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Abstract: For over a century, viruses have left a long trail of evidence implicating them as frequent 

suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections 

in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus 

detection methods, and mechanistic studies of virus infected human pancreatic β-cells, the prime 

suspects have been narrowed down to predominantly human enteroviruses. Here we provide a 

comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the de-

velopment of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical 

focus and investigation bias toward enteroviruses, and summarise current unbiased efforts aimed 

at characterising the complete population of viruses (the “virome”) contributing early in life to the 

development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and 

antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential 

treatment of type 1 diabetes. 
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1. Type 1 Diabetes 

Type 1 diabetes (T1D) is characterised by the chronic immune-mediated destruction 

of pancreatic β-cells, with affected individuals requiring lifelong exogenous insulin [1,2]. 

Globally, over 1.1 million children and adolescents under age 20 are estimated to have 

T1D, with approximately 128,900 new cases diagnosed each year. In children 0-14 years, 

India and USA currently have the highest prevalence of T1D (95.6 and 94.2 thousand 

cases, respectively) [3]. In Australia, a recent study of T1D incidence in children 0-14 years 

between 2002-2017 found a mean incidence of 25.0 per 100,000, additionally revealing a 

sinusoidal pattern in incidence over time represented by 5-yearly cycles. Mean incidence 

also increased with age, with the highest incidence in 10-14 year olds (224% higher than 

0-4 year olds). Wide geographical variation in mean incidence of T1D have been de-

scribed, with incidence increases of up to 6.6% per year in Poland, a levelling off reported 

in populations such as Finland and Sweden, and a slight decreasing trend in Australia 

over recent years particularly in 0-4 year olds. This variation both between and within 

countries and different ethnic populations is suggested to reflect geographical differences 
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in genetic susceptibility and environmental risk in addition to disparities in diagnostic 

criteria including islet autoantibody testing requirements [2,4]. 

 

T1D is categorised into three main stages: 1. presymptomatic T1D with the presence 

of multiple islet autoantibodies (type 1a) but normoglycemia; 2. presymptomatic T1D 

with progression to dysglycaemia; 3. dysglycaemia and clinical symptoms such as polyu-

ria, polydipsia, polyphagia, weight loss, fatigue and diabetic ketoacidosis (DKA)); 4. long-

standing T1D [5,6]. A smaller subset of individuals do not display autoantibodies, result-

ing in idiopathic (type 1b) diabetes with an unknown cause of β-cell destruction [1]. Acute 

and long-term complications of T1D include severe hypoglycaemia, DKA, vascular dis-

ease, nephropathy, retinopathy and neuropathy; with lifespan also reduced [7-9].  

2. Islet autoimmunity 

Most T1D is preceded by the development of islet autoimmunity (IA), serologically 

confirmed by the presence of at least one diabetes-associated islet autoantibody to insulin 

(IAA), glutamic acid decarboxylase 65 (GADA), protein tyrosine kinase-related islet anti-

gen 2 (IA-2A) and zinc transporter 8 (ZnT8A). IA can appear from around 6 months of age 

with incidence peaking prior to 2 years of age in the genetically at risk but will be generally 

present months to years before symptomatic onset, reinforcing the need for early-stage 

interventions and increased monitoring of presymptomatic T1D. These autoantibodies 

typically appear sequentially rather than simultaneously, making it unclear whether mul-

tiple or single events precipitate seroconversion and eventual T1D development [10,11]. 

The risk of developing T1D increases as additional autoantibodies are detected [12-14], 

with the presence of a single autoantibody (‘early’ IA) conferring a 15% risk of progression 

to T1D [15], whereas two or more antibodies (‘established’ IA) are associated with an 80% 

risk of progression to T1D [16-20]. Early seroconversion and increased autoantibody con-

centrations can be observed in a high proportion of at-risk children, with over 80% of 

children who developed T1D seroconverting before 3 years of age [21]. The first-appear-

ing or primary antibody has been proposed to represent two major IA phenotypes repre-

senting early or late diagnosis of IA [18,22]. Increasing IAA concentrations have been used 

to predict progression to overt T1D, with proinsulin highlighted as an important autoan-

tigen in T1D diagnosed in early childhood. Conversely, the appearance of GADA as the 

primary autoantigen may result in progression at a later age, affecting the design of early 

interventions [21,23,24].  

 

T1D pathogenesis is marked by selective destruction of insulin-producing cells by 

effector autoreactive and bystander CD8+ T cells, directly contrasted by the action of reg-

ulatory T cells. Mast cells and dendritic cells have also been implicated in T1D pathogen-

esis, as they present islet autoantigens to autoreactive T-cells, resulting in dysregulated 

peripheral immune tolerance [25]. However, the occurrence of the resulting islet infiltra-

tion by autoantibodies (insulitis) is heterogenous amongst islets both within lobules of a 

single pancreas and between individuals, following a relapsing-remitting nature during 

early disease and perhaps reflecting the highly variable asymptomatic period in preclini-

cal T1D [26]. Approximately 70-95% of β-cells are usually lost at the onset of symptoms 

resulting in reduced pancreas size, although in some individuals a 40% reduction is ade-

quate to elicit symptoms [2,16,27]. Efforts to preserve any residual β-cell function (meas-

ured by C-peptide production) using immune intervention therapies have had limited 

success [28-32]. Notably, only 15% of children displaying single IA positivity progress to 

T1D [33], and conversely, only 10% of individuals with T1D display single IA positivity 

[16]. Therefore, there is an increasing focus on prevention of T1D progression from the 

early stages of non-clinical disease. Development of more economical and efficient assays 

of islet autoantibody detection may allow for more widespread employment of IA screen-

ing and potential for use in the general population, enabling earlier diagnosis and inter-

vention [17,34]. 
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3. Genetics 

Comprehensive genome-wide association studies have identified over 60 genetic loci 

associated with increased T1D risk, with approximately half of the genetic risk attributed 

to the human leukocyte antigen (HLA) genotype, with notable contributions also arising 

from the INS, PTPN22, CTLA4 and IL2RA genes [35]. HLA-class II DR and DQ allele hap-

lotypes DRB1*03:01-DQA1*05: 01-DQB1*02:01 and DRB1*04-DQA1*03:01-DQB1*03:02 

show the highest risk, with DR3/DR4 (DQ2/DQ8) heterozygotes displaying a 30-fold in-

creased risk of IA and T1D in the general population. Whilst a combination of islet auto-

antibodies have been previously used to predict increased risk of progression to T1D in 

first-degree relatives [36] we can now use genetic risk scores (GRS) to predict progression 

to T1D in IA positive children [37]. GRS are calculated using a combination of HLA and 

non-HLA genes, with weighted values given to both high risk HLA class II genotypes 

plus a weighted value assigned to each susceptible allele of HLA class I and non-HLA 

Single Nucleotide Polymorphisms (SNPs). Individuals with lower GRS experience slower 

progression to IA, and slower development from both single and multiple IA to T1D in 

the The Environmental Determinants of Diabetes in the Young (TEDDY) cohort [38]. Re-

cent improvements to T1D GRS algorithms have led to the development of T1D GRS2 for 

standardized use with greater predictive power [39]. 

 

Although individuals with a first-degree relative with T1D are at approximately 15-

fold increased relative lifetime risk for T1D compared to the general population, over 85% 

of diagnosed children have no family history, highlighting the major contribution of en-

vironmental factors in the aetiology of T1D [5,40]. T1D heritability varies depending on 

which family member has T1D, with the risk of T1D in the offspring higher with a T1D-

affected father (~6%) compared to a T1D-affected mother (~2%). Furthermore, having a 

dizygotic twin imposes slightly higher risk of T1D (~10%) compared to a non-twin sibling 

(~6%), highlighting the role of the intrauterine environment on T1D-risk. [41]. Interest-

ingly, the proportion of individuals with the highest risk genotype DR3-DQ2/DR4-DQ8 

has been shown to decrease over time in multiple populations in the United Kingdom, 

Finland and United States [2]. 

 

4. Environmental triggers 

An interplay between genetics and environmental factors such as the virome, micro-

biome and metabolome are suggested to regulate immune tolerance, with the introduc-

tion of environmental, lifestyle or dietary exposures currently being investigated as either 

accelerating or protective [42]. A range of potential environmental triggers have been pro-

posed, including viruses. The hypothesised role of viral infections on the initiation of IA 

and the progression to T1D is supported by a large body of epidemiological and animal 

model-based evidence [43-45]. Multiple viruses have been associated with IA/T1D to date, 

including enterovirus (EV) [46-55], rotavirus [56-62], cytomegalovirus [63-69], Epstein-

Barr virus [64,70,71], parechovirus [72-74], influenza [75-77], parvovirus [78,79], mumps 

[80-82], rubella [81-86] and human endogenous retrovirus [87,88]. By far, the strongest 

supporting evidence exists for EVs. Our previous meta-analysis of 26 molecular studies 

and >4,400 participants revealed EV infection was 10 times greater at the onset of T1D 

compared to healthy controls [89]. Furthermore, T1D-specific risk alleles contained within 

genes involved in immune function have been shown to alter susceptibility to viral infec-

tion or affect the extent of the host antiviral response [90]. The rs1990760 SNP within IFIH1 

has been associated with increased detection of EV RNA RNA in blood [91], and sepa-

rately with severe EV-A71 infection [92]. The rs2476601 SNP within PTPN22 has been as-

sociated with lower IFN production by macrophages in response to TLR ligand stimula-

tion (as would occur during viral infection) [93], and additionally has been suggested that 

PTPN22 could suppress the function of effector T cells, diminishing their response to viral 

infection and allowing the establishment of persistent infection [90,94]. 
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The timing of environmental triggers is likely to be critical, with environmental in-

fluences potentially commencing in utero and within the first year of life, emphasising the 

importance of longitudinal prospective cohort studies that are following at-risk children 

from pregnancy, such as the Environmental Determinants of Islet Autoimmunity (EN-

DIA) and Type 1 Diabetes Prediction and Prevention (DIPP)-novum studies [95,96]. Our 

recent meta-analysis of observational studies revealed maternal viral infections during 

pregnancy resulted in offspring that were twice more likely to develop T1D (OR 2·16, 95% 

CI 1·22‐3·80; P = 0·008), highlighting the need to measure infections in utero as well as 

during early life. The adoption of large, national or international prospective birth cohort 

studies allows for the examination of any temporal links between infection in utero and 

the eventual development of IA or T1D in the offspring [47].  

 

2. Enteroviruses 

EVs are non-enveloped, single-stranded icosahedral RNA viruses classified within 

the Picornaviridae family that primarily display faecal-oral transmission, within occasional 

cases of vertical and respiratory transmission also possible [97]. Human EVs are ubiqui-

tous and responsible for serious diseases such as poliomyelitis, myocarditis and aseptic 

meningitis [98]. However, many EV infections cause subclinical or mild disease and are 

thus underreported, with a small proportion proceeding to clinical identification [99]. 

More severe EV infection is typically seen in children and neonates, with proposed intrin-

sic immunity in the adult mature gut moderating the course of infection and preventing 

viraemia [100]. 

There are over 100 characterised genotypes of human EV, classified into four species: 

EV-A to -D. Also included within the EV genus are rhinoviruses, which predominately 

cause upper respiratory tract infections and distinct clinical presentation [101-103]. The 

linear EV RNA genome spans 7.2-8.5 kb in length, consisting of four structural (P1) capsid 

proteins and seven non-structural (P2 and P3) proteins, forming a single polypeptide 

which is cleaved by a viral 3C and 2A proteases [104,105]. The EV 5’-untranslated region 

(UTR) contains internal ribosome entry sites (IRESs) which allow for ribosome recruit-

ment during cap-independent translation of EVs single polypeptide. Self-assembly of 

VP1-VP4 capsid proteins into and transcription of the positive-strand RNA genome facil-

itated by non-structural proteins is followed by RNA encapsidation and formation of in-

fectious virions. The mechanism of release is still unconfirmed but is proposed to involve 

changes to cell membrane integrity, lysis and apoptosis [106]. The 5’ and 3’ UTRs are 

highly conserved amongst all EV species, and have historically formed the basis of primer 

and probe designs used in molecular diagnostics of general EV infection [107]. The highly 

variable major capsid protein VP1 codes for genotype-specific determinants of neutralisa-

tion and antigenic sites and is therefore typically used for EV genotypic classification 

[108,109]. 

EV invade host cells primarily via the coxsackievirus and adenovirus receptor (CAR), 

expressed in both α- and β-cells, with entry of genomic RNA post adsorption followed by 

translation and replication of sense viral RNA in the cytosol in a cap-independent manner 

[110]. A specific isoform of CAR with a terminal SIV motif and a unique PDZ-binding 

domain at the C-terminal (CAR-SIV) has been shown to be highly and selectively ex-

pressed within β-cells, and is localised mainly to insulin secretory granules, which may 

further contribute to the sensitivity of human β-cells to EV infection [111]. Secretory gran-

ule proteins are proposed to be hijacked during exocytosis, allowing internalisation of 

virus particles by existing endocytic machinery. This is further supported by the identifi-

cation of viral replication complexes around insulin granule membranes in CVB-infected 

human islets using electron microscopy [112,113]. 

 

3. Historical association between EV and T1D 

The viral aetiology of T1D was first proposed in the mid-1920s, describing a seasonal 

variation of T1D onset with peaks in diagnoses occurring in the colder months, reflecting 
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that of seasonal viral variation [114,115], then revisited decades later in relation to cox-

sackievirus B (CVB) infection in 1969 [116]. The seasonality of T1D diagnosis has been 

since confirmed in larger studies in nonequatorial regions [117-119]. The finish DIPP co-

hort revealed the appearance of islet autoantibodies in a seasonal pattern, with IA follow-

ing the seasonality of viral infection [45]. A combination of factors in addition to viral 

infection, including higher inflammation, altered diet, reduced exercise and reduced vit-

amin D levels have been suggested to influence seasonality of T1D and other autoimmune 

diseases [120,121]. 

 

Whilst viral infection alone may not be sufficient to induce T1D in any individual, a 

number of factors such as timing, site, viral load, strain and type of infection, in combina-

tion with host genetics and the pancreatic microenvironment have been highlighted as 

critical factors for disease pathogenesis [122]. There are at least 26 EV genotypes histori-

cally associated with IA and T1D, with members of EV-B species such as CVB and ECHO 

genogroups most frequently described [101,123]. In children with high-risk T1D geno-

types from TEDDY study, coxsackievirus A (CVA) genotypes were the most frequently 

detected EVs in stool, with genotyped EVs representing EV-A, EV-B and at a lesser scale, 

EV-C species (61.5%, 38% and 0.5%, respectively). CVA4, enteric cytopathic human or-

phan virus (ECHO) 18 and ECHO26 genotypes demonstrated the longest period of viral 

shedding. Interestingly, children who were HLA-DQ2/8 heterozygous were slightly less 

frequently EV positive, compared to children homozygous for HLA-DQ2 or HLA-DQ8.  

Compared to the general population, genotypes within the EV-B species are more often 

reported in children with symptomatic and severe infections [124].  

 

A higher viral titre and multiplicity of infection (MOI) have been proposed to deter-

mine T1D induction rather than any defined diabetogenic phenotype [125]. A prediabetic 

state at time of EV infection increases risk of developing T1D, as shown by studies of mice 

with pre-existing insulitis. Inoculation of older non-obese diabetic (NOD) mice with high 

doses of CVB3 variants triggered sudden diabetic onset from both highly pathogenic and 

poorly pathogenic strains, suggesting that many EV strains have the potential to induce 

T1D in predisposed individuals if encountered at a sufficient dose [126]. Perhaps the most 

compelling evidence supporting the role of EV in T1D pathogenesis was provided by the 

live biopsies of pancreata from six adults with recent T1D onset, which found evidence of 

EV infection in all individuals [127] and enhanced islet antiviral immune responses [128-

130]. These findings are further supported by recent data from the network for Pancreatic 

Organ Donors (nPOD) Virus Group [131-133]. 

A temporal association between EV infection and the appearance of islet autoantibod-

ies was reported in the Diabetes Prediction and Prevention (DIPP) Study cohort, with 

CVB1 also associated with increased risk of IA and T1D whereas CVB3 and CVB6 were 

associated with reduced IA risk. Whilst EV infection within 6 months of IA development 

was implicated using viral RNA detection in blood [134], a more recent study of EV RNA 

in stool revealed children with IA had more infections compared to control children, with 

most of these infections occurring at least 12 months prior to the development of first au-

toantibody. EV genotypes most commonly reported in stools of case children were CVA2, 

4 and 16 [135].  

 

4. Pathogenesis mechanisms 

EVs have been proposed to induce T1D through a number of non-mutually exclusive 

mechanisms: direct cytolysis, molecular mimicry, bystander activation, persistent infec-

tion and microRNA dysregulation (Figure 1). The type of infection is thought to be a key 

determinant of T1D pathogenesis. Direct cytolysis of β-cells resulting from a lytic infection 

can trigger an inflammatory reaction that further promotes IA by releasing either pre-

existing autoimmune effector T cells (bystander activation) or β-cell autoantigens [136-

138]. Molecular mimicry can occur when viral peptides exhibit high homology to islet 

peptides, such as similar epitopes expressed between 2C protease of EV and human islet 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 June 2021                   doi:10.20944/preprints202106.0574.v1

https://doi.org/10.20944/preprints202106.0574.v1


 

autoantigen GAD-65, with cross reactivity leading to presentation of viral antigens which 

activate antiviral or autoreactive T-lymphocytes [49,101,136]. Following entry into the 

host cell, EVs are recognised by pattern recognition receptors (PRRs) including toll-like 

receptors and melanoma-differentiation associated protein 5 (MDA5)[139]. This process 

activates downstream JAK/STAT, NF-kβ and MAPK pathways, resulting in the release of 

pro-inflammatory cytokines and chemokines [140,141]. This can then induce apoptosis 

through the activation of downstream caspases and the release of autoantigens in a highly 

inflammable state. This state produces an upregulated major histocompatibility complex 

(MHC) class 1 expression, further promoting autoimmunity [104,142]. Epitope spreading 

allows recognition of further autoantigenic epitopes as a result of β-cell damage and as-

sociated stress, in a cyclic process stimulating autoreactive T cells [143]. EV infection is 

additionally associated with a humoral immune response prior to and at diagnosis of T1D 

[144]. An additional mechanism contributing to EV dissemination in persistently infected 

β-cells has also been recently suggested, with a non-lytic method of egress using β-cell-

derived extracellular vesicles. Interestingly, extracellular vesicle-mediated EV infection 

was not inhibited by virus-specific neutralising antibodies, highlighting its application in 

immune evasion [145]. 

Viral persistence is an alternative putative mechanism underlying the EV-mediated 

pathogenesis of T1D. Persistent EV infections can lead to the prolonged activation of the 

immune system, resulting in a continuous presentation of viral peptides and production 

of proinflammatory cytokines that progressively promotes IA development. Through a 

prolonged state of inflammation including increased release of type I interferons (IFN) 

[132,146,147], resulting in endoplasmic reticulum stress in β-cells, persistent viral infec-

tions have the capacity to evoke antiviral and autoimmune responses [106,133,148,149]. 

This is compounded by defective viral clearance by natural killer (NK) cells, with cytolytic 

activity of NK cells also demonstrated towards persistently-infected β-cells [150]. The dis-

tinction between lytic and persistent EV strains has previously been shown to be strain-

specific rather than serotype-specific, suggesting the role of viral genetic factors. Selection 

of a less or non-cytopathic strain and a reduced replication rate are frequently reported 

factors [151,152]. CVB3 and 4 establish intestinal persistence, particularly in mucosal lym-

phocytes, as evidenced by long term detection of viral RNA and VP1 in infected mice, 

with these lymphocytes indicated as the principal reservoir for viral spread to other or-

gans such as the heart and pancreas. CVB3 replication in B lymphocytes was additionally 

responsible for early viral excretion in stool and the chronic release of infectious viral par-

ticles throughout the duration of infection [153]. Persistent EV infection of intestinal mu-

cosa was demonstrated in individuals with T1D undergoing mucosal biopsies for gastro-

intestinal complaints in Finland, with EV RNA detected using in situ hybridisation more 

frequently in cases compared to controls (74% vs 29% respectively, p < 0.001). Viral RNA 

was frequently detected in the absence of viral protein, suggestive of defective viral rep-

lication. EV RNA was detectable in cases even after 12 months, demonstrating that a large 

proportion of individuals with T1D display a persistent EV infection associated with an 

inflammatory response within gut mucosa [151].  

Viral adaptation processes such as the establishment of persistence, modulation of 

viral replication and immune evasion may be facilitated by viral genomic modifications 

obtained during intra-host evolution. This is highlighted by the divergence of EV geno-

types as a direct result of high mutagenic rates of ~4-8 mutations/104 nucleotides during 

viral replication from the lack of proofreading activity in their RNA-dependent RNA pol-

ymerase (RdRp) [154-157]). Terminal deletions within the 5’ UTR facilitated the establish-

ment of viral persistence in the pancreas of mice by diminishing viral replication and 

translation, and terminally deleted EV RNA was detected in human heart tissue [158-162]. 

Viral forms lacking certain genomic RNA secondary structures can result in the loss of 

viral ribonucleoprotein (RNP) complexes, which are important in regulating viral ge-
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nomic replication. Disruption of secondary structures in this domain has been further as-

sociated with impaired viral RNA sensing by Retinoic acid inducible gene I (RIG-I) and 

MDA5 receptors, supporting a mechanism of immune evasion [162]. 

 In vitro studies using parallel infectious clones of a lytic E9-DM strain of ECHO9 

isolated from a T1D-affected child demonstrated that an amino acid substitution at T81A 

in the VP1 region led to a decrease of virulence, creating a benign rather than destructive 

infection [163]. Indeed, mutations in the VP1 capsid protein of multiple EV genotypes 

such as EV-A71 have been associated with increased virulence, changes in receptor spec-

ificity and cellular tropism [164-168]. A multitude of SNPs were recently identified in per-

sistently passaged clinical and prototype strains of CVB1 in pancreatic ductal and beta cell 

lines (PANC-1 and 1.1B4), spanning both structural and non-structural genes. Most inter-

estingly, one mutation affecting the VP1 capsid protein canyon region (K257R) was found 

in all persisting strains and is predicted to influence EV interaction with DAF during in-

ternalisation. Other accumulating mutations were identified at BC, DE and EF loops and 

the C-terminus of VP1, the puff region of VP2, the knob region of VP3 and an infection-

enhancing epitope of VP1. Furthermore, long term passage of CVB1 resulted in the pro-

duction of smaller viral plaques, highlighting the potential for persistence to reduce the 

cytopathic effect of EV infection due to changes in translation, adsorption or internalisa-

tion. This reinforces the importance of the capsid region during viral persistence, with the 

potential to identify hallmarks of persistency as an ultimate goal [157].  

Another factor that may contribute to viral pathogenesis of T1D is the role of mi-

croRNAs [169]. We previously demonstrated that CVB5 infection leads to the significant 

dysregulation of multiple microRNAs that regulate the expression of a network of T1D 

risk genes in human pancreatic islets. This adds yet another layer of complexity in the 

mechanisms underlying EV-mediated T1D pathogenesis [170]. 
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Figure 1. Putative mechanisms for initiation of islet autoimmunity (IA) and accel-

eration to type 1 diabetes (T1D) by viruses: (1) Direct infection and β-cell cytolysis; (2) 

Persistent infection; (3) Molecular mimicry; (4) Dysregulation of host miRNAs; and (5) 

Bystander activation. These mechanisms are not mutually exclusive and likely act in in-

teracting pathways to trigger IA and/or facilitate progression of T1D pathogenesis 

[106,136]. However, there is little direct mechanistic evidence from humans, with poor 

understanding of how virus-induced insulitis may involve into a targeted autoimmune 

attack [101]. Abbreviations: MHC, major histocompatibility complex. 

 

5. Site of Infection: Gut, Pancreas and Respiratory 

The body route and site of infection are also important determinants as to whether 

EVs elicit the initiation of IA and/or accelerate progression to T1D [171]. Persistent EV 

infection of intestinal and blood cells may potentiate these additional sites as chronic res-

ervoirs from which secondary infection of the pancreas or other organs such as the heart 

may occur [106]. The anatomic intersection of lower gut and pancreatic lymphatic drain-

age in the pancreatic lymph nodes poses another mechanism for the activation of β-cell 

autoimmunity. EV replication initially occurs in the intestinal mucosa before the virus 

disseminates into the lymphatic system, circulating to other organs including the pancreas 

[172,173]. CVBs may infect intestinal epithelial cells by evading the host immune response, 

blocking production of type I and III IFNs [174]. Eventual pancreatic infection is sup-

ported by the detection of EV RNA in pancreatic tissue obtained from individuals with 

both recently diagnosed and long standing T1D [110]. Specific immunostaining of pancre-

atic islets detected EV protein in 61% of individuals with recent-onset of T1D versus 6% 

of controls [46], with CAR also isolated to islet cells, demonstrating the tropism of EV for 

human islets [175]. In the DiViD study, EV protein and hyperexpression of HLA Class I 

molecules were detected in the islets of all six participants, with EV RNA detected in four 

of the six cases. Furthermore, the small proportion of VP1-positive islets (1.7%) and low 

titre of EV RNA further supports the notion of a low-grade viral persistence [127]. Inter-

estingly, viral infection is not limited to endocrine tissue, with viral infection of exocrine 

tissue such as acinar cells resulting in innate immune activation and inflammation, prim-

ing nearby β-cells for destruction [26]. 

Multiple EV species infect the respiratory tract; EV-C species as well as EV-D68 are 

found only in the respiratory tract, and rhinoviruses are responsible for over 50% of all 

upper respiratory tract infections (RTIs) worldwide [176,177]. A growing body of epide-

miological data support the role of RTIs in the development of IA and T1D [22,178-182]. 

This includes a recent report from the All Babies in Southeast Sweden (ABIS) cohort 

demonstrating that maternal RTIs during pregnancy, particularly in the third gestational 

month, significantly increase the risk of T1D in the offspring (OR 4.1, 95% CI 2.2-7.5; P < 

0.001) [183]. Current data on the association of RTIs and T1D are limited to self-reported 

or clinically diagnosed history of infections, with molecular data for RTIs in IA/T1D cohort 

studies lacking [22,48,179,183-186]. The proposition of the respiratory tract as an alternate 

source of primary infection resulting in secondary pancreatic infection is not out of the 

question, with higher rates of RTI recently linked to increased risk of IA in at-risk children. 

Parent-reported respiratory infectious episodes (RIE) in the TEDDY cohort revealed an 

association between higher rates of RIE in a 9-month period and higher risk of IA (p < 

0.001), highlighting the importance of surveillance during early life and the time window 

preceding seroconversion to IA. Types of IA-associated infections included common cold, 

influenza-like illness, sinusitis and laryngitis/tracheitis, with RIEs reported in winter re-

sulting in 42.4% increased IA risk. This suggests that children with frequent RTI are at 

highest risk of progression, although misclassification of infection via measurement using 

RIEs remains as a major limitation and prevents the detection of subclinical infection ob-

tained using molecular-based techniques [22]. Future demonstration of EV infection in 

multiple body sites from the same individual with IA or T1D (e.g. in the gut, respiratory 
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tract and blood virome), particularly in longitudinal samples, would provide further sup-

port for the association between EV and IA/T1D. 

6. Leaky Gut 

Alterations in gut permeability as a direct result of viral infection, combined with the 

presentation of novel antigens to intestinal draining lymph nodes, can eventually lead to 

the appearance of autoreactive CD8+ T-cells primed with cross-reactive epitopes in the 

pancreatic lymph nodes [26]. Changes to gut permeability involving decreased expression 

of integral membrane proteins Claudin-1 and occludin were demonstrated in diabetes 

prone rats, with microbial structures such as bacterial lipopolysaccharide and viral nucleic 

acid proposed to affect epithelial cell function by binding to Toll-like receptors on epithe-

lial cells, causing increased gut permeability. Children with IA or T1D exhibit increased 

gut permeability (also known as a ‘leaky gut’) and enhanced intestinal inflammation 

[151,187-192]. Moreover, the disruption of the gut epithelial barrier by enteric viral infec-

tions may activate β-cell-specific autoimmunity in pancreatic lymph nodes, highlighting 

the role of the gut as a regulator of insulitis. T-cells activated in the gastrointestinal tract 

home into islets via mucosal homing receptor MadCAM-1, with luminal antigens pro-

cessed by pancreatic lymph nodes, suggesting that microbe-derived antigens may trigger 

local immune cells in the pancreas via bystander activation. Antiviral cytokines and viral 

proteins also affect barrier function, highlighting the potential role of chronic or recurrent 

EV infections in acceleration of immune-mediated destruction initiated in an inflamed gut 

[193,194].  

 

7. Evolution of virus detection 

Virus detection methods for research and diagnostics have undergone multiple trans-

formations in the past century, particularly revolutionised by the advent of next-genera-

tion sequencing (NGS) in the past decade. Traditionally, earlier studies relied on cell cul-

ture-based methods to demonstrate the presence of infectious EV in tissues, serum, cere-

bral spinal fluid (CSF) and alimentary-tract samples including throat swabs, rectal swabs 

and stool samples. However, there is no single cell line that can support the growth of 

every EV, with specialised media and conditions required for different EV types, making 

culture-based methods difficult, laborious and slow [108,195,196]. Alleviating many limi-

tations of culture-based methods, serological diagnosis of EV infection became widely 

popular. This could be achieved through neutralisation assays, complement fixation and 

enzyme-linked immunosorbent assays (ELISA), which enabled the detection of multiple 

EV species at once. These methods however remain significantly less sensitive, labour-

intensive and slower compared to nucleic acid detection methods such as quantitative 

real-time PCR (qPCR) [109].  

Although qPCR remains as the gold standard for rapid and sensitive detection of spe-

cific virus targets, there is a limit to how many viruses can be targeted simultaneously 

through multiplexed primers, and it relies on the preservation of the primer binding sites 

within the viral genome, which may be disrupted through mutations or recombination 

events. Such limitations have driven the demand for more comprehensive, high-through-

put and untargeted methods for detection and characterisation of complex viral popula-

tions [108]. In the current NGS era, near-complete EV genome sequence can be character-

ised rapidly through amplicon-based sequencing, enabling in-depth examination of intra- 

and inter-host sequence variations that may contribute importantly to the diabetogenicity 

of specific EVs [157,197] . Furthermore, recent advances in target enrichment methods 

have drastically helped to overcome previous bottlenecks of conventional virome se-

quencing, where an overwhelming abundance of non-viral nucleic acid from the human 

host, bacteria, fungi and bacteriophage significantly reduced the sensitivity for human 

viruses [198,199]. Currently, comprehensive, unbiased, and sensitive detection of all vi-

ruses known to infect humans and all other vertebrates (the “virome”) can be achieved 
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without prior culture through Virome Capture Sequencing (VirCapSeq-VERT). This par-

ticular target enrichment NGS method uses approximately 2 million long oligonucleotide 

probes that hybridise to genomic sequences of all known vertebrate-infecting viruses to 

enhance the viral sequences themselves in proportion to bacterial and host reads. Sensi-

tivity of VirCapSeq is on par or greater compared to qPCR, increasing the recovery of viral 

reads by up to 10,000-fold compared to conventional metagenomic sequencing [200,201]. 

The ability to detect all viruses simultaneously without an a priori hypothesis prevents 

introduction of any potential investigation bias toward specific viruses, such as the bias 

toward EVs evident in most previous studies. 

Another NGS-based method that allows comprehensive profiling of past infections 

against all human viruses is VirScan [202]. By measuring the presence of antibodies gen-

erated against all past and current viral exposures (humoral response) using a bacterio-

phage display library of linear viral peptides covering entire proteome of 1,276 viral 

strains from 206 human virus species, VirScan enables confirmation of previous viral in-

fections independent of viral nucleic acid or protein. In other words, this method may be 

useful to detect viral infections that have been already cleared from the body or if viral 

load is too low at the time of sampling. To date, this cutting-edge tool has proven effective 

in elucidating novel mechanisms of measles virus infections [203], establishing that ma-

ternal transfer of antiviral antibodies occurs very early in gestation [204], and determining 

the viral aetiology of acute flaccid myelitis [205] and hepatocellular carcinoma [206]. 

VirScan has yet to be utilised in T1D research. 

9. Infant virome 

To date, most virome studies have focused on the adult population; the adult gut 

virome exhibits higher individual and temporal stability, with ~80% of viruses persisting 

for 1-3 years [207,208]. A better understanding of the infant virome is essential for eluci-

dating the potential role of viruses in the development of disease in children, as well as 

their influence on bacterial populations and the wider microbiome [209]. The infant vi-

rome is dynamic and varies highly between individuals and over time. Despite this, com-

mon interpersonal trends exist with respect to virome development during infancy, in-

cluding eukaryotic virus expansion and the contraction of bacteriophage populations 

[210]. Furthermore, different locations within the body such as the gastrointestinal tract, 

oral tract and respiratory tract each provide their own unique microenvironment, with 

vast differences in virome composition due to microenvironmental differences [208,210-

212].  

It is debated whether or not the fetus develops in a sterile environment, with recent 

studies suggesting frequent placental colonisation by bacteria, however no studies have 

investigated this theory with regard to the virome [213]. A stepwise assembly of the infant 

virome has been suggested, with healthy neonates usually born lacking a gut virome; 

studies analysing neonatal meconium have found that viruses are undetectable in most 

meconium samples [212,214]. Colonisation of the gut is initiated by bacteria containing 

integrated prophages, resulting in the eventual production of prophages in early months. 

The early infant virome is directly influenced by breastfeeding [215], affecting phage dis-

tribution, with human-infecting viruses not typically detected prior to until 3-4 months of 

age. Mode of birth (vaginal vs caesarean section) is also important, with infants born via 

vaginal delivery showing greater viral diversity, however these findings have been con-

tradicted in a separate study [216-218]. Mother-to-infant transmission of the virome has 

been proposed from breast milk, supported by significant homology between bacterio-

phage sequences detected in breast milk and stool viromes [215,219,220]. Additional fac-

tors may influence the composition of the gut virome in infancy, such as gender [221], 

geographical setting [222], the presence of older siblings [221], contact with furry pets 

[223,224], antibiotic use as similarly reported with the bacterial microbiome [223-226]. 
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Whilst a low abundance of eukaryotic viruses is expected in early infancy, eukaryotic 

viruses such as anelloviruses and parvoviruses are more frequently detected in the gas-

trointestinal tract as maternal immunity is progressively depleted [210,211,227]. Non-en-

veloped viruses are most frequently detected in human faeces due to their ability to sur-

vive the acidic stomach environment and dehydrating nature of the large intestine. Phages 

such as crAssphages (cross-assembly phage, member of Caudovirales) and also members 

of Microviridae have been identified as the most abundant type of virus in the mature gut 

[216,228,229]. Given the limited early persistence of vertebrate-infecting viruses, it could 

be suggested any persistent infections or colonisations that occur may be important. A 

growing body of evidence suggests that an altered virome composition, especially in in-

fancy, influences long-term health and alter the risk of chronic conditions such as T1D 

[42,207,208,230-233]. Despite the probable involvement of virome dysbiosis in IA and T1D 

development, the exact genotypes of diabetogenic viruses and the importance of timing 

and duration of virus exposure remains poorly understood.  

10. Virome and T1D 

The first T1D virome investigation used NGS to characterise the virome in plasma 

samples collected from TEDDY children with rapid-onset T1D (Table 1) [234]. This was 

followed by an investigation of the longitudinal gut virome changes preceding IA in DIPP 

children who progressed to T1D [199]. Somewhat contradictory to prior associations iden-

tified between EV-B and IA/T1D through use of targeted molecular virus detection meth-

ods [89], both studies found no significant associations between the virome and T1D. 

However, both studies concluded poor sensitivity of conventional NGS compared to tar-

geted qPCR as a key limitation of their findings and a potential source of discrepant re-

sults. Soon after, another group investigated the gut virome preceding seroconversion to 

IA in at-risk children of the DIABIMMUNE cohort [235]. This study also applied conven-

tional NGS but incorporated prior isolation of viral nucleic acid from virus-like particles 

(VLPs). Yet again, no correlation between EVs and IA/T1D was observed. However, 

Circoviridae-related sequences were inversely associated, suggestive of their potential pro-

tective effects. Interestingly, significant differences in the bacteriophage population (be-

yond the scope of this review) was observed between cases and controls, with higher 

Shannon diversity and richness observed in controls. However, such differences were not 

evident in an earlier examination of bacteriophages in DIPP children with greater sample 

size [236]. The recent gut virome data from TEDDY represents the largest longitudinal 

infant virome dataset to date, even outside of the T1D field [149]. In contrast to previous 

gut virome studies, which by comparison to TEDDY included far fewer longitudinal 

timepoints and smaller sample size, a statistically significant association between EV-B 

and IA was found, and a stronger association between consecutive shedding of EV-B and 

an increased risk of IA (OR 3.70, 95% CI 1.90-7.22, P = 0.0001). However, in addition to 

conventional NGS, the investigators deliberately cultivated viruses isolated from stool 

suspensions on a mixture of virus-susceptible cells (Hela, Vero, HEK-293 and RD express-

ing CAR) to boost sensitivity for EVs by amplifying the virus signal. Therefore, although 

all viruses sequenced in both primary and cultured virome data were considered as a 

combined dataset, inclusion of the culture-NGS approach introduced inherent bias to-

wards EVs and other culturable viruses.  

The most critical limitation of conventional NGS for virome applications is its poor 

sensitivity for eukaryotic viruses, due to signals drowned out by noise from an over-

whelming background of non-viral or bacteriophage nucleic acid. In an attempt to boost 

the sensitivity specifically for vertebrate-infecting viruses, we and others have applied 

VirCapSeq-VERT to characterise the gut and blood virome of children with IA/T1D 

[184,201]. Through target enrichment, we observed greater than 3-fold higher overall pos-

itivity of viruses in children compared to the DIPP virome study and achieved high con-

cordance with targeted qPCR results. Even with increased sensitivity, no significant asso-
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ciation was observed between EV positivity and IA. However, looking beyond indiffer-

ences in virus frequency, which are potentially masked by low sample numbers, a large 

number of viruses were identified as differentially abundant between the gut of cases and 

controls, including five EV-A types. This indicated a previously unrecognised association 

of IA with higher EV-A abundance in the gut of children with a first degree relative with 

T1D [201]. VirCapSeq-VERT has since been successfully used to elucidate distinct preg-

nancy gut virome profile in women with T1D versus without [237], and between infants 

born from mothers with T1D versus without in the ENDIA study in the first year after 

birth [238].  

Our recent systematic review and meta-analysis of the above observational studies 

(published by June 2020) that applied NGS to investigate potential associations between 

early life virome and IA/T1D reported small, but a significant association between IA and 

consecutive EV positivity in longitudinal samples (OR 1.55, 95% CI 1.09–2.20, P = 0.01) 

[55]. This was largely influenced by the recent TEDDY data. Since then, one additional 

T1D virome study has been published, reporting on the gut virome profiles of 73 children 

and adolescents from four geographically distant non-European countries shortly after 

T1D onset [239]. 

Overall, inconsistencies in results across existing T1D virome studies (Table 1) could 

be largely attributed to substantial differences in sampling method and interval, sample 

preparation, sequencing approach, different choice of contig assemblers [240,241], and the 

ever-evolving updates to bioinformatic tools and reference genome databases used for 

taxonomic classification of viral sequence reads. Furthermore, a lack of prospective sam-

pling during pregnancy (maternal) and immediate days after birth in pre-existing T1D 

cohorts have so far precluded the assessment of potential in utero viral exposures. This 

gap will be filled by current and future virome investigations in ENDIA and DIPP-novum 

studies, respectfully. 

Table 1. Summary of NGS studies to date investigating the virome in association with IA and/or T1D, comparison 

of study design and virus enrichment methods 

Study; 

Cohort (Loca-

tion);  

Recruitment* 

Case/control numbers, in-

clusion criteria, matching 

strategy and sample num-

bers (case/control) 

Sample type/collection; 

virus enrichment strat-

egy;  

virus detection threshold 

Main findings 

Lee, 2013 [234]; 

TEDDY (USA, 

Finland, Ger-

many Sweden); 

High-risk HLA 

• 14 Persistent ≥1 Ab+ 

children with rapid-on-

set T1D (within 6 

months of seroconver-

sion) 

• 14 Controls matched 

for age, clinical centre, 

T1D family history 

• 56 samples total (28/28) 

• Plasma (before and at 

seroconversion) 

• Conventional NGS 

only 

• Threshold not stated 

• No significant associatiations 

between the virome and T1D 

• Viruses not detected more 

frequently in cases versus con-

trols 

• Similar infectious histories in 

cases  and controls 

• Concluded poor sensitivity of 

conventional NGS compared to 

targeted qPCR 

Kramná, 2015 

[199]; 

DIPP (Finland); 

High-risk HLA 

• 19 Persistent ≥2 Ab+ 

children who serocon-

verted at <2 years 

• 19 Controls matched 

for date/place of birth, 

sex, HLA 

• Stool (3, 6 and 9 

months before sero-

conversion) 

• Conventional NGS 

with physical enrich-

ment  

• Virome composition showed no 

association with IA  

• Most frequently detected hu-

man viruses included EVs and 

Parechoviruses 
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• 96 samples total (48/48) • Virus-specific PCR for 

confirmation 

• 50p100K raw reads 

minimum 

• Concluded poor sensitivity of 

conventional NGS compared to 

targeted qPCR 

Cinek, 2017 [236]; 

DIPP (Finland); 

High-risk HLA 

• 18 Persistent ≥2 Ab+ 

children who serocon-

verted at <2 years, and 

progressed to T1D 

• 18 Controls matched 

for date/place of birth, 

sex, HLA 

• 92 samples total (46/46) 

• Stool (3, 6 and 9 

months before sero-

conversion) 

• Conventional NGS 

with physical enrich-

ment 

• 50p100K raw reads 

minimum 

• No significant differences in 

bacteriophage population in 

cases versus controls 

• Most frequently occuring bacte-

riophage (CrAssphage) corre-

lated with Bacteroides dorei, 

but not other members of Bac-

teroides 

• Concluded poor sensitivity of 

conventional NGS compared to 

targeted qPCR 

Zhao, 2017 [235]; 

DIABIMMUNE 

(Finland, Esto-

nia); 

High-risk HLA 

• 11 ≥1 Ab+ children 

• 11 controls matched for 

age, country, sex, HLA, 

mode of delivery 

• 220 samples total 

(114/106) 

• Stool (longitudinal, 

monthly from 0-3 

years) 

• Isolation of VLPs, fol-

lowed by conven-

tional NGS 

• Threshold not stated 

• No correlation between eukary-

otic viruses and IA/T1D was re-

ported 

• Children are exposed to a broad 

range of eukaryotic viruses; EV, 

kobuvirus, parechovirus, parvo-

virus, and rotavirus sequences 

most often detected 

• Higher proportion of bacterio-

phage sequences in controls (P = 

0.017) 

• Higher abundance of Circoviri-

dae sequences in controls; sug-

gests 

protection from T1D (P = 0.026) 

• Virome of cases less diverse 

than 

controls as a group, highlighted 

by differences in bacteriophage 

population (P < 0.0001) 

Hippich, 2018 

[184]; 

BABYDIET (Ger-

many); 

High-risk HLA 

• 20 ≥1 Ab+ children 

with past respiratory 

infection 

• 20 controls matched for 

age  

• 102 samples total 

(51/51) 

• PBMCs (3-monthly 

from 3 months old) 

• Virome-enriched 

NGS using 

VirCapSeq-VERT  

• Threshold not stated 

• No significant associations be-

tween the virome and IA 

• Viruses only identified in 1 of 

102 samples; which was a rota-

virus sequence in a case child 

• Highlighted the challenges of 

identifying viruses in blood 
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Kim, 2019 [201]; 

VIGR (Australia);  

≥1 FDR with T1D 

Stool 

• 20 persistent ≥1 Ab+ 

children 

• 20 controls matched for 

age, sex 

• 64 samples total (32/32) 

• Stool and plasma (be-

fore and/or at sero-

conversion) 

• Virome-enriched 

NGS using 

VirCapSeq-VERT  

• Virus-specific qPCR 

for confirmation 

• 2 thresholds: (1) 100 

viral reads matched at 

species level; (2) 

50p100K raw reads 

• No significant differences in vi-

rus positivity or frequency of 

specific viruses in cases versus 

controls 

• Anellovirus, EV and picobirna-

virus were the most often de-

tected viruses 

• 129 viruses differentially abun-

dant in gut of cases and con-

trols, including EV-A genotypes 

CVA2/5/6/8/14, and EV-B geno-

types ECHO30, CVB3 more 

abundant in cases; suggests vi-

ral load may influence IA risk 

• Sensitive analysis with higher 

virus positivity compared to 

other studies 

Plasma 

• 41 persistent ≥1 Ab+ 

children 

• 41 controls matched for 

age, sex 

• 118 samples total 

(59/59) 

Vehik, 2019 [149]; 

TEDDY (USA, 

Finland, Ger-

many Sweden); 

High-risk HLA 

IA case/control 

• 383 persistent ≥1 Ab+ 

children 

• 383 controls matched 

for age, clinical centre, 

sex, T1D family history 

• 8564 samples total 

(4237/4237) 

• Stool (monthly from 

3-48 months, quar-

terly thereafter) 

• Cell culture-based EV 

enrichment 

• Conventional NGS 

with physical enrich-

ment on mixture of 

cultured and non-cul-

tured 

• VirMAP aggregate 

bit-score of 400 set as 

threshold 

• Proportions of viruses as 72% 

bacteriophages, 20% verter-

brate-infecting viruses and ~8% 

diet-related viruses (mostly 

plant viruses) 

• Significant association between 

EV-B and IA was found  

• Association between consecu-

tive shedding of EV-B and an 

increased risk of IA (OR 3.70, 

95% CI 1.90-7.22, P = 0.0001). 

• Number of consecutive stools 

positive for EV-B (i.e. persis-

tence) associated with IA (OR 

3.05) but not T1D 

• Independent, short-duration in-

fection not associated with 

IA/T1D 

• Human Mastadenovirus-F asso-

ciated with IA (OR 1.33) 

• Early-life Human Mastadenovi-

rus-C infections associated with 

IA protection (OR 0.49) 

T1D nested case/control 

• 112 cases diagnosed 

with T1D 

• 112 controls matched 

for age, clinical centre, 

sex, T1D family history 

• 3380 samples total 

(1690/1690) 

Cinek, 2021 [239]; • 73 cases with recently 

diagnosed T1D 

• Single stool sample 

shortly after T1D on-

set 

• No clear and consistent associa-

tion with T1D was observed 
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(Azerbaijan, 

Jordan,  

Nigeria, Sudan); 

New onset T1D 

• 105 controls matched 

for age, place of resi-

dence 

• 177 samples total 

(73/104) 

• Isolation of VLPs fol-

lowed by conven-

tional NGS 

• Virus-specific RT-

PCR for confirmation 

• Virus positivity deter-

mined as 0.001% of 

total read counts, or 

1p100K 

 

• Picornaviruses most often ob-

served 

• No significant differences in fre-

quency of eukaryotic viral gen-

era or species in cases versus 

controls 

• Total read count of eukaryotic 

viral genera was higher in cases 

versus conrols (OR 1.24) 

• More frequent endogenous ret-

rovirus signal detected in cases 

versus controls when threshold 

positivity lowered to any 

mapped read (OR 4.55) 

*High-risk HLA genotypes include DR3/4, DR4/4, DR3/3;  

Abbreviations: 1p100K, 1 viral read per 100,000 raw reads; 50p100K, 50 viral reads per 100,000 raw reads; Ab+, 

autoantibody positive; DIPP, Type 1 Diabetes Prediction and Prevention; DR3, DRB1*0301-DQA1*0501-DQB1*0201; DR4, 

DRB1*0401/02/04/05/08-DQA1*0301-DQB1*0302/04; DR3/4, heterozygous genotype comprising both DR3 and DR4 haplotypes; 

EV, enterovirus; FDR, first-degree relative; HLA, human leukocyte antigen; IA, islet autoimmunity; PBMCs, peripheral 

blood mononuclear cells; qPCR, quantitative polymerase chain reaction; RT-PCR, real time polymerase chain reaction; 

T1D, type 1 diabetes; TEDDY, The Environmental Determinants of Diabetes in the Young; VIGR, Australian Viruses in 

the Genetically at Risk; VirCapSeq-VERT, Virome Capture Sequencing Platform for Vertebrate Viruses 

 

12. Antiviral vaccines and therapeutics for T1D prevention 
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Driven by the strong rationale for developing antiviral therapeutics to prevent T1D 

[242,243], there are multiple EV vaccines and antivirals currently being pursued against 

putative diabetogenic CVB types, some undergoing clinical trials (Figure 2). Most re-

cently, the company “Provention Bio, Inc.” has launched a first phase randomised clinical 

trial of the PRV-101 vaccine (Jan 2021; NCT04690426), the PROtocol for Coxsackievirus 

VaccinE in Healthy VoluNTteers (PROVENT) trial, to evaluate its immunogenicity and 

safety in healthy adults. PRV-101 is a hexavalent vaccine developed using formalin-inac-

tivated whole CVB viruses [244,245], specifically designed to prevent CVB1-6 infection, 

and thereby potentially delay or prevent the development of IA/T1D. Although the use of 

whole virus vaccines (live and inactivated) have proven their safety and efficacy against 

poliovirus [246], it is expensive, slow to develop, lacks flexibility to engineer new epitopes 

and limited by the culturability of the target EV. 

 

 

Figure 2. Summary of current antiviral drugs and vaccine candidates for type 1 diabetes 

prevention and potential treatment, illustrating at what stages of islet autoimmunity and 

type 1 diabetes development these may prove useful, indicating current clinical trials 

aimed at preventing EV infection for prevention or treatment of type 1 diabetes.  

To overcome such limitations, an alternative vaccine strategy has been explored for 

CVB1, 3 and 4, involving the use of empty VLPs as antigens [247-250]. Generated from 

recombinantly expressed viral structural proteins, VLPs resemble the native CVB capsid 

structure but lack the infectious RNA genome. Thus, VLP-based vaccines can be manu-

factured without culturing the virus, modified rapidly with ease and are not subject to 

safety concerns associated with live virus vaccines. However, it remains to be determined 

whether VLP-based vaccines can offer sufficient level of immunogenicity and protection 
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against CVBs compared to whole virus vaccines in humans. Regardless of strategy, all 

vaccines predominantly rely on the host to develop sufficient neutralizing antibodies 

against the targeted virus. Therefore, they should ideally be administered to at-risk indi-

viduals prior to any exposure to diabetogenic viruses. For individuals already exposed to 

EVs and potentially harbouring a persistent EV infection, the use of antiviral drugs may 

offer secondary prevention. 

Broadly speaking, antivirals can be divided into two categories: i) those directly tar-

geting viral proteins (reviewed for EVs in [251]); and ii) others targeting human host pro-

teins which are integral for viral infection, replication and release [113]. Currently, no an-

tiviral drugs are licensed for the treatment of EV infection. To date, the closest drug to be 

approved by the U.S. Food and Drug Administration (FDA) for anti-EV use is pleconaril, 

which targets the EV capsid. It was considered as a common cold treatment but denied 

approval due to safety concerns [252]. Recently, a systematic screen of ten clinically used 

antiviral drugs for their efficacy against CVBs identified hizentra, enviroxime, pleconaril, 

ribavirin, and favipiravir as promising repurposing candidates for T1D intervention trials. 

These antivirals proved effective against multiple CVBs in their therapeutic serum con-

centrations in vitro [253]. Subsequent investigation from the same group demonstrated in 

vitro eradication of persistent CVB1 infection in human pancreatic ductal cells by envi-

roxime, fluoxetine, hizentra and pleconaril [254]. This is consistent with the previous re-

port that fluoxetine eradicates persistent CVB4 infection in the same cell line, halting rep-

lication through inhibition of the viral protease 2C [255]. Additionally, gemcitabine, which 

binds to the viral RNA-dependent RNA polymerase 3Dpol has been shown to be an ef-

fective inhibitor of broad-spectrum EVs and in combination with ribavirin, exhibits a syn-

ergistic antiviral effect on CVB3 and EV-A71 [256]. 

Antiviral drugs could offer an option for preventing/treating T1D by eradicating in-

fections by diabetogenic EVs. Currently, individuals newly diagnosed with T1D are being 

recruited into the DiViD and Intervention Trial in Norway (EU Clinical Trials Register 

EudraCT No. 2015-003350-41). This represents the first randomised clinical trial with an-

tiviral drugs to test the hypothesis that a six-month long treatment with pleconaril-ribavi-

rin combination can eliminate persistent EV infection in the pancreas. 

5. Conclusions 

Altogether, a plethora of molecular and epidemiological evidence support a strong 

rationale for the development of antiviral vaccines for T1D prevention. However, unan-

swered questions remain regarding which genotypes to target and whether other im-

portant viruses have been missed due to the substantial investigation bias towards EVs in 

previous studies using targeted virus detection methods. To address such concerns, a 

growing number of studies are applying unbiased NGS approaches to characterise the 

virome in diverse at-risk populations. One area of key unknown that is whether maternal 

virus exposure during pregnancy significantly influences the risk of virus exposure and 

IA development in the offspring, which may be elucidated by studies such as ENDIA and 

DIPP novum.  
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