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Abstract: A low-cost machine learning (ML) algorithm is proposed and discussed for spatial1

tracking of unknown, correlated signals in localized, ad-hoc wireless sensor networks. Each sensor2

is modeled as one neuron and a selected subset of these neurons are called to identify the spatial3

signal. The algorithm is implemented in two phases of spatial modeling and spatial tracking. The4

spatial signal is modeled using its M iso-contour lines at levels {`j}M
j=1 and those sensors that their5

sensor observations are in ∆ margin of any of these levels report their sensor observations to the6

fusion center (FC) for spatial signal reconstruction. In spatial modeling phase, the number of these7

contour lines, their levels and a proper ∆ are identified. In this phase, the algorithm may either8

use adaptive-weight stochastic gradient or scaled stochastic gradient method to select a proper9

∆. Additive white Gaussian noise (AWGN) with zero mean is assumed along with the sensor10

observations. To reduce the observation noise’s effect, each sensor applies moving average filter11

on its observation to drastically reduce the effect of noise. The modeling performance, the cost12

and the convergence of the algorithm are discussed based on extensive computer simulations and13

reasoning. The algorithm is proposed for environmental monitoring. In this paper, the percentage14

of the communication attempts of wireless sensors is assumed as cost. Performance evaluation15

results show that the proposed spatial tracking approach is low cost and can model the spatial16

signal over time with the same performance as that of spatial modeling.17

Keywords: Machine learning; spatial signal modeling; spatial tracking; signal processing; ad-hoc18

sensor network.19

1. Introduction20

paper presents a machine learning (ML) algorithm for recognition and low-cost21

tracking of unknown spatially correlated signals using sensor readings in ad-hoc wireless22

sensor fields. The randomly distributed wireless sensors are modeled as neurons and23

subsets of these neurons are selected to identify the unknown signal. In this identification24

problem, the signal is modeled using its M iso-contour lines at levels {`j}M
j=1. Modeling25

the spatial signal using their contour levels has been used in several applications, such26

as medical imaging [1,2]; geographic information systems [3]; computer vision [4]; etc.27

In wireless sensor network, modeling the spatial signals using their contour lines com-28

presses the signal to a limited number of sensor readings, where as results it conserves29

massive amount of in-network energy and can increase the network’s lifetime. Energy30

conservation is a challenging problem in wireless sensor networks [5].31

The proposed algorithm has applications in environmental monitoring, such as32

monitoring the temperature of heat-island [6], gas density monitoring [7,8], monitoring33

the city air pollution [9–12], smart agriculture [13,14], smart battlefield [15]; where the34

objective is to monitor the distribution of a correlated physical quantity such as density35

of gasses, pollutants, radiations, moisture, temperature, etc. In modern days the smart36
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Internet of things (IoT) devices can act as nodes of sensor network for monitoring of the37

desired quantities in the extent of a vast area, such as extent of a city, a forest, or even a38

deserted area. Study of the spatiotemporal variations of the number of infections to a39

contagious disease such as COVID-19 [16–18] within a large area of a country is another40

application example of the proposed algorithm in this paper.41

In this paper, a cost-efficient algorithm is proposed and discussed for spatial mon-42

itoring of unknown, correlated signals over time from wireless sensor observations.43

Localization of the sensor nodes and the correlation in spatial signal are the only as-44

sumptions from the sensor field. Two machine learning (ML) algorithms based on45

stochastic gradient are used to derive the spatial model parameters. The spatial signal46

is modeled using its M contour lines at levels {`j}M
j=1 and those wireless sensors that47

their sensor observations are within ∆ margin of any of these contour levels report their48

sensor observations to the fusion center(s) (FC) for spatial signal reconstruction. The49

proposed algorithm is implemented in spatial modeling and spatial tracking phases.50

In spatial modeling phase, the model parameters, ∆ and {`j}M
j=1 are identified after51

iteration steps of the ML algorithm. Spatial tracking phase, however uses the most52

recent model parameters and updates them. Each sensor is modeled as one neuron,53

where a subset of the neurons in neural network report their observations to the FC for54

feature extraction of the spatial signal that finally results in spatial signal recognition.55

During the iteration steps of the algorithm the FC queries the neural network using the56

new model parameters, until convergence. Figure 1, illustrates the single layer neural57

network model of the proposed algorithm. The proposed algorithm uses two novel
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Figure 1. A subset of the sensors that are modeled as neurons report to the FC for feature extraction
purpose.

58

forms of stochastic gradient (SG) method for updating the contour level margin, ∆ in59

each iteration step of the spatial modeling phase. The novelty of the approach is in60

using SG to tangibly reduce the cost of the spatial signal monitoring. The performance61

evaluation of the algorithm based on extensive simulations show that the proposed62

algorithm has acceptable modeling error, is reasonably low-cost, and properly converges,63

in the presence of filtered observation noise.64

The model and the performance evaluation parameters are listed in Table 1.65

The rest of this paper is organized as follows. In the next section the related66

works will be reviewed. Then, in section III, the background of this research will67

be explained. The proposed ML algorithm will be presented in section IV. Then the68

modeling performance, the cost and the convergence of the algorithm will be discussed,69
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Parameter Description
M The number of contour levels
{`j}M

j=1 Contour level set
∆ Contour line’s margin
Lmin Reported lower signal strength
Lmax Reported upper signal strength
N0 Number of the wireless sensors in the field
M0 Initial number of iso-contour lines
σNoise Noise’s standard deviation after averaging
κ Increment in the number of contour lines
µk The stochastic gradient weight factor
xstep
ystep

The horizontal and vertical shifts of the
signal elements

WMA Window size of the moving average filter

Table 1: Parameters of the proposed algorithm

based on extensive computer simulations, which is a common approach in evaluation of70

ML and SG problems.71

2. Related Works72

In this section a number of the related works to this research are reviewed. These73

researches are categorized in three groups of i) modeling the spatial signal in sensor field74

using the iso-contour lines of the signal and contour detection problem, ii) using ML for75

spatial signal recognition, and iii) using SG methods in ML for signal identification.76

2.1. Spatial modeling using contour lines77

To monitor and track the spatial distribution of temperature, Lian, et al., modeled78

the spatial signal using its equally spaced contour lines and tracked the changes based79

on time series analysis [19]. Detection and delineation of the borders of an area, such as80

the area surrounded by a given contour line, was discussed based on a binary detection81

measures by Chintalapudi, et al., [20]. Contour detection by clustering in wireless sensor82

network (WSN) in the presence of observation noise, quantization noise and imperfect83

radio channel was discussed in [21–24]. The effect of observation noise and quantiza-84

tion noise for contour detection in WSN using a distributed filter-based approach was85

discussed in [25]. Based on this filter-based approach, monitoring of a two-dimensional86

Gaussian signal over time was discussed in [26]. A low-cost protocol was introduced87

in [27] for detection of iso-contour lines of spatial distribution in WSN. To approximate88

the iso-contour lines of a given spatial signal, k-nearest neighbors was used in [28,29].89

A data-driven distributed algorithm was introduced in [30] to search for the wireless90

sensors that represent the iso-contours of a spatial signal. A distributed algorithm was91

introduced in [31] for energy efficient tracking of the iso-contours of a random spatial92

signal. To find the number of required contour lines and the spacing between the con-93

tour levels, an iterative on-demand algorithm was discussed in [32] for spatial signal94

monitoring in WSN in the presence of observation noise. Spatial signal modeling using95

its contour lines is comparable with efficient sampling of one-dimensional signals based96

on level-crossing sampling[33,34]. A novel SG algorithm for low-cost spatial signal97

monitoring using iso-contours was discussed in [35]. To improve the performance and98

to resolve the shortcomings of this algorithm, a weighted stochastic gradient (WSG)99

algorithm was proposed in [36] by adding a weight factor to the gradient term.100

2.2. Spatiotemporal recognition using ML101

Once the objective is to represent the whole dynamics of a spatiotemporal signal us-102

ing finite number of measurements, Gaussian process-based machine learning provides103
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a powerful tool for nonparametric regression and classification [37]. Certain classes of104

temporal or spatiotemporal Gaussian process regression problems can be converted into105

finite or infinite dimensional state-space models, where it results in computationally106

efficient algorithms [37].107

Detection of spatiotemporal features of esophageal abnormality from endoscopic108

videos by incorporating 3D convolutional neural network and convolutional long short-109

term memories (LSTM) reported in [38] for the first time. Bayesian machine learn-110

ing (BML) was discussed as a method to extract the electroencephalography (EEG)111

and magneto-encephalography (MEG) informative brain spatiotemporal–spectral pat-112

terns [39].113

A hybrid machine learning algorithm was proposed and discussed in [40] in order114

to minimize and optimize the access time to database for reducing the analysis time and115

increasing the accuracy of nitrogen vegetation spatiotemporal mapping.116

To detect and to visualize the complex behavior in spatiotemporal volumes, a117

machine learning algorithm has been proposed in [41]. The algorithm detects the118

spatiotemporal regions of various complexities by training several models.119

The spatiotemporal and the steady-state gait pattern of glaucoma patients were120

studied using body-worn sensors by development of signal processing and machine121

learning algorithms in [42].122

In study of the results from Levodipa challenge on Parkinson’s disease motor123

symptoms, using the sensor data, spatiotemporal features were calculated. Multiple124

machine learning methods such as square support vector machine (SVM), decision trees125

and linear regression were trained to predict the state of the patients [43].126

A data-based spatiotemporal modeling method was investigated in [44] for online127

estimation of temperature distribution in Lithium-Ion batteries in electric vehicles using128

machine learning algorithm.129

An effective spatiotemporal model to predict the temperature distribution in in-130

dustrial thermal processes was proposed and discussed in [45]. The proposed method131

showed better performance than that of neural networks and least square SVM.132

2.3. SG methods in ML algorithms133

For environmental and resource planning, a spatiotemporal planning was proposed134

based on factored Markov decision process and present a policy gradient planning to135

optimize a stochastic spatial policy in [46]. Markov chain Monte Carlo simulation is136

used to sample landscape policies and estimate their gradients.137

A nonparametric feature projection framework was proposed for dimensionality138

reduction by using mutual information-based stochastic gradient descent in [47].139

An iterative algorithm based on stochastic gradient was proposed for cost-efficient140

monitoring of spatially correlated signals in [35]. An improvement to that algorithm141

was proposed in [36] using weighted stochastic gradient algorithm for cost-efficient142

tracking of spatially correlated signals. Later a SG-based ML algorithm was introduced to143

autonomously identify the model parameters for low-cost spatial tracking of correlated144

signals in [48]. An accelerated learning algorithm was introduced in [49] to control the145

iteration pace of the spatial tracking algorithm. This algorithm shows faster convergence146

in spatial modeling of correlated signals.147

3. Problem Statement and Background148

In this section the technical elements and background of using SG method as a149

cost-efficient approach for monitoring of spatially correlated signal is detailed. The150

distribution of an unknown spatially correlated signal such as g(x, y; t) is assumed over151

an ad-hoc wireless sensor field. The objective is to monitor this signal in a cost-efficient152

way over time using the sensor observations of a subset of N0 wireless sensors that153

are randomly distributed over the field. It is assumed that (xk, yk), the coordinates154

of the sensor Sk ∀k, is known for the fusion center (FC). The spatial correlation of the155
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unknown signal and the coordinates of the wireless sensors are the only assumptions of156

this problem.157

In WSN, among sensing, computation and communication; communication tangibly158

consumes most of in-network energy. Accordingly, in this paper the percentage of sensors159

in which initiate a communication attempt is taken as cost.160

To reduce the spatial monitoring cost, the signal is modeled using its M contour161

lines at levels {`j}M
j=1. With this model, the spatial signal is compressed into these M162

contour lines and only those sensors that their local filtered observations sk ∀k, are163

within the range `j − ∆ ≤ sk ≤ `j + ∆, ∀j, k, report to the FC, on demand. It is assumed164

that the sensor observations are polluted with additive white Gaussian noise with zero-165

mean. To reduce the noise strength, each sensor applies a moving average filter with166

sufficient window size on its local samples to effectively reduce the noise effect. In reply167

to the query of the FC, the sensor Sk ∀k reports its observation sk = g(xk, yk) + z to the168

FC, where z is the filtered noise after local moving average filtering. Upon reception169

of the sensor observations at the FC, a spline interpolation [50] module provides an170

estimation of the spatial signal. The FC uses the most recent spatial signal estimation171

to update the contour levels {`j}M
j=1. In each iteration and for a finer signal estimation,172

the FC increases the number of contour levels, M. The process of incrementing the173

number of contour levels continues until convergence of the algorithm. In the course174

of the signal identification, the FC discovers the signal strength range: (LMin, LMax), its175

probability density function (PDF): fg(s), and the spatial and spectral attributes of the176

spatial distribution.177

By modeling the spatial signal using its M contour lines and calling for the sensor
observations of those sensors that are within ∆ margin of the contour levels {`j}M

j=1, Nr

sensors in average will reporting to the FC, according to (1). Here we assume that ∆
margin of the neighboring contour lines are disjoint.

Nr = N0

M

∑
k=1

∫ `k+∆

`k−∆
fg(γ)dγ (1)

Nr in (1) is the mathematical expectation of the number of reporting sensors to the FC.
Conditionally and when ∆ is small enough, (1) is reduced to (2).

Nr ∼= 2N0∆
M

∑
k=1

fg(`k) (2)

According to (1) and (2), the expected number of reporting sensors to the FC, Nr depends178

on N0, M, ∆, as well as the perimeter of the contour lines at each level `j, j = 1, 2, ..., M.179

By increasing M, the expected value for Nr (cost) rises.180

When ∆ is constant, according to (1) and (2), by increasing the number of contour181

levels (M), the number of reporting sensors to the FC increases, where it results in drastic182

rise in the cost of spatial monitoring. To meet the energy conservation requirements of183

WSN, a cost efficient approach based on using SG was proposed in [35]. The significance184

of the proposed stochastic gradient algorithm in [35] is relating the cost of spatiotemporal185

monitoring to the spatial monitoring performance. During the iterations steps of the186

stochastic gradient algorithm and as the number of contour levels increases, ∆ shrinks,187

such that at the end the expected number of reporting wireless sensors to the FC becomes188

affordable.189

By increasing the number of contour levels the spatial signal estimation error
gradually drops. In the proposed SG method in [35], the contour level margin ∆ is
updated related to the slope of the iteration error, and according to (3). In this equation,
the gradient of error is normalized to average of the error strength after [51], to reduce the
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relevance of ∆ to the instantaneous error’s magnitude. In (3), ∇Errork−1 = (Errork−1 −
Errork−2) and Errork−1 = 1/2(Errork−1 + Errork−2).

∆k = ∆k−1(1 +
∇Errork−1

2Errork−1
) (3)

Because the actual spatial signal g(x, y) is unknown to the FC, instead of spatial signal
estimation error, iteration error is used in calculation of the gradient. Iteration error is
defined according to (4). The simulation results showed that the iteration error behaves
very noisy in comparison to spatial signal mean absolute error (MAE), which is defined
according to (5) [36].

Errork =
P

∑
i=1

Q

∑
j=1

∣∣g̃k(xi, yj)− g̃k−1(xi, yj)
∣∣

P×Q
(4)

MAEk =
P

∑
i=1

Q

∑
j=1

∣∣g(xi, yj)− g̃k(xi, yj)
∣∣

P×Q
(5)

In (4) and (5), g̃k(xi, yj) is the spatial signal reconstruction from the reported sensor190

observations in the kth iteration at grid point coordinate (xi, yj) of the sensor field.191

The iteration error and MAE in (4) and (5) are calculated at P× Q grid points of the192

sensor field. In calculation of the iteration error and reconstruction error in the paper,193

we use mean absolute error (norm-1), instead of mean square error (norm-2), because194

norm-1 does not magnify the relatively large errors in the borders of the sensor field. The195

large errors in the borders of the sensor field are not recoverable due to sensor selection196

limitation in the borderline, therefore its large residual error does not allow to properly197

shrink ∆ in 3. Accordingly, norm-1 results in smaller monitoring cost in comparison to198

norm-2 [52].199

In selection of the contour levels, equally spaced and optimally spaced contour
lines were considered in [35]. The optimally spaced contour lines were selected based
on Lloyd-Max algorithm [53], according to (6) and (7).

`i =

∫ yi+1
yi

x fg(x)dx∫ yi+1
yi

fg(x)dx
, i = 1, 2, · · · , M (6)

where yi is calculated according to (7).

yi =
`i + `i−1

2
, i = 1, 2, · · · , M− 1 (7)

The spatial signal monitoring based on modeling with optimally spaced contour200

lines outperforms that of the equally spaced contour lines, if the PDF of the signal201

strength, fg(s) is perfectly known. However, because this PDF is unknown, in this paper202

we use optimally spaced contour levels only as benchmark to compare the performance203

of spatial monitoring using equally spaced contour lines.204

Even though the proposed approach for spatial monitoring in [35] is low cost, how-
ever it does not guarantee that the iterative algorithm meets the monitoring performance
of the benchmark. A cost-efficient weighted SG (WSG) algorithm was proposed in [36]
to meet the performance of the benchmark. The proposed weighted stochastic gradient
algorithm trades-off between the cost and the monitoring performance. In WSG, a
constant weight factor 0 ≤ µ ≤ 1 was added to the normalized gradient term, according
to (8).

∆k = ∆k−1(1 + µ
∇Errork−1

2Errork−1
) (8)
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The performance evaluation of the WSG algorithm showed that it outperforms205

the performance of SG, at no tangible additional monitoring cost [36], if a proper µ is206

selected. Extensive performance evaluations using computer simulations showed that207

WSG samples the spatial signals related to their rate of spatial variations. This result208

supports the sampling theorem requirement that signals with high bandwidth need to be209

sampled at higher rate than that of signals with low bandwidth. Also, the performance210

evaluation result of WSG showed that the spatial monitoring algorithm converges better211

than SG [36].212

Even though using WSG algorithm for spatial monitoring of signals has promising213

outcomes, however searching for the initial factors such as µ, the initial value of ∆ and214

also the signal strength range can be cumbersome and this encourages to adapt a ML215

algorithm to find the model parameters.216

Two update regimes are introduced in the next section to automatically find the217

model parameters during the iteration steps of the algorithm. Instead of a constant218

weight factor µ, two variable gain stochastic gradient approaches are introduced. The219

performance evaluations show that the proposed approaches are low-cost, converge to220

nearly the same model parameters, and have low sensitivity to noise than that of WSG221

and SG. Also, the update pace of the algorithm during its iteration steps are discussed.222

4. The proposed algorithms223

The proposed algorithm in [36] improved the performance of the stochastic gradient224

algorithm introduced in [35] by adding a constant weight factor µ in updating the value225

of ∆, according to (8). Study of the convergence of the signal strength range in spatial226

monitoring using WSG [36] showed that it smoothly converges toward the actual signal227

strength range within a few iteration steps. However finding a proper value of µ needs228

extensive initial search. Here, we use this convergence behavior to create a replacement229

for the weight factor µ. In this section, two different adjustment methods are proposed to230

update weight factor in successive iterations of the algorithm in assigning a final value231

for ∆. The proposed weight adjustment methods nearly converge to the same final value232

of ∆, and according (1) it is expected to have the same tracking cost.233

To identify the spatial signal, the sensor observations of selected subsets of wireless
sensors are iteratively used to reconstruct the spatial signal at the FC. The algorithm
find the model parameters, such as ∆, M, and {`j}M

j=1. Here we use stochastic gradient
method with adapted parameters to identify the model parameters, automatically. Study
of the convergence of the signal strength range in spatial monitoring using WSG [36]
showed that it smoothly converges to the actual signal strength range within a few
iteration steps. Here, we use this convergence behavior to create a replacement for the
weight factor. In a general trend, in the kth iteration step of the algorithm, the detected
signal strength Rk = (Lmin,k, Lmax,k) becomes closer to the actual signal strength range,
where Lmin,k and Lmax,k are the minimum and the maximum of the spatial signal strength
in the kth iteration, after spline interpolation at the FC, respectively. Here we define the
signal strength range-difference as: RDk = Lmax,k − Lmin,k. The ratio of two successive
RDk is define as the signal strength range span ratio (SRSR) according to (9). It is
expected that during the iterations steps of the algorithm, SRSRk first approaches to the
neighborhood of 1.0 and based on the residual noise in sensor observations, fluctuates
around 1.0.

SRSRk =
RDk−1

RDk
(9)

Now, we use SRSRk to modify (8) and to introduce methods that automatically initiate234

and update the model parameters until convergence. We call the first method adaptive235

weight stochastic gradient (AWSG) and the second method scaled stochastic gradient (SSG).236

These two weight factors were obtained by experiments and after observation of the237

variation of SRSRk in the proposed algorithm in [36]. The performance evaluation238

results that are given in the next section show that with these changes the algorithm239
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converges faster than that of [36], it does not need manual setup for µ and also it becomes240

independent from the initial guess for ∆0.241

242

Adaptive Weight Stochastic Gradient (AWSG):
In AWSG, we replace µ in (8) with a function of SRSRk. With this change the update
equation for ∆ changes according to (10).

∆k = ∆k−1(1 + µk
∇Errork−1

2Errork−1
) (10)

where µk is according to (11).

µk =

√
SRSRk−1

1 + SRSRk−1
(11)

243

244

Scaled Stochastic Gradient (SSG):
In the second method, SSG, the modification factor is applied to (3), instead of (8). With
this change, (3) is modified to (12).

∆k = SRSRk−1 ∆k−1(1 +
∇Errork−1

2Errork−1
) (12)

Besides faster convergence, the recent two changes also help avoid the shrinkage of245

∆ faster than that it fails to continue spatial monitoring due to lack of enough reporting246

sensor observations.247

As previously mentioned, the algorithm is implemented in two phases of spatial248

modeling, where the model parameters such as ∆ and {`j}M
j=1 are selected; and spatial249

tracking where the algorithm uses the same ∆ and M, and it updates the new contour250

levels {`j}M
j=1. The spatial modeling phase continues until convergence of ∆ and the251

signal strength range. During the spatial tracking, only those sensors that their observa-252

tions are within the ∆ margin of the contour levels are queried. Accordingly, the spatial253

tracking has relatively small cost.254

255

Implementation of the spatial modeling phase:256

In implementation of the algorithm and for initiation of the spatial modeling, the FC257

sends queries to two small groups of randomly picked sensors from the sensor field.258

The average of the sensor observations of these two groups form the Lmin and Lmax. To259

accelerate the process and to reduce the number of iterations, the number of contour260

levels are incremented for κ = 3.261

In the step two, the FC selects an initial value for M0, between 3 and 10, then finds262

the initial, equally spaced contour levels {`k}M0
k=1 between Lmin and Lmax, and the initial263

value for ∆ = (`2 − `1)/2.264

Then, in the step three, the FC queries the sensor field by sending the {`k}M0
k=1 contour265

levels and ∆0, and requests for the reply of those sensors that their sensor observations266

are within the range `k − ∆0 ≤ sj ≤ `k + ∆0 , ∀ j, k.267

In the step four, after receiving the query replies from the sensor field, the spatial268

signal is reconstructed at the FC from the sensor observations.269

Next, in the step five, the new signal strength range (Lmin, Lmax) is found from the270

reconstructed signal, M = M1 ← M0 + κ, the new contour levels {`k}
M1
k=1 are calculated,271

and the new ∆ is ∆1 = ∆0.272

In the step six, the FC queries the sensor field by broadcasting M1 contour levels273

and ∆1.274
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In the step seven, after receiving the query replies from the sensor field, the FC275

attempts the spatial signal reconstruction.276

Then, in the step eight, the FC updates the value of ∆ from equations (10) or (12).277

In the step nine, the FC calculates the new number of contour levels M ← M + κ278

and their levels {`k}M
k=1.279

In the step ten, the FC queries the sensor field by broadcasting the new contour280

levels {`k}M
k=1 and requesting the sensor observations of those sensors that falls within281

range `k − ∆n ≤ sj ≤ `k + ∆n , ∀ j, k.282

Then the FC repeats the process from step seven, until convergence.283

The summary of the discussed algorithm for spatial modeling phase is presented in284

Table 2.285

Spatial tracking phase:286

After convergence of the algorithm in spatial modeling phase, the FC uses the same287

final ∆ and the same number of contour levels M at convergence, and just updates the288

contour level set {`k}M
k=1, on demand.289

Table 2: Summary of the proposed algorithm

1. The FC queries two small sets of sensors at random locations for the signal strength
range (Lmin, Lmax).

2. With initial M = M0 contour levels, the FC finds {`i}M0
i=1 in (Lmax, Lmin) and

∆0 = (`2 − `1)/2.
3. The FC queries the sensor field with the {`i}M0

i=1 and ∆ = ∆0.
4. The FC receives those sensor observations that are in ∆ margin of the contour levels

and reconstructs the spatial signal.
5. The FC updates the signal strength range (Lmin, Lmax) and M1 ← M0 + κ and uses

the same ∆1 = ∆0.
6. The FC queries the sensor field with the new M, {`i}M1

i=1 and ∆.
7. The FC receives the query replies, reconstructs the signal, find the new signal

strength range.
8. The FC finds the new ∆ according to either (10) or (12).
9. The FC finds the new M← M + κ and the set of equally spaced levels {`i}M

i=1.
10. Th FC queries the sensor network with the new M, {`i}M

i=1 and ∆.
11. Repeat from Step (7), until convergence.

5. Performance Evaluation290

For performance evaluation of the proposed ML algorithm, first we introduce the291

spatial signal construction model and also the simulation assumptions. Then, in the next292

part of this section, the performance evaluation results will be given.293

5.1. Spatial signal model and assumptions294

To construct the spatial signal, similar to [35] and [36], diffusion model is used295

to synthesize the spatial signal. The reasons for using this model are its simplicity296

and capability to analytically change the spatial signal in performance evaluation of297

the algorithm in spatial tracking. The diffusion model was introduced to model the298

correlated spatial signals [54].299

In the proposed ad-hoc WSN problem, the wireless sensor nodes are assumed300

randomly distributed, with Poisson distribution over a known area A with dimensions301

of 100 x 100. It is assumed that the network is localized, meaning that the FC knows the302

coordinates of the wireless sensors. Each and every of the wireless sensors in the sensor303

field can communicate with the FC, either by multi-hopping or by direct communication.304

For performance evaluation of the proposed algorithm, we used MATLAB. The related305

simulation codes are available online for verification purpose [55].306
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The correlated spatial signal g(x, y) is analytically formed using (13). According
to this approach the synthetic signal is formed by superposition of a large number of
two-dimensional Gaussian distributions G(mx, my, σ), that are randomly distributed at
center points (mx, my), over the sensor field, each formed according to (14).

g(x, y) =
N1

∑
p=1

apG(mxp, myp, σ1) +
N2

∑
p=1

bpG(m̂xp, m̂yp, σ2) (13)

G(mx, my, σ) = exp(− (x−mx)2 + (y−my)2

2σ2 ) (14)

The synthetic spatial signal is formed by summation of two groups of Gaussian dis-307

tributions with two different standard deviations of σ = σ1 or σ2, as it is detailed in (308

13). The coefficients ap and bp in (13) are random positive weight factors for the spatial309

Gaussian signals, so that the final synthetic signal is limited inside a range (0, 100).310

Figure 2, illustrates an instance of the synthetic spatial signal constructed using (13). For311

generation of this spatial signal, σ1 and σ2 are assumed equal to 5 and 10, respectively.312

For this performance evaluation we assumed either 10,000 or 12,000 wireless sensors313

in the sensor field. The MAE of the proposed algorithm, its cost and also the conver-314

gence of the algorithm are investigated based on extensive computer simulations. As315

benchmark and for comparison, similar to [35] and [36], we use spatial modeling with316

optimal contour levels, based on Lloyd-Max, according to (6) and (7), when the PDF of317

the signal strength is assumed.

Figure 2. The synthetic correlated spatial signal is generated using the described model in (13).
318

5.2. Performance evaluation results319

Spatial modeling MAE:
The spatial modeling MAE of the proposed ML algorithm for modeling of Figure 2
at different noise strengths is illustrated in Figure 3 and Figure 4. Figure 3, compares
the spatial modeling of AWSG, WSG and benchmark (Lloyd-Max). As this figure
illustrates, AWSG, similar to WSG [36], converges to the modeling performance of
benchmark, at the same observation noise strength. According to this result, AWSG
converges a bit faster than that of WSG. Figure 4, compares the convergence of AWSG
and SSG, where it shows that SSG converges in most of the cases slightly faster than
AWSG. In this paper, the spatial modeling errors (MAE and RMSE) are sketched in dB,
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Figure 3. Comparison between the spatial modeling MAE of AWSG and WSG in the presence of
different noise strengths σN , during convergence process of the algorithm.

Figure 4. Comparison between the convergence speed of AWSG and SSG, during convergence
process of the algorithm.

MAEk(dB) = 20Log10 AMEk, ∀k. The modeling performance of AWSG using norm-
2, which is defined in (15), is compared with norm-1 (MAE), in Figure 5. According
to this result, the modeling performance using norm-1 (MAE) is around 3 dB better
than that of norm-2, which is root mean square error (RMSE). Norm-2 results in poorer
modeling performance, because it magnifies the large error spikes that usually happens
in borderlines, where the sensor population is limited.

RMSEk =

√√√√ P

∑
i=1

Q

∑
j=1

[g(xi, yj)− g̃k(xi, yj)]2

P×Q
(15)

320

321

Spatial modeling cost:322

The relative spatial modeling cost of the proposed ML algorithm for AWSG and SSG323

is presented in Figure 6. The relative spatial modeling cost is calculated based on324

R = CostSSG(k)/CostAWSG(k). According to this figure, AWSG has relatively smaller325

spatial modeling cost than that of SSG. Also as this figure shows that, by increasing the326
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Figure 5. Comparison between the spatial modeling error of norm-1 (MAE) and norm-2 (RMSE)
in convergence process of AWSG.

Figure 6. Comparison between the spatial modeling cost of AWSG and SSG. The relative cost
R = CostSSG(k)/CostAWSG(k) is sketched for two different filtered noise strength in sensor
observations.

standard deviation of noise from σ = 0.1 to 0.3, the cost of the algorithm (the percentage327

of the reporting wireless sensor nodes to the FC), increases, due to increase in false de-328

tections. Increase in the number of false detection has been addressed in other literature,329

as well [25].330

331

Spatial tracking cost:332

The spatial tracking cost of the proposed ML algorithm using SSG is illustrated in Figure333

7. According to this figure, as the observation noise’s strength increases, the tracking334

cost of the algorithm, rises. However, the percentage of reporting sensors to the FC is335

maintained around 10% or less, when the standard deviation of the additive filtered336

noise is below 0.5. According to (1), the number of reporting sensors to the FC depends337

on ∆, later in this section we show that the final ∆ for SSG and AWSG is almost the same.338

Accordingly, we expect that the cost of AWSG and SSG be nearly the same. Evaluations339

based on computer simulations proves this expectation.340

The effect of sensor population on spatial modeling cost using AWSG is illustrated341

in Figure 8. The results of this figure are related to observation noise of σNoise = 0.3 and342
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Figure 7. The tracking cost of SSG for several filtered observation noise strengths, during several
tracking instances. The sensors apply moving average filter on their local observations to reduce
the effect of additive noise.

Figure 8. The percentage of reporting sensors to the FC for two different sensor populations. The
number of reporting sensors does not tangibly change, when the sensor population changes.

two sensor population of 10,000 and 12,000. According to this figure, with 10,000 sensors343

in the sensor field, around 8.5% of the sensors (around 850 sensors), report to the FC.344

Once the sensor population increases to 12,000 sensors, the total reporting sensors is345

7.45% (around 895 sensors). This outcome that was also reported for WSG in [36], states346

that by increasing the number of sensors in the sensor field, the cost of the algorithm347

does not tangibly rise.348

349

Spatial Tracking MAE:350

The spatial modeling AME of AWSG at different observation noise’s strength are illus-351

trated in Figure 9. A comparison between the results of this figure and Figure 3 and352

Figure 4, clears that the spatial tracking MAE of the proposed tracking algorithm is353

about the same as that of spatial modeling MAE after convergence. Therefore, using354

the final spatial modeling parameters for tracking is a tractable approach. According to355

Figure 9, as the spatial signal changes due to its temporal variations, the spatial tracking356

MAE slightly increases. As result, in the course of time the model gradually becomes357
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Figure 9. The spatial tracking MAE of AWSG at different observation noise’s strength. As the
standard deviation of the observation noise increases, the modeling performance drops.

Figure 10. Variation of ∆ in the course of convergence in SSG and AWSG in the presence of filtered
observation noise.

poorer and another round of spatial modeling will be required.358

359

Convergence of ∆:360

The variation of ∆ in the course of the convergence for AWSG and SSG is illustrated in361

Figure 10. According to this figure, in SSG ∆ sharply rises first and then aggressively362

drops until convergence. This figure also shows that ∆ in AWSG gradually drops in the363

course of the convergence of the algorithm. This figure shows that both SSG and AWSG364

converge to around the same final values. According to this figure, and based on (1), it365

is expected that the tracking cost of AWSG and SSG be around the same value. Also,366

due to the sharp rise in ∆ in SSG, the relative cost of AWSG over SSG drops suddenly.367

This fact is illustrated in Figure 6. The results of Figure 10 also show that ∆ is slightly368

sensitive to observation noise’s strength.369

370

Signal strength range span ratio (SRSR):371

Convergence of SRSRk , ∀k during the spatial modeling process is the other factor,372

which is used in development of AWSG and SSG in (10) and (12), respectively. SRSR,373

which is defined in (6) converges to around 1.0, in the course of spatial modeling. This374
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Figure 11. Convergence of SRSR during the iteration steps of the algorithm. The effect of
observation noise is some misadjustment in value of SRSR after convergence.

convergence is illustrated in Figure 11. According to this figure, the presence of noise375

results in some final misadjustment and noisy variation around 1.0. By increase of the376

noise strength in sensor observations the misadjustment is expected to rise.377

6. Conclusion378

Two machine learning (ML) approaches based on adaptive weight stochastic gradi-379

ent (AWSG) and scaled stochastic gradient (SSG) are proposed and discussed for spatial380

signal modeling and tracking. The spatial signal, which is monitored using sensor381

observations, is modeled with a number of its contour lines at equally spaced levels.382

The fusion center (FC) calls for a subset of sensor observations that fall within a given ∆383

margin of each of these contour levels. The ML algorithm iteratively varies the number384

of contour levels and ∆ until convergence. Convergence of ∆ and the signal strength’s385

range are two measures that can be used for convergence of the algorithm. Performance386

evaluations based on computer simulations show that the proposed algorithms have387

relatively the same cost and modeling/tracking performance. The tracking cost of the388

algorithm is around 10% or less, when the filtered observation noise’s standard devia-389

tion is around 0.5 or less. With the increase of observation noise strength, the cost also390

increases. The number of reporting sensors to the FC remains almost the same, when391

the sensor population increases. The tracking MAE of AWSG and SSG are around the392

spatial modeling MAE, in the same noise strength.393
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