of YOLO. This section covers the
techniques that have exploited YOLO to detect objects in a complex environment.

By leveraging the power of transfer learning, Sasagawa et al. [54] proposed an approach
to detect objects under low illumination. The work proposed combining two trained models
from different but related domains through glue layers and a generative model. The authors
have used the knowledge distillation technique to train the proposed approach. Initially,
encoder-decoder network [55] is used to extract spatial features from the given image by
using convolutional [56] and pooling layers [57]. The pooling layer is used to capture
features at different frequencies of information. Once the encoder-decoder network learns
the latent representation, it is propagated to the glue layer. The glue layer is composed of
batch normalization [58], pooling, and concatenation. The authors empirically established
that the concatenation of all latent features produces the optimal result. The glue layer uses
RGB data generated by encoder g, using the knowledge distillation method. YOLO [25] is
utilized to localize and identify objects. Since the proposed technique relies on pre-trained
networks, the backbone network is pre-trained on MS-COCO [12] and See in the dark(SID)
[59] dataset. By combining pre-trained models using glue layers, the proposed method
could detect objects in scenes illuminated by less than 1 lux. Further, it is 2.4 times more
sensitive than the original YOLO model [25]. Moreover, the use of the glue layer further
reduces the computational resources.

Utilizing YOLO, Mate et al. [60] employed thermal images to improve object detection
performance in challenging conditions such as bad weather, nighttime, and densely packed
areas. The authors argued that thermal images could easily show the difference between
objects and the surrounding environment based on temperature values as compared to
RGB images. This aids the process of detecting objects in difficult situations like low light
scenarios, rainy or foggy weather. This work consists of two different experiments. The
first network was fine-tuned on the thermal dataset UNIRI-TID [61] whereas the second
model was trained from scratch on the same UNIRI-TID thermal dataset. The authors
found that the model trained from scratch performed better than the fine-tuned model.
The authors also reported that the model’s performance drops in the case of bird-eye view
images. Figure 17 shows a failure case of proposed method.
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Figure 8. Graphical illustration of the object detection algorithms. The upper part of a figure exhibits
two-stage detectors in which the backbone network extracts features that are passed to RPN to
generate region proposals. These region proposals are refined to detect the objects in images. The
lower part illustrates one-stage detectors in which objects are localized and classified in a single
forward pass. The grey cubes in the backbone demonstrate the convolutional operation.

i i e N
Bounding boxes + confidence

. HHEEE

S xS grid on input Final detections

Class probability map

Figure 9. The explained architecture of YOLO [25]. YOLO sees the complete image at once and
segments an image into S x S grids. Each cell predicts bounding boxes and a confidence score for
every bounding box. The cell in which object is present at the center, is liable to detect the object.
Figure is from [25].

3.1.2. RFB-Net

Currently, existing state-of-the-art detection algorithms use pre-trained backbones
based on Feature Pyramid Network (FPN) to extract low-level and high-level features.
Instead of relying on a pre-trained backbone, RFB-Net is inspired by the Receptive Fields
(RFs) structure in the human visual system. RFB-Net considers the relationship between
size and eccentricity of RFs to enhance features. Figure 10 illustrates the main building
block of RFB-Net.
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Figure 10. The explained architecture of RFB [62]. RFB is inspired by Receptive Fields (RFs) in human
visual system. RFB considers the relationship between the size and eccentricity of Receptive fields
into account to enhance the features. (a) RFB is identical to Inception, responsible for simulating the
RFs of multiple sizes, and (b) part reproduces the relation between the RF size and eccentricity in the
human visual system by using smaller kernels. Figure is from [62].

Existing state-of-the-art generic object detection algorithms do not perform well
on images captured at low light because most low-level features are merged with the
background. To tackle this problem, Yuxuan et al. [63] fused contextual information in
the backbone to avoid loss of low-level contextual features. Lower spatial feature maps
with higher spatial feature maps are fused to preserve low-level features, maximizing
pre-trained channel information.

The second problem with images captured in low light is that when these images are
passed through conventional hierarchical convolutions, the resulting edges and features are
not very rich with information. Therefore context fusion is incorporated in the backbone
part of the network. The aim is to compensate for the information loss during the lower
to higher-level convolution process. Low-level feature maps of the network are selected
and interpolated to the identical shape of its successive feature maps. The resulting feature
map is rich in contextual information combining high-level features and low-level features.
The authors merged RFB-Net [62] as a base architecture with the proposed modifications.

3.1.3. SSD

SSD [27] is another extensively employed real-time object detection algorithm belong-
ing to the family of one-stage detectors. SSD eliminates the region proposal network from
the Faster R-CNN [24] to increase the network’s speed. SSD includes multi-scale features
and default boxes to compensate for the performance trade-off. The architecture of SSD is
illustrated in Figure 11.

Extra Feature Layers
A
r \
Classifier : Conv: 3x3x(4x(Classes+4))

VGG-16
through Conv5_3 Iaxe\r
< n 22 12

Classifier : Conv: 3x3x(6x(Classes+4))

SSD

| Detections:8732 per Class ‘
| Non-Maximum Suppression |

] 1024] 1024
Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128
Conv: 3x3x512-s2 Conv: 3x3x256-s2 Conv: 3x3x256-s1 Conv: 3x3x256-s1

Figure 11. The explained architecture of SSD [27]. The architecture of SSD is based on the VGG-16 [64]
as base network by replacing VGG fully connected layers with auxiliary convolutional layers to
provide feature extraction at multiple scales. Later, the multibox detector [65] performs the task of
object detection. Image is from [27].

Sarin et al. [66] proposed a convolutional neural network-based human detection
and SSD-based face detection system to improve the results of surveillance systems in
challenging environments. The first human detection network is used to identify whether
an input image contains a human. Once a human is detected, the method exploits SSD
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to localize the area of the face on a predicted image. Since the conventional method
tends to over-fit on the provided dataset, the proposed work leverages dropout [67] and
data augmentation techniques to avoid overfitting. For the enhancement of dark images,
brightness normalization with the zero-center method is adopted. The model operated
on AlexNet [56] and was modified for the problem at hand. Two datasets KAIST [68] and
UFDD [69] datasets, were used to train human and face detection networks, respectively.

Deep Pyramid Single Shot Face Detector

For face detection in a harsh environment, Ranjan et al. [70] proposed a Deep Pyramid
Single Shot face Detector (DPSSD). The authors argued that deep pyramidal architecture
in SSD [27] can even detect small-scale faces in the images. In this work, the input image
is passed through up-sampling layers to extract rich contextual features and then passed
through pooling layers. Final detection boxes are generated from the up-sampling layers
through the anchor box matching technique. The output prediction divides into two
branches: regression and classification. Furthermore, to optimize network convergence,
crystal loss is introduced for face verification and classification tasks. The proposed crystal
loss minimizes the angular distance between similar subject pairs and maximizing the
angular distance between different subject pairs. For the training purpose, the WIDER
Face dataset [71] was employed. The proposed approach is extensively evaluated on
unconstrained face detection datasets of IJB-A [72], IJB-B [73], and IJB-C [74].

3.2. Two Stage Detectors

Along with one-stage detectors, two-stage detectors have been applied to tackle
object detection in difficult situations. Figure 8 depicts the basic architecture of two-stage
detectors.

3.2.1. Faster R-CNN

Faster R-CNN [24] is one of the most widely exploited object detection networks
[83,84]. It is the extension of Fast R-CNN [34] with Region Proposal Network (RPN). RPN
aims to generate proposals with different sizes and aspect ratios. These proposals and the
spatial features are propagated to the Fast R-CNN [34] module, which performs object
detection. The basic architecture of Faster R-CNN [24] is depicted in Figure 12. This
section discusses the methodologies that employ Faster R-CNN [24] as an object detection
algorithm in their system of identifying objects under various difficult scenarios.

Generative Adversarial Networks(GAN) [85] have also been applied to enhance the
visual quality of images captured under low light. Kun et al. [77] proposed the Deep
Convolution Generative Adversarial Networks(DCGAN) [86] combined with Faster R-
CNN [24] to solve the problem of object detection in low light. The first step is to use
DCGAN to convert nighttime scenes into daytime scenes by keeping the important aspects
maintained between two input images. The second step is Multi-scale convolution feature
fusion. This work applies up-sampling and down-sampling convolutions to fuse features
extracted from starting layers.

The third contribution of this work is the proposed modification in the ROI Pooling
layer. According to the coordinate vector, the standard ROI pooling layer uses bilinear
interpolation to obtain pixel value. Although conventional ROI pooling reduces parameters,
the target object’s critical features are lost. Therefore, the authors employed ROI pooling of
different sizes to capture more detailed information. Subsequently, the final ROI pooling
output is passed to the classifier and regressor to obtain final predictions.

3.2.2. Mask R-CNN

In the family of region-based convolutional neural networks, Mask R-CNN [26]
has been exploited by the state-of-the-art object detection and instance segmentation
approaches [87,88]. Mask R-CNN [26] extends Faster R-CNN [24] with an addition of
another branch that retrieves the mask for each detected object. The complete framework
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Table 1. A summary of advantages and limitations of methods tackling object detection in challenging environments. The

double horizontal line separates the approaches according to the categories explained in Section 3.

Literature

Methods

Advantages

Limitations

Yuxan et al. [63]

Images are transformed and then fed
into the RFB-Net (Sec 3.1.2).

Context information fusion allows
detection of object in low-light.

Relies on prior information
about type of object, shape etc
for detecting them in night time.

Mate et al. [60]

Thermal images incorporated with
YOLO (Sec 3.1.1).

Thermal images give better information
then RGB images in difficult conditions.

Fails at capturing from bird-eye
view. Further, thermal images
are not useful in environments
where background and object
temperature is same. As
illustrated in Figure 17.

Ranjan et al. [70]

Single shot deep pyramid face detector
(DPSSD) (Sec 3.1.3.1).

Extract rich contextual information and
multi-scale features with help of pooling
layers.

Requires a fixed input size.

Sasagawa et al. [54]

Fusion of pre-trained models using
Glue layer and information distillation
(Sec 3.1.1).

Domain joining with help of glue layer
reduces in computation and provides
more information for models to learn
from different domains.

Relies on prior domain
knowledge.

Sarin et al. [66]

Single shot human and face detector
(Sec 3.1.3).

Simple and effective approach.

Fails in low light and gets fooled
by human look alike pictures.
As illustrated in Figure 18.

Avramovic et al. [75]

Region of interest(ROI) integration
with Mask-RCNN and YOLO (Sec
3.2.2).

Only choose regions of interest where
objects of interest can occur instead of
applying object detection to whole
image.

Relies on prior knowledge of
where objects can show.

Eran et al. [76]

Modification of CNN with Soft-IOU
layer and custom EM-Merger layer.

Reduces overlapping detections (Sec
3.2.3).

Treats overlapping predictions
as clustering problem. Not very
real run time.

Kun et al. [77]

Generative adversarial network with
Faster R-CNN (Sec 3.2.1).

Networks learns both day and night
time features.

Relies on prior information of
converting night time images to
day time.

Ghose et al. [78]

Fusion of thermal images and their
saliency maps using deep saliency
networks (Sec 3.3.1).

Provides rich contextual and depth
information.

Relying on thermal images
causes poor performance in day
time or similar conditions.

Rashed et al. [79]

Fusion of RGB images with LIDAR
sensors information with
encoder-decoder architecture (Sec
3.3.2).

Fusion of RGB, rgbFLow and lidarFlow
provides greater information.

LiDAR sensors data and
rgbFlow data need to be merged.
There are multiple methods of
fusion.

Kamal et al. [80]

Combination of SegNet and U-Net to
detect traffic signs (Sec 3.3.3).

Less computation cost as four corners of
image are cropped and merged together
before passing through network

Relies on prior information
regarding where objects are
most likely to occur. Fails when
object location changes. As
illustrated in Figure 19.

Wang et al. [81]

Fully convolutional Siamese networks
with modified binary segmentation
task (Sec 3.3.4).

Pre-frame binary segmentation mask is
used for low-level object representation
instead of relying on feature extractor
backbone.

Relies on prior information
while generating binary
segmentation mask. Fails when
faced with motion blur and
non-object pattern. As
illustrated in Figure 20.

Zhengzheng et al. [82]

Two Stream convolutional neural
network with attention mechanism
(Sec 3.4).

Fusion of rgb and thermal image to
generate features and noise reduction
with convolutional block attention
module. A new dataset for
benchmarking.

Thermal images are not efficient
for every environment use.
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Figure 12. The explained architecture of Faster R-CNN [24]. The base network generates the feature
maps from input images and propagates them to RPN and ROI pooling. The RPN generates region
proposals which are refined by ROI pooling to perform regression and classification. Figure is
from [24].

of Mask R-CNN is illustrated in Figure 13. This section talks about the approaches that
have tackled object detection under strenuous conditions by exploiting the capabilities of
Mask R-CNN.

Figure 13. The explained architecture of Mask R-CNN [26]. The architecture of Mask R-CNN extends
the architecture of Faster R-CNN [24] with two modifications: 1) Replacing the Rol pooling with
RolAlign layer. 2) Addition of segmentation branch along with regression and classification. The
figure is from [26].

Another approach for detecting traffic signs is proposed by Avramovic et al. [75]. The
authors discussed that a driver could only focus in front of him and beside him through
(side mirrors) during driving. Hence, to detect traffic signs, the model should perceive an
input image in the same way. Therefore, instead of applying object detection to the whole
image, the proposed work focus on a specific region where traffic sign is likely to be seen.
Selecting a limited amount of Regions Of Interests (ROIs) reduces the overall computation
cost and propagates smaller images through the network efficiently. Furthermore, the
original aspect ratio of traffic signs is preserved by using a small number of ROIs. They
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evaluated the approach equipped with Mask-RCNN [26] and YOLO[25] on the DFG traffic
sign dataset [89].

3.2.3. Deep 10U with EM-Merger

In a challenging environment, generic object detectors predict multiple bounding
boxes for a single object. To address this issue, Eran et al. [76] proposed a Soft-IOU layer
for estimating Jackkard distance as a quality detector between the predicted bounding box
and the ground truth. The presented approach aims to minimize overlap regions between
multiple detections. Once the network predicts the bounding boxes for the input image, the
predictions are treated as a clustering problem. The method applies a custom EM-Merger
layer to group similar predictions to form a single detection.

Although conventional non-max suppression can remove overlapping detection, the
authors argued that non-max suppression does not provide a satisfactory result in densely
packed situations. This work empirically established that it is better to use the EM-Merger
layer to combine extra detections. Their proposed approach achieved better results than
the state-of-the-art object detection-based algorithm on SKU-110K benchmark dataset [76].

3.3. Semantic Image Segmentation

Besides generic object detection algorithms, researchers have investigated the capabili-
ties of Semantic Image Segmentation (SIS) [90] in identifying objects in arduous conditions.
Instead of localizing an object in an image, SIS predicts a class label for each pixel in an
image. This task is also termed a dense prediction. Once we have the labeled pixels, we
segment the objects by grouping the pixels belonging to the same class. The methods based
on SIS mainly operate on Fully Convolutional Networks (FCNs) [91]. Unlike other deep
neural networks, FCNs consist of only convolutional layers and no fully connected layers.
Therefore, FCNs can work with images of various sizes. A visual illustration of FCNs are
exhibited in Figure 14. This section addresses some of the methods that operate on the
concept of SIS to deal with object detection in perplexing scenarios.

3.3.1. Deep Saliency Networks

In 2019, Ghose et al. [78] proposed the combination of saliency maps with thermal
images to detect pedestrians in poor lighting conditions. This work suggested that instead
of relying on thermal and RGB images, the addition of saliency map information to thermal
images facilitates the network to identify the objects. At first, the method augments the
thermal images by replacing one duplicate channel with a corresponding saliency map.
This combination helps illuminate salient parts of the image while preserving textural
information. To extract saliency maps, the authors experimented with two state-of-the-art
deep saliency networks (PiCA-Net [92], and R3Net [93]).

PiCA-Net generates an attention map for each pixel in an image and employs Long
Short Term Memory (LSTM) [94] to scan the image and obtain global context. U-Net[95]
is then applied to detect salient objects from the generated attention maps. R3Net [93]
uses residual refinement block to learn residuals between the ground truth and saliency
maps. To assess the performance of the proposed method, the authors exploited KAIST
multi-spectral pedestrian dataset [68].

3.3.2. ShuffleSeg

Following the concept of applying image segmentation [78], Rashed et al. [79] proposed
FCNs based architecture for moving object detection by concatenating spatial information
with LiDAR sensors. The presented work employed three encoders to handle RGB, rg-
bFlow, and lidarFlow information separately. The whole network follows encoder-decoder
architecture. The encoder extracts the latent features while the decoder up-samples them to
generate the final image. To analyze the capabilities of the proposed approach, the authors
used KITTI dataset [96] and a custom-made Dark-KITTI dataset to simulate a low-light
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<
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Figure 14. The explained architecture of Fully Convolutional Networks (FCNs). FCN first down-
samples and then transforms the image back to the original spatial size using up-convolutions. Using
dense predictions, they try to predict a class label for each pixel in an image and segment the objects
based on the classes of pixels. The image is courtesy of [91].

environment. The proposed method achieved a 4.25% improvement on standard KITTI
and 10.1% relative improvement on the Dark-KITTI dataset.

3.3.3. SegNet, U-Net

Kamal et al. [80] integrated two different network architectures based on FCNs [91] to
localize and classify traffic signs. This approach operated on a combination of SegNet [97]
and U-Net [95] to detect segment signs and a VGG-16[64] network for the classification.

Initially, the method extracts patches from all the corners of the input images. The
models (SegNet and U-Net) train on these patches to predict the segmented traffic signs.
Then predictions of the four patches are merged to make an output mask for the original
image. VGG-16[64] categorizes the detected sign into 14 various classes. To increase the
detection of small traffic signs, the authors used the L1 constraint term to modify Tversky
Loss [98] instead of the conventional intersection over union loss. To appraise the system,
the author used the CURE-TSD dataset [99] and achieved a precision of 94.60% and recall
of 80.21% beating previous state-of-the-art results.

3.3.4. Fully Convolutional Siamese Networks

Utilizing fully convolutional Siamese networks [100] Wang et al. [81] proposed
SiamMask, a modified network with an addition of binary segmentation task. This work
explained the importance of producing per-frame binary segmentation masks instead
of relying on low-level object representations extracted from existing spatial extraction
networks [64].

As siamese networks [100] can conveniently encode the required information to
produce a pixel-wise binary mask, the method adds a different branch and loss to the
existing architecture. The first modification generates a binary mask by adding a simple
two-layer neural network with learnable parameters during training. Secondly, the authors
proposed binary logistic regression loss for the new branch.

Unlike Mask R-CNN [26] and other segmentation architectures that rely on maintain-
ing spatial information throughout the network, the proposed approach generates masks
starting from a flattened representation of the object. For evaluation, two networks SiamFC
[101] and SiamRPN [102] are modified to perform experiments on the VOT-2018 dataset
[103]. SiamMask was able to perform better than prior existing algorithms. Possible failure
cases are shown in Figure 20.


https://doi.org/10.20944/preprints202106.0590.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 June 2021 d0i:10.20944/preprints202106.0590.v1

14 of 28

3.4. Attention Based Salient Object Detection

Employing salient object detection Zhengzheng et al. [82] fused RGB images with
thermal images to extract multi-level features to detect objects in adverse conditions. The
proposed work used a two-stream convolution neural network architecture to generate
RGB and thermal image features.

The proposed work exploited multiple attention mechanisms to extract weighted
features from both RGB and thermal input images. The extracted weighted features are
then fused to form single input for later convolutions. These feature maps are passed
through lower-level to high-level convolution blocks in a standard forward pass fashion.
Although high-level features are vital, mid-level features are essential to refine object
details. Therefore, this work added Pyramid Pooling Module and a feature aggregation
Module to sharpen the object details and facilitate localizing the object.

To remove noise from features, the approach adds the Convolutional Block Attention
Module(CBAM) [104] to apply channel-wise and spatial-wise attention. Later, average
pooling aggregates the spatial information from feature maps while max-pooling generates
two different spatial context information. Subsequently, the approach merged the spatial
context features and applied the attention mechanism with the sigmoid. During the
training, edge loss and cross-entropy loss are added together. The proposed method was
tested on the VT5000 dataset [82].

4. Datasets

The performance of deep neural network-based approaches directly relates to the
size of datasets. In any area of research, standard datasets are essential to benchmark the
performance and draw fair comparisons between various proposed approaches. Several
challenging large-scale datasets have been introduced that consist of images or videos
captured in a harsh environment. In this section, we take a look at publicly available
challenging datasets. Moreover, Table 2 summarizes the essential information of the
explained datasets.

4.1. ExDARK

One of the very few publicly available low light datasets is the EXDARK! dataset.
Patil et al.[105] published this dataset in 2020. The dataset contains 7363 real-life low-light
pictures from different low-light environments, such as indoors and at nighttime. There
are a total of 12 classes in the dataset. All the images in the dataset are manually collected,
and afterward, different image enhancement techniques like de-hazing and blurring are
applied to them. The classes of this dataset are table, cat, people, motorbike, dog, cup,
chair, bicycle, boat, bottle, bus, car, and cat. As highlighted in Table 2, this dataset only
contains information for the boundaries of objects. Figure 15 (a) exhibits few samples
from this dataset. We have exploited this dataset to evaluate the performance of current
state-of-the-art object detection algorithms on this dataset.

4.2. CURE-TSD

CURE-TSD [99]? is a large-scale publicly available dataset for the task of traffic sign
detection. The dataset contains video sequences manually gathered by driving a car around
different areas at different times of the day to capture diverse scenarios. Furthermore, the
manually collected images are augmented to provide different kinds of occlusions such as
rainy weather, decolorization, blur, darkening, dirty lens, exposure, codex error, snow, and
haze. The authors of this dataset have suggested 34 videos for training, whereas 15 videos
are allocated for testing purposes. Given five different levels of challenges to each type of
occlusions, there is a total of 1.72 million frames. There are 14 types of traffic signs in this
dataset labeled as speed limit, goods vehicles, no overtaking, no stopping, no parking,

1 https://github.com/cs-chan/Exclusively-Dark-Image-Dataset

2 https://github.com/olivesgatech/CURE-TSD
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(d) (e) (f)

() (k) )

Figure 15. Sample images belonging to challenging datasets. (a) represents samples taken from ExDark [105] showing low-light
examples, (b) depicts samples from Reside [106] explaining harsh weather, (c) describes samples from CURE-TSD [99] illustrating
example of camera distortion, lens flare, (d) denotes samples from KITTI [96] depicting various objects to be detected, (e) represents
samples from Kaist [68] explaining saliency maps with their night time images, (f) depicts samples taken from UNIRI-TID [61] showing
example of thermal images, (g) highlights samples from SKU-110K [76] representing example of cluttered objects, (h) represents
samples taken from Wider Face [71] showing faces at various angles, (i) represents samples taken from VOT-2018 [103] presenting
example of complex indoor scenes, (j) shows samples taken from DFG [89] illustrating traffic signs at various places, (k) represents
images taken from MS-COCO [12] describing example of objects in daily life and (1) outlines samples taken from See in the dark [59]
dataset exhibiting examples captured at low illumination and high exposure.
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stop, bicycle, hump, no left, no right, priority to, no entry, yield, parking. Figure 15 (c)
illustrates few samples of this dataset. We have included this dataset in our benchmarking
experiments.

4.3. RESIDE

RESIDE [106] is a publicly available dataset employed for the task of object detection
in difficult weathers. The dataset contains multiple subdivisions, each for a separate
task. However, we have worked on the Real-world Task-driven Testing Set (RTTS) subset.
The subset RTTS contains 4,332 real-world hazy images representing different scenarios
in a day. Images were collected manually through video cameras and annotated with
bounding boxes localizing objects. The dataset contains various real-world occlusions
such as hazy, rainy, snowy weather, and so on. There are five classes annotated as bicycle,
bus, motorbike, car, and person. Figure 15 (b) depicts few samples from this dataset. We
incorporate this dataset along with EXDARK [105] and CURE-TSD [99] to benchmark the
results on state-of-the-art object detection algorithms.

4.4. SKU-110K

SKU-100K 3 is a new dataset collected by authors of the approach "Precise Detection
in Densely Packed Scenes [76]" where they have explained that for challenging scenarios,
overlapping detections can occur.

The publishers of this dataset collected data from supermarkets and stores worldwide
using cell cameras. The dataset only contains bounding box annotations for each image.
The dataset contains 11,762 images. For training, the authors have suggested 8,233 images,
588 images for validation, and 2,941 images for testing. To ensure the same shop does not
appear in more than one set, the authors recommended random selection of the sample
images for training, validation, and testing. A few samples from SKU-110K dataset are
visible in Figure 15 (g).

4.5. UNIRI-TID

UNIRI-TID [61] % is a novel dataset published in [60] for the task of detecting human/non-
human objects in difficult weather. The dataset contains thermal images collected manually
using the thermal camera in different weather conditions. The dataset was created to
provide a balanced ratio of images for each kind of difficult weather like rainy, fog, clear,
and hazy. Furthermore, the creators of this dataset applied custom augmentation like
grayscale to increase the number of images. The dataset has a total of 35,974 images with
2663 images for clear weather, 2313 for rainy weather, 1135 for foggy weather, 18333 are
grayscale images, and the remaining 6111 images contain a mix of all possible weather
conditions. Figure 15 (f) illustrates few samples of this dataset.

4.6. KAIST Multispectral Pedestrian Detection

KAIST Multispectral Pedestrian [68] ° is a publicly available dataset containing both
RGB and thermal images for the task of pedestrian detection. The dataset contains 95000
images with thermal-RGB pairs captured by a camera mounted on a vehicle. The dataset
contains challenging images captured during nighttime and in harsh weather. Furthermore,
the dataset provides scale, occlusions, and other challenges for object detection. The dataset
only has two classes of pedestrians and background. Few Samples of the dataset are
illustrated in Figure 15 (e).

3 https:/ /github.com/eg4000/SKU110K_CVPR19
4 https://ieee-dataport.org/open-access/ thermal-image-dataset-person-detection-uniri-tid
5 http:/ /rcv.kaist.ac.kr/multispectral-pedestrian/
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Table 2. Important statistics of challenging object detection datasets. OD denotes Object Detection, SOD represents Salient

Object Detection, and COD is for Category Specific object Detection.

Dataset OD SOD COD Samples Type Location
Camera https:/ / github.com/cs-chan/Exclusively-

ExDark [105] v X v 7K Captured Image Dark-Image-Dataset
Camera

CURE-TSD[99] v X v 1.72M Captured https:/ / github.com/olivesgatech /CURE-TSD
Videos
Thermal https:/ /ieee-dataport.org/open-

UNIRI-TID [61] v X v 36K Camera access/thermal-image-dataset-person-
Captured Image detection-uniri-tid

KAIST

Multispectral /v X 95K Camera https:/ /soonminhwang.github.io/rgbt-ped-

Pedestrian Captured Image  detection/

Detection [68]

DFG Traffic Camera . .

Sign [89] X v 7K Captured Image http:/ /www.vicos.si/Downloads/DFGTSD
Camera https://github.com /12118 /RGBT-Salient-

VI5000 [82] o X 53K Captured Image Object-Detection

Wider Face[71] v X X 32K Camera http:/ /shuoyang1213.me/ WIDERFACE/
Captured Image p: yans )
Camera .

UFDD [69] X X 6.4K Captured Image https:/ /ufdd.info/

See-in-the-Dark /X v 5K Camera https:/ / github.com/cchen156/Learning-to-

[59] Captured Raw See-in-the-Dark
Camera

Ms-COCO[12] v v 328K Captured Image https:/ /cocodataset.org/#download

VOT-2018 [103] v X X 60 Video captured https:/ /zenodo.org/record /3257319
sequences

- Camera . e

Kitti [96] v o/ v 1.5K Captured Image http:/ /www.cvlibs.net/datasets/kitti/index.php
Camera .

SKU-110K [76] v X X 11.7K https://github.com/eg4000/SKU110K_CVPR19
Captured Image

Reside [106] v X v 43K Camera https:/ / github.com /Boyiliee /RESIDE-

Captured Image

dataset-link
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4.7. DFG Traffic Sign Dataset

DFG traffic sign dataset [89] © is another dataset that provides ground truth for both
traffic sign detection and recognition tasks. There is a total of 7 thousand images collected
with 200 different traffic signs. The complete dataset is divided into a training set with
5254 images and a test set with 1703 images. There is also an extended version of the
dataset available with artificially augmented traffic signs. The extended version contains
15K traffic signs in natural images. Figure 15 (j) exhibits few examples of this dataset.

4.8. VT5000 Dataset

VT5000 dataset 7 is the custom dataset curated by Tu et al. [82] for the task salient
object detection. The dataset has 11 challenges collected in different scenes. There are 5500
pairs of RGB images with their corresponding thermal images. The main advantage of
this dataset is that the sample images consist of objects with different sizes and varying
illumination conditions.

4.9. Wider Face

Wider face dataset [71] 8 is another dataset curated for detecting faces in complex
scenarios. The dataset contains 32,203 images with high variance in scales, poses, and oc-
clusions. Due to several tiny faces in the images, this dataset is one of the most challenging
datasets for face detection. Few samples are visible in Figure 15 (h).

4.10. UFDD

UFDD [69] is a new face detection dataset that captures real issues not present in other
datasets. The dataset contains images captured in different weather scenarios with rain,
snow, and haze weather. Motion blur and focus blur have been manually added to images
to increase the total number of images in the datasets. There is a total of 6,452 images with
10,897 annotations.

4.11. See-in-the-Dark

Another dataset that operates under low light is published by Chen et al. [59]. The
dataset contains 5094 raw short-exposure images of both indoor and outdoor scenarios.
Outdoor images are taken at night time to add further complications. There are only
bounding box annotations in the dataset. Therefore, it is an ideal dataset to employ object
detection-based approaches. Figure 15 (1) explains the dataset visually.

4.12. MS-COCO

Common Objects in Context (MS-COCO) ? [12] is one of the biggest publicly available
datasets introduced by Microsoft in 2015. The dataset contains 91 objects with 2.5 million
labeled instances in 328000 images. The dataset contains annotations for object detection
tasks, instance segmentation, keypoints detection, panoptic segmentation, and salient
object detection. The authors have split the dataset into three parts, with 82,783 images
belonging to the training set, 40,504 images for the validation set, and 40,775 images for the
test set. Few samples of the dataset are visible in Figure 15 (k).

4.13. VOT-2018

VOT-2018 [103] is a publicly available dataset for tracking challenges. The dataset has
60 sequences captured with the help of a camera. The data captured in the dataset has
various challenges such as occlusion, illumination change, motion change, size change,

http:/ /www.vicos.si/Downloads/DFGTSD

https:/ /github.com /12118 /RGBT-Salient-Object-Detection
http://shuoyang1213.me/WIDERFACE/

https:/ /cocodataset.org/#download
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and camera motion. The dataset facilitates the researchers to perform object detection and
instance segmentation as well. Few instances of the dataset are shown in Figure 15 (i).

4.14. Kitti

KITTI [96]'° is one of the largest publicly available datasets. KITTI consists of several
sub-datasets that perform various tasks such as image segmentation, 2D object detection,
and 3D object detection. The data is collected with the help of LiDAR and various cameras
mounted on vehicles and driving around the mid-size city of Karlsruhe, in rural areas, and
on highways. More or less, each image has 20 annotated objects. There is a total of eight
object classes. Figure 15 (d) depicts few instances of this dataset.

5. Experiments

We have investigated the performance of current state-of-the-art object detection
algorithms on the three most challenging datasets. The idea is to draw an analysis that
explains how well object detection algorithms can perform under harsh conditions. We
employed Faster R-CNN [24], Mask R-CNN [26], YOLO V3 [39], Retina-Net [107], and
Cascade Mask R-CNN [108] to benchmark their performance on the datasets of EXDARK
[105] , CURE-TSD [99], and RESIDE [106].

We have leveraged the capabilities of transfer learning in our experiments. All the
object detection networks are incorporated with a backbone of ResNet50 [109] pre-trained
on COCO dataset [12]. We fine-tuned all the models for 15 epochs with a learning rate of
2 x ¢7% and used Adam [110] as an optimizer. We resized images to 800 x 800 during the
training and testing phases.

6. Evaluation

This section discusses the well-known evaluation criteria essential to standardize
state-of-the-art results for object detection in difficult situations. Moreover, this section
analyzes the performance of the approaches discussed in Section 3 with quantitative and
qualitative illustrations. Finally, we will present the outcome of our experiments on the
three most widely exploited challenging datasets.

6.1. Evaluation Criteria

The standardization of how to assess the performance of approaches on unified
datasets is imperative. Since object detection in a challenging environment is identical to
generic object detection, the approaches appraise similar evaluation metrics.

6.1.1. Precision

Precision [111] defines as the percentage of a predicted region that belongs to the
ground truth. Figure 16 illustrates an the difference between precise object detection and
imprecise object detection. The formula for precision is explained below:

Predicted area in ground truth TP
Total area of predicted region ~ TP + FP

)

where TP denotes True Positives and FP represents False positives.

6.1.2. Recall
Recall [111] is calculated as the percentage of the ground truth region that is present
in the predicted region. The formula for the recall is given by:

Ground truth area in predicted region TP
Total area of ground truth region TP + FN

@

10 http:/ /www.cvlibs.net/datasets/kitti/index.php
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Figure 16. The image explains the visual difference between precise and imprecise prediction in
object detection. The green color represents the ground truth, and the red color depicts the predicted
boundary. Considering the IOU threshold value equals 0.5, the left prediction is not precise because
the IOU between the ground truth and the inferred bounding box is less than 0.5. The bounding box
prediction on the right side is precise because it covers almost the complete ground truth area.

Where TP is True Positives and FN represents False Negatives.

6.1.3. F-Measure
F-measure [111] is computed by taking the harmonic mean of precision and Recall.
Mathematically, it is explained below:

2% Precision x Recall

®)

Precision + Recall

6.1.4. Intersection Over Union

Intersection Over Union (IOU) [112] is one of the most important evaluation metrics
that is regularly employed to determine the performance of object detection algorithms. It
is the measure of how much the predicted region is overlapping with the actual ground
truth region. IOU is defined as follows:

Area of Overlap region
Area of Union region

(4)

6.1.5. Average Precision(AP)

Average Precision computes average value of precision over different levels of recall.
Higher the value of AP, the better performance and vice versa. Formula for calculating
average precision is mentioned below:

AP =) (R, — Ry-1)Py (5)

n

where Ry, and Py, are the precision and recall at the ny, threshold.

6.1.6. Mean Absolute Error(MAE)

Mean absolute error measures average pixel-level absolute difference between pre-
dicted value and ground truth. It can be calculated as follows:

D
; lxi — il (6)
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6.1.7. Mean Average Precision

Mean Average Precision (mAP) is another extensively applied evaluation metric for
category-specific object detection. The mAP is the mean of average precision computed
over all the classes. Mathematically, it is explained by:

1 N
mAP = N Y APD, )
i=1

where AP, is the average precision for a given class explained in Section 6.1.5 and N depics
the total number of classes.

6.2. Evaluations for Object Detection in a Challenging Environment

Object detection in a challenging environment is to distinguish objects from the
background and regress their boundaries. Table 3 and 4 summarizes the performance
comparison of various methodologies that are explained in Section 3. Different approaches
have reported results on specific evaluation metrics. Therefore, we have placed a "-" on the
unused metric. For the sake of readability, we have presented the results of [70] and [71] in
a separate table (Table 4) because they reported results on their own introduced evaluation
metrics.

Figure 17. Failure case of the method proposed by Mate et al.. Fails at detecting persons from the
bird-eye view. Image taken from [60].

Along with the quantitative analysis, we examine a few of the discussed approaches
by paying attention to their failure cases. In Figure 17, we observe that from the bird-eye
view, the method proposed by [60] fails to detect persons. Similarly, the work of [66] gets
confused with non-living human-like objects in images as exhibited in Figure 18.

Figure 18. Failure case of the method proposed by Sarin et al.. Human and face detector fails in low
light and gets fooled by non-living human-like objects in images. Image is taken from [66].

The system of Kamal et al. [80] is vulnerable to detect traffic signs that are not close to
the camera. A visual illustration is visible in Figure 19. Another approach presented by
Wang et al. [81] unable to detect objects in motion blur images. On top of that, the work
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Table 3. Object Detection Performance Comparison. Outstanding results in all the respective methods are highlighted.
Literature Year Dataset I0U mAP AP F-Measure Highlights
Eran et al. [76] 2019 SKU-110K 0.50:0.95 - 0.49 - Deep IoU with EM-Merger (Section3.2.3)
Yuxuan et al. [63] 2020 ExDark 0.50:0.95 - 0.34 - RFB-Net (Section 3.1.2)
Zhengzheng et al. [82] 2020 VT5000 - - - 0.81 Attention based SOD (Section 3.4)
Mate et al. [60] 2020 KAIST 0.50:0.95  0.35 - 0.36 YOLO (Section 3.1.1)
Ghose et al. [78] 2019 KAIST 0.50:0.95 0.68 - - Deep Saliency Networks (Section 3.3.1)
Avramovic et al. [75] 2020 DFG 0.50 0.94 - - Mask R-CNN (Section 3.2.2)
Sasagawa et al. [54] 2020 SID - 0.55 - - YOLO (Section 3.1.1)
Rashed et al. [79] 2019 KITTI 0.75 - - - ShuffleSeg Segmentation Network (Section 3.3.2)
Wang et al. [81] 2019 VOT-2016 0.50 0.90 - - FC Siamese Networks (Section 3.3.4)
Kun et al. [77] 2019  Night-Dataset - 0.82 - - GAN + Faster R-CNN (Section 3.2.1)
Kamal et al. [80] 2019 CURE-TSD 0.50:0.95 - 0.94 - SegNet + U-Net (Section 3.3.3)

Table 4. Object Detection Performance. The results mentioned in this table are not directly comparable because different
datasets have been used.

Literature Year Dataset Evaluation Metric  Score Highlight

Ranjan et al. [70] 2019 WIDER Face  True Accept Rate [70] 91.4%  Single Shot deep pyramid Face Detector (Section 3.1.3.1)

Sarin et al. [66] 2019 KAIST True Positive Rate [66]  92.80% Single Shot Human and Face Detector (Section3.1.3)

tends to produce false positives on the images where no object is present. Figure 20 exhibits
an example of such cases.

Figure 19. Failure case of the proposed method by Kamal et al.. The proposed method fails if traffic
signs are placed at different places. Image is courtesy of [80]

6.3. Evaluation of Our Experiments

The performance of current state-of-the-art object detection algorithms on challenging
datasets is presented in Table 5. By looking at Table 5, it is evident that there is significant
room for improvement on all of the employed datasets. For the ExDark dataset, YOLO
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V3 [39] produced the best results with an AP of 0.67. For CURE-TSD, Cascade Mask
R-CNN [108] yields the best score with an AP of 0.28. In the case of RESIDE dataset, Mask
R-CNN [26] shows the best results with an AP of 0.51.

Figure 20. Failure case of the proposed method by Wang et al.. The proposed method fails when
faced with motion blur or a "non-object” pattern. Image is courtesy of [81].

The main reason for the low performance of these state-of-the-art generic object
detection algorithms is that they are not trained on challenging datasets that include low-
light images or occluded images. Furthermore, the backbone network of these architectures
cannot optimally extract the spatial features necessary for detecting objects in challenging
environments. Hence, it is empirically established that generic object detection algorithms
are not ideal for resolving object detection in challenging images.

7. Open Challenges and Future Directions

After reviewing many methodologies and benchmarking on object detection in a
challenging environment, we have noticed several open issues that need to be highlighted
to be tackled in future directions.

Standard Evaluation Criteria: We observe that there has not been a defined standard
while benchmarking on object detection in challenging situations. Some approaches
have employed fl-score [60,82], whereas some have used mAP and AP to report their
results [76,78,80]. Moreover, we notice that different IOU thresholds have been exploited
to present the result, making the approaches incomparable to each other. Therefore, it is
vital to establish a generic standard on which all future approaches working in this field
can report the results.

Real-time Applications: Similar to generic object detection, real-time challenging
object detection is the growing need in practical scenarios. Generally, deep neural architec-
tures require high computing power, which is unavailable in embedded devices. Therefore,
it is essential to build methods that can optimally work on low computational resources.
Furthermore, future research should discuss the computation of their proposed method,
including the quantitative and qualitative analysis.

Weak/Unsupervised Approaches: To the best of our knowledge, all the current ap-
proaches tackling object detection in tricky environments with deep neural networks
require large-scale annotated datasets. The creation of such datasets is a timely expensive,
and laborious process. Hence, there is a growing need to introduce challenging object
detection systems that can train on no labels (unsupervised) or very few labels (weak
supervised learning).

Intelligent Domain Adaptation: Current object detection systems under challenging
environments work in similar types of challenges. For instance, a network trained on low-
light images will not detect objects present in underwater images. However, we humans
can adapt our learned knowledge into various domains. In the near future, we can expect
a flurry of innovative ideas towards this promising direction.

Leveraging GANSs: The deep neural network-based object detection systems demand
enormous datasets for training the network. The ability of GANs to produce fake images
can be highly beneficial to create large-scale challenging datasets. Moreover, most of the
challenging datasets contain low-light, blurry, or not spatially rich images [68,105,106]. In
future researches, powers of recently published cycle GANs [113,114] could be exploited to
transform images that are better suited for object detection algorithms.
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Table 5. Object Detection Performance Comparison on three challenging datasets. APs denotes average precision for small area at

IoU=0.50:0.95. APy, represents average precision for medium area at IoU=0.50:0.95 and AP depicts average precision for large area at

IoU=0.50:0.95.
Our Models ExDark CURE-TSD RESIDE
AP AP AP, AP, AP, AP AP® AP, AP, AP, AP AP® APy AP, AP
Mask R-CNN 054 084 022 046 059 020 035 0019 017 037 051 0.79 04 011 057
Faster R-CNN 053 082 022 046 058 025 043 003 014 041 049 078 007 070 056
Yolo V3 067 093 05 061 071 016 032 005 003 026 037 078 007 087 056
Retina-Net 036 067 012 030 052 014 025 012 019 035 048 075 0002 007 055

Cascade Mask R-CNN  0.49

078 027 037 055 028 038 0.06 023 034 050 076 0.006 012 0.56
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