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Abstract: A low-cost machine learning (ML) algorithm is proposed and discussed for spatial
tracking of unknown, correlated signals in localized, ad-hoc wireless sensor networks. Each sensor
is modeled as one neuron and a selected subset of these neurons are called to identify the spatial
signal. The algorithm is implemented in two phases of spatial modeling and spatial tracking. The
spatial signal is modeled using its M iso-contour lines at levels {¢ i } ]Ai ; and those sensors that their
sensor observations are in A margin of any of these levels report their sensor observations to the
fusion center (FC) for spatial signal reconstruction. In spatial modeling phase, the number of these
contour lines, their levels and a proper A are identified. In this phase, the algorithm may either
use adaptive-weight stochastic gradient or scaled stochastic gradient method to select a proper
A. Additive white Gaussian noise (AWGN) with zero mean is assumed along with the sensor
observations. To reduce the observation noise’s effect, each sensor applies moving average filter
on its observation to drastically reduce the effect of noise. The modeling performance, the cost
and the convergence of the algorithm are discussed based on extensive computer simulations and
reasoning. The algorithm is proposed for environmental monitoring. In this paper, the percentage
of the communication attempts of wireless sensors is assumed as cost. Performance evaluation
results show that the proposed spatial tracking approach is low cost and can model the spatial
signal over time with the same performance as that of spatial modeling.

Keywords: Machine learning; spatial signal modeling; spatial tracking; signal processing; ad-hoc
sensor network.

1. Introduction

paper presents a machine learning (ML) algorithm for recognition and low-cost
tracking of unknown spatially correlated signals using sensor readings in ad-hoc wireless
sensor fields. The randomly distributed wireless sensors are modeled as neurons and
subsets of these neurons are selected to identify the unknown signal. In this identification
problem, the signal is modeled using its M iso-contour lines at levels {Ej}j]\i 1- Modeling
the spatial signal using their contour levels has been used in several applications, such
as medical imaging [1,2]; geographic information systems [3]; computer vision [4]; etc.
In wireless sensor network, modeling the spatial signals using their contour lines com-
presses the signal to a limited number of sensor readings, where as results it conserves
massive amount of in-network energy and can increase the network’s lifetime. Energy
conservation is a challenging problem in wireless sensor networks [5].

The proposed algorithm has applications in environmental monitoring, such as
monitoring the temperature of heat-island [6], gas density monitoring [7,8], monitoring
the city air pollution [9-12], smart agriculture [13,14], smart battlefield [15]; where the
objective is to monitor the distribution of a correlated physical quantity such as density
of gasses, pollutants, radiations, moisture, temperature, etc. In modern days the smart
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Internet of things (IoT) devices can act as nodes of sensor network for monitoring of the
desired quantities in the extent of a vast area, such as extent of a city, a forest, or even a
deserted area. Study of the spatiotemporal variations of the number of infections to a
contagious disease such as COVID-19 [16-18] within a large area of a country is another
application example of the proposed algorithm in this paper.

In this paper, a cost-efficient algorithm is proposed and discussed for spatial mon-
itoring of unknown, correlated signals over time from wireless sensor observations.
Localization of the sensor nodes and the correlation in spatial signal are the only as-
sumptions from the sensor field. Two machine learning (ML) algorithms based on
stochastic gradient are used to derive the spatial model parameters. The spatial signal
is modeled using its M contour lines at levels {¢ ]}]I\i ; and those wireless sensors that
their sensor observations are within A margin of any of these contour levels report their
sensor observations to the fusion center(s) (FC) for spatial signal reconstruction. The
proposed algorithm is implemented in spatial modeling and spatial tracking phases.
In spatial modeling phase, the model parameters, A and {ﬁj}jﬁi , are identified after
iteration steps of the ML algorithm. Spatial tracking phase, however uses the most
recent model parameters and updates them. Each sensor is modeled as one neuron,
where a subset of the neurons in neural network report their observations to the FC for
feature extraction of the spatial signal that finally results in spatial signal recognition.
During the iteration steps of the algorithm the FC queries the neural network using the
new model parameters, until convergence. Figure 1, illustrates the single layer neural
network model of the proposed algorithm. The proposed algorithm uses two novel

Neuron

Figure 1. A subset of the sensors that are modeled as neurons report to the FC for feature extraction
purpose.

forms of stochastic gradient (SG) method for updating the contour level margin, A in
each iteration step of the spatial modeling phase. The novelty of the approach is in
using SG to tangibly reduce the cost of the spatial signal monitoring. The performance
evaluation of the algorithm based on extensive simulations show that the proposed
algorithm has acceptable modeling error, is reasonably low-cost, and properly converges,
in the presence of filtered observation noise.

The model and the performance evaluation parameters are listed in Table 1.

The rest of this paper is organized as follows. In the next section the related
works will be reviewed. Then, in section III, the background of this research will
be explained. The proposed ML algorithm will be presented in section IV. Then the
modeling performance, the cost and the convergence of the algorithm will be discussed,
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Parameter Description

M The number of contour levels

¢ }]Ai 1 Contour level set

A Contour line’s margin

Liyin Reported lower signal strength

Limax Reported upper signal strength

No Number of the wireless sensors in the field
My Initial number of iso-contour lines

ONoise Noise’s standard deviation after averaging
K Increment in the number of contour lines
Uk The stochastic gradient weight factor

Xstep The horizontal and vertical shifts of the
Ystep signal elements

Wnma Window size of the moving average filter

Table 1: Parameters of the proposed algorithm

based on extensive computer simulations, which is a common approach in evaluation of
ML and SG problems.

2. Related Works

In this section a number of the related works to this research are reviewed. These
researches are categorized in three groups of i) modeling the spatial signal in sensor field
using the iso-contour lines of the signal and contour detection problem, ii) using ML for
spatial signal recognition, and iii) using SG methods in ML for signal identification.

2.1. Spatial modeling using contour lines

To monitor and track the spatial distribution of temperature, Lian, et al., modeled
the spatial signal using its equally spaced contour lines and tracked the changes based
on time series analysis [19]. Detection and delineation of the borders of an area, such as
the area surrounded by a given contour line, was discussed based on a binary detection
measures by Chintalapudi, et al., [20]. Contour detection by clustering in wireless sensor
network (WSN) in the presence of observation noise, quantization noise and imperfect
radio channel was discussed in [21-24]. The effect of observation noise and quantiza-
tion noise for contour detection in WSN using a distributed filter-based approach was
discussed in [25]. Based on this filter-based approach, monitoring of a two-dimensional
Gaussian signal over time was discussed in [26]. A low-cost protocol was introduced
in [27] for detection of iso-contour lines of spatial distribution in WSN. To approximate
the iso-contour lines of a given spatial signal, k-nearest neighbors was used in [28,29].
A data-driven distributed algorithm was introduced in [30] to search for the wireless
sensors that represent the iso-contours of a spatial signal. A distributed algorithm was
introduced in [31] for energy efficient tracking of the iso-contours of a random spatial
signal. To find the number of required contour lines and the spacing between the con-
tour levels, an iterative on-demand algorithm was discussed in [32] for spatial signal
monitoring in WSN in the presence of observation noise. Spatial signal modeling using
its contour lines is comparable with efficient sampling of one-dimensional signals based
on level-crossing sampling[33,34]. A novel SG algorithm for low-cost spatial signal
monitoring using iso-contours was discussed in [35]. To improve the performance and
to resolve the shortcomings of this algorithm, a weighted stochastic gradient (WSG)
algorithm was proposed in [36] by adding a weight factor to the gradient term.

2.2. Spatiotemporal recognition using ML

Once the objective is to represent the whole dynamics of a spatiotemporal signal us-
ing finite number of measurements, Gaussian process-based machine learning provides
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a powerful tool for nonparametric regression and classification [37]. Certain classes of
temporal or spatiotemporal Gaussian process regression problems can be converted into
finite or infinite dimensional state-space models, where it results in computationally
efficient algorithms [37].

Detection of spatiotemporal features of esophageal abnormality from endoscopic
videos by incorporating 3D convolutional neural network and convolutional long short-
term memories (LSTM) reported in [38] for the first time. Bayesian machine learn-
ing (BML) was discussed as a method to extract the electroencephalography (EEG)
and magneto-encephalography (MEG) informative brain spatiotemporal-spectral pat-
terns [39].

A hybrid machine learning algorithm was proposed and discussed in [40] in order
to minimize and optimize the access time to database for reducing the analysis time and
increasing the accuracy of nitrogen vegetation spatiotemporal mapping.

To detect and to visualize the complex behavior in spatiotemporal volumes, a
machine learning algorithm has been proposed in [41]. The algorithm detects the
spatiotemporal regions of various complexities by training several models.

The spatiotemporal and the steady-state gait pattern of glaucoma patients were
studied using body-worn sensors by development of signal processing and machine
learning algorithms in [42].

In study of the results from Levodipa challenge on Parkinson’s disease motor
symptoms, using the sensor data, spatiotemporal features were calculated. Multiple
machine learning methods such as square support vector machine (SVM), decision trees
and linear regression were trained to predict the state of the patients [43].

A data-based spatiotemporal modeling method was investigated in [44] for online
estimation of temperature distribution in Lithium-Ion batteries in electric vehicles using
machine learning algorithm.

An effective spatiotemporal model to predict the temperature distribution in in-
dustrial thermal processes was proposed and discussed in [45]. The proposed method
showed better performance than that of neural networks and least square SVM.

2.3. SG methods in ML algorithms

For environmental and resource planning, a spatiotemporal planning was proposed
based on factored Markov decision process and present a policy gradient planning to
optimize a stochastic spatial policy in [46]. Markov chain Monte Carlo simulation is
used to sample landscape policies and estimate their gradients.

A nonparametric feature projection framework was proposed for dimensionality
reduction by using mutual information-based stochastic gradient descent in [47].

An iterative algorithm based on stochastic gradient was proposed for cost-efficient
monitoring of spatially correlated signals in [35]. An improvement to that algorithm
was proposed in [36] using weighted stochastic gradient algorithm for cost-efficient
tracking of spatially correlated signals. Later a SG-based ML algorithm was introduced to
autonomously identify the model parameters for low-cost spatial tracking of correlated
signals in [48]. An accelerated learning algorithm was introduced in [49] to control the
iteration pace of the spatial tracking algorithm. This algorithm shows faster convergence
in spatial modeling of correlated signals.

3. Problem Statement and Background

In this section the technical elements and background of using SG method as a
cost-efficient approach for monitoring of spatially correlated signal is detailed. The
distribution of an unknown spatially correlated signal such as g(x, y; t) is assumed over
an ad-hoc wireless sensor field. The objective is to monitor this signal in a cost-efficient
way over time using the sensor observations of a subset of Ny wireless sensors that
are randomly distributed over the field. It is assumed that (xk,yk), the coordinates
of the sensor Sy Vk, is known for the fusion center (FC). The spatial correlation of the
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unknown signal and the coordinates of the wireless sensors are the only assumptions of
this problem.

In WSN, among sensing, computation and communication; communication tangibly
consumes most of in-network energy. Accordingly, in this paper the percentage of sensors
in which initiate a communication attempt is taken as cost.

To reduce the spatial monitoring cost, the signal is modeled using its M contour
lines at levels {/; }]Ai 1- With this model, the spatial signal is compressed into these M
contour lines and only those sensors that their local filtered observations s Vk, are
within the range Zj —A<s < E]- + A, Vj, k, report to the FC, on demand. It is assumed
that the sensor observations are polluted with additive white Gaussian noise with zero-
mean. To reduce the noise strength, each sensor applies a moving average filter with
sufficient window size on its local samples to effectively reduce the noise effect. In reply
to the query of the FC, the sensor Sy Vk reports its observation s = g(xx, yx) + z to the
FC, where z is the filtered noise after local moving average filtering. Upon reception
of the sensor observations at the FC, a spline interpolation [50] module provides an
estimation of the spatial signal. The FC uses the most recent spatial signal estimation
to update the contour levels {/;} ]Ai 1- In each iteration and for a finer signal estimation,
the FC increases the number of contour levels, M. The process of incrementing the
number of contour levels continues until convergence of the algorithm. In the course
of the signal identification, the FC discovers the signal strength range: (Lpin, Lpax ), its
probability density function (PDF): f,(s), and the spatial and spectral attributes of the
spatial distribution.

By modeling the spatial signal using its M contour lines and calling for the sensor
observations of those sensors that are within A margin of the contour levels {¢ ]}]Ai 1 Ny
sensors in average will reporting to the FC, according to (1). Here we assume that A
margin of the neighboring contour lines are disjoint.

B M A p .
N, = NokzljzkA fe(r)dy M

Ny in (1) is the mathematical expectation of the number of reporting sensors to the FC.
Conditionally and when A is small enough, (1) is reduced to (2).

M
Ny = 2NoA Y fo(4x) )
k=1

According to (1) and (2), the expected number of reporting sensors to the FC, N, depends
on Ny, M, A, as well as the perimeter of the contour lines at each level ¢;, j =1,2,..., M.
By increasing M, the expected value for N, (cost) rises.

When A is constant, according to (1) and (2), by increasing the number of contour
levels (M), the number of reporting sensors to the FC increases, where it results in drastic
rise in the cost of spatial monitoring. To meet the energy conservation requirements of
WHGN, a cost efficient approach based on using SG was proposed in [35]. The significance
of the proposed stochastic gradient algorithm in [35] is relating the cost of spatiotemporal
monitoring to the spatial monitoring performance. During the iterations steps of the
stochastic gradient algorithm and as the number of contour levels increases, A shrinks,
such that at the end the expected number of reporting wireless sensors to the FC becomes
affordable.

By increasing the number of contour levels the spatial signal estimation error
gradually drops. In the proposed SG method in [35], the contour level margin A is
updated related to the slope of the iteration error, and according to (3). In this equation,
the gradient of error is normalized to average of the error strength after [51], to reduce the
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relevance of A to the instantaneous error’s magnitude. In (3), VErrory_1 = (Errory_q —
Errory_y) and Errori_y = 1/2(Errory_q + Errorg_s).

VErrore_q

A = N1 (1+ 3)

2Errori_q

Because the actual spatial signal ¢(x, ) is unknown to the FC, instead of spatial signal
estimation error, iteration error is used in calculation of the gradient. Iteration error is
defined according to (4). The simulation results showed that the iteration error behaves
very noisy in comparison to spatial signal mean absolute error (MAE), which is defined
according to (5) [36].

P Q 6. (xv: y:) — & —
Error, = Z 2 |gk(xzr y])P ngl(xzr ]/])| 4)

i=1j=1

ii |8 (xi, yj) — G (xi, vj)]

MAE;, = %0

©)

i=1j=1

In (4) and (5), §x(x;, y]') is the spatial signal reconstruction from the reported sensor
observations in the k'’ iteration at grid point coordinate (x;, y;) of the sensor field.
The iteration error and MAE in (4) and (5) are calculated at P x Q grid points of the
sensor field. In calculation of the iteration error and reconstruction error in the paper,
we use mean absolute error (norm-1), instead of mean square error (norm-2), because
norm-1 does not magnify the relatively large errors in the borders of the sensor field. The
large errors in the borders of the sensor field are not recoverable due to sensor selection
limitation in the borderline, therefore its large residual error does not allow to properly
shrink A in 3. Accordingly, norm-1 results in smaller monitoring cost in comparison to
norm-2 [52].

In selection of the contour levels, equally spaced and optimally spaced contour
lines were considered in [35]. The optimally spaced contour lines were selected based
on Lloyd-Max algorithm [53], according to (6) and (7).

fyyf'“ xfe(x)dx
=\ 1i=12,---,M (6)
fyy;+1 fg(x)dx
where y; is calculated according to (7).
yi:%/ i=12--,M—1 (7)

The spatial signal monitoring based on modeling with optimally spaced contour
lines outperforms that of the equally spaced contour lines, if the PDF of the signal
strength, f¢(s) is perfectly known. However, because this PDF is unknown, in this paper
we use optimally spaced contour levels only as benchmark to compare the performance
of spatial monitoring using equally spaced contour lines.

Even though the proposed approach for spatial monitoring in [35] is low cost, how-
ever it does not guarantee that the iterative algorithm meets the monitoring performance
of the benchmark. A cost-efficient weighted SG (WSG) algorithm was proposed in [36]
to meet the performance of the benchmark. The proposed weighted stochastic gradient
algorithm trades-off between the cost and the monitoring performance. In WSG, a
constant weight factor 0 < y < 1 was added to the normalized gradient term, according
to (8).

VErrory_q

A=D1 (1+ (8)

K 2Errory_q


https://doi.org/10.20944/preprints202106.0550.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 June 2021 d0i:10.20944/preprints202106.0550.v1

7 of 17

The performance evaluation of the WSG algorithm showed that it outperforms
the performance of SG, at no tangible additional monitoring cost [36], if a proper u is
selected. Extensive performance evaluations using computer simulations showed that
WSG samples the spatial signals related to their rate of spatial variations. This result
supports the sampling theorem requirement that signals with high bandwidth need to be
sampled at higher rate than that of signals with low bandwidth. Also, the performance
evaluation result of WSG showed that the spatial monitoring algorithm converges better
than SG [36].

Even though using WSG algorithm for spatial monitoring of signals has promising
outcomes, however searching for the initial factors such as y, the initial value of A and
also the signal strength range can be cumbersome and this encourages to adapt a ML
algorithm to find the model parameters.

Two update regimes are introduced in the next section to automatically find the
model parameters during the iteration steps of the algorithm. Instead of a constant
weight factor y, two variable gain stochastic gradient approaches are introduced. The
performance evaluations show that the proposed approaches are low-cost, converge to
nearly the same model parameters, and have low sensitivity to noise than that of WSG
and SG. Also, the update pace of the algorithm during its iteration steps are discussed.

4. The proposed algorithms

The proposed algorithm in [36] improved the performance of the stochastic gradient
algorithm introduced in [35] by adding a constant weight factor y in updating the value
of A, according to (8). Study of the convergence of the signal strength range in spatial
monitoring using WSG [36] showed that it smoothly converges toward the actual signal
strength range within a few iteration steps. However finding a proper value of u needs
extensive initial search. Here, we use this convergence behavior to create a replacement
for the weight factor p. In this section, two different adjustment methods are proposed to
update weight factor in successive iterations of the algorithm in assigning a final value
for A. The proposed weight adjustment methods nearly converge to the same final value
of A, and according (1) it is expected to have the same tracking cost.

To identify the spatial signal, the sensor observations of selected subsets of wireless
sensors are iteratively used to reconstruct the spatial signal at the FC. The algorithm
find the model parameters, such as A, M, and {/¢ i }]I\i 1- Here we use stochastic gradient
method with adapted parameters to identify the model parameters, automatically. Study
of the convergence of the signal strength range in spatial monitoring using WSG [36]
showed that it smoothly converges to the actual signal strength range within a few
iteration steps. Here, we use this convergence behavior to create a replacement for the
weight factor. In a general trend, in the k" iteration step of the algorithm, the detected
signal strength Ry = (Lyin ks Limax k) becomes closer to the actual signal strength range,
where L,,;, x and L,y x are the minimum and the maximum of the spatial signal strength
in the k'’ iteration, after spline interpolation at the FC, respectively. Here we define the
signal strength range-difference as: RDy = L,y k — Lyin k. The ratio of two successive
RDy is define as the signal strength range span ratio (SRSR) according to (9). It is
expected that during the iterations steps of the algorithm, SRSR; first approaches to the
neighborhood of 1.0 and based on the residual noise in sensor observations, fluctuates

around 1.0.
RDy4q

RDy

Now, we use SRSRj to modify (8) and to introduce methods that automatically initiate
and update the model parameters until convergence. We call the first method adaptive
weight stochastic gradient (AWSG) and the second method scaled stochastic gradient (SSG).
These two weight factors were obtained by experiments and after observation of the
variation of SRSRj in the proposed algorithm in [36]. The performance evaluation
results that are given in the next section show that with these changes the algorithm

SRSR; = o)
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converges faster than that of [36], it does not need manual setup for i and also it becomes
independent from the initial guess for Ay.

Adaptive Weight Stochastic Gradient (AWSG):
In AWSG, we replace u in (8) with a function of SRSRy. With this change the update
equation for A changes according to (10).

V Errory_
Ap = Mg (1 + g ——F=1) (10)
2Errori_q

[ SRSR;_,
e =/ T+ SRSR; 4 (1)

Scaled Stochastic Gradient (SSG):
In the second method, SSG, the modification factor is applied to (3), instead of (8). With
this change, (3) is modified to (12).

where iy, is according to (11).

VErrory_q

A = SRSRy_1 A1 (1+ (12)

2Errory_q

Besides faster convergence, the recent two changes also help avoid the shrinkage of
A faster than that it fails to continue spatial monitoring due to lack of enough reporting
sensor observations.

As previously mentioned, the algorithm is implemented in two phases of spatial
modeling, where the model parameters such as A and {/;} ]Ai ; are selected; and spatial
tracking where the algorithm uses the same A and M, and it updates the new contour
levels {Ej}jj\i 1- The spatial modeling phase continues until convergence of A and the
signal strength range. During the spatial tracking, only those sensors that their observa-
tions are within the A margin of the contour levels are queried. Accordingly, the spatial
tracking has relatively small cost.

Implementation of the spatial modeling phase:

In implementation of the algorithm and for initiation of the spatial modeling, the FC
sends queries to two small groups of randomly picked sensors from the sensor field.
The average of the sensor observations of these two groups form the L,,;;, and L. To
accelerate the process and to reduce the number of iterations, the number of contour
levels are incremented for x = 3.

In the step two, the FC selects an initial value for My, between 3 and 10, then finds
the initial, equally spaced contour levels {ék},ivi)l between L,,;;, and L4y, and the initial
value for A = (6, — ¥1) /2.

Then, in the step three, the FC queries the sensor field by sending the {¢ k},]g@l contour
levels and Ay, and requests for the reply of those sensors that their sensor observations
are within the range ¢ — Ag < sj < b+ 0o, Vi k

In the step four, after receiving the query replies from the sensor field, the spatial
signal is reconstructed at the FC from the sensor observations.

Next, in the step five, the new signal strength range (i, Lmax) is found from the
reconstructed signal, M = M; < M + «, the new contour levels {/ k},i\ill are calculated,
and the new Ais A1 = Ag.

In the step six, the FC queries the sensor field by broadcasting M; contour levels
and Aq.
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In the step seven, after receiving the query replies from the sensor field, the FC
attempts the spatial signal reconstruction.

Then, in the step eight, the FC updates the value of A from equations (10) or (12).

In the step nine, the FC calculates the new number of contour levels M < M + x
and their levels {(; }M .

In the step ten, the FC queries the sensor field by broadcasting the new contour
levels {ek}{(\i ; and requesting the sensor observations of those sensors that falls within
range {y — Ay <5; < U+ Ay, YV k.

Then the FC repeats the process from step seven, until convergence.

The summary of the discussed algorithm for spatial modeling phase is presented in
Table 2.

Spatial tracking phase:

After convergence of the algorithm in spatial modeling phase, the FC uses the same
final A and the same number of contour levels M at convergence, and just updates the
contour level set {£;}M , on demand.

Table 2: Summary of the proposed algorithm

1. The FC queries two small sets of sensors at random locations for the signal strength
range (Lyin, Linax)-

2. With initial M = M, contour levels, the FC finds {El}f\iol in (Lymax, Liyin) and
Ny = (b —11)/2.

3. The FC queries the sensor field with the {él}f\iol and A = A,.

4. The FC receives those sensor observations that are in A margin of the contour levels
and reconstructs the spatial signal.

5. The FC updates the signal strength range (Lyin, Lmax) and My <— My + x and uses
the same A1 = Ay.

6.  The FC queries the sensor field with the new M, {Ei}f\ill and A.

7. The FC receives the query replies, reconstructs the signal, find the new signal
strength range.

8.  The FC finds the new A according to either (10) or (12).

9.  The FC finds the new M <~ M + «x and the set of equally spaced levels {/;},.

10. Th FC queries the sensor network with the new M, {¢;}M and A.

11. Repeat from Step (7), until convergence.

5. Performance Evaluation

For performance evaluation of the proposed ML algorithm, first we introduce the
spatial signal construction model and also the simulation assumptions. Then, in the next
part of this section, the performance evaluation results will be given.

5.1. Spatial signal model and assumptions

To construct the spatial signal, similar to [35] and [36], diffusion model is used
to synthesize the spatial signal. The reasons for using this model are its simplicity
and capability to analytically change the spatial signal in performance evaluation of
the algorithm in spatial tracking. The diffusion model was introduced to model the
correlated spatial signals [54].

In the proposed ad-hoc WSN problem, the wireless sensor nodes are assumed
randomly distributed, with Poisson distribution over a known area A with dimensions
of 100 x 100. Itis assumed that the network is localized, meaning that the FC knows the
coordinates of the wireless sensors. Each and every of the wireless sensors in the sensor
field can communicate with the FC, either by multi-hopping or by direct communication.
For performance evaluation of the proposed algorithm, we used MATLAB. The related
simulation codes are available online for verification purpose [55].
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The correlated spatial signal g(x,y) is analytically formed using (13). According
to this approach the synthetic signal is formed by superposition of a large number of
two-dimensional Gaussian distributions G(mx, my, o), that are randomly distributed at
center points (mx, my), over the sensor field, each formed according to (14).

Ny Np
g, y) =Y apyG(mxp,my,, 1) + Y _ bpG(rixp, my,, o) (13)
p=1 p=1

(r = mx + (y = my)?, ”
202
The synthetic spatial signal is formed by summation of two groups of Gaussian dis-
tributions with two different standard deviations of ¢ = 07 or 0, as it is detailed in (
13). The coefficients a, and by, in (13) are random positive weight factors for the spatial
Gaussian signals, so that the final synthetic signal is limited inside a range (0, 100).
Figure 2, illustrates an instance of the synthetic spatial signal constructed using (13). For
generation of this spatial signal, 01 and o> are assumed equal to 5 and 10, respectively.
For this performance evaluation we assumed either 10,000 or 12,000 wireless sensors
in the sensor field. The MAE of the proposed algorithm, its cost and also the conver-
gence of the algorithm are investigated based on extensive computer simulations. As
benchmark and for comparison, similar to [35] and [36], we use spatial modeling with
optimal contour levels, based on Lloyd-Max, according to (6) and (7), when the PDF of
the signal strength is assumed.

G(mx,my, o) = exp(—

Figure 2. The synthetic correlated spatial signal is generated using the described model in (13).

5.2. Performance evaluation results

Spatial modeling MAE:

The spatial modeling MAE of the proposed ML algorithm for modeling of Figure 2
at different noise strengths is illustrated in Figure 3 and Figure 4. Figure 3, compares
the spatial modeling of AWSG, WSG and benchmark (Lloyd-Max). As this figure
illustrates, AWSG, similar to WSG [36], converges to the modeling performance of
benchmark, at the same observation noise strength. According to this result, AWSG
converges a bit faster than that of WSG. Figure 4, compares the convergence of AWSG
and SSG, where it shows that SSG converges in most of the cases slightly faster than
AWSG. In this paper, the spatial modeling errors (MAE and RMSE) are sketched in dB,


https://doi.org/10.20944/preprints202106.0550.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 June 2021 d0i:10.20944/preprints202106.0550.v1

11 0f 17

—<4—AWSG-0,,_ =03

Noise

- o - Lloyd-Max, o, =0.3
—~ 10F \\\\ -8-WSG, INoise =03
m N _
2 ‘\‘\\ —3¢e—AWSG - Troise — 0.2
W 5r " o Lloyd-Max , o, =0.2
= ol v\‘.u\ ~6-WSG, g, =02
f=
£ \ A AWSG-o, . =01
8 il &7\\ \\ . aNolse_
S N\ %-WSG , o, =01
E 4oL © Lloyd-Max, Tnoise = 0"
S o g
D 45l

20

25

10 15 20 25 30 35 40 45
# of Levels

Figure 3. Comparison between the spatial modeling MAE of AWSG and WSG in the presence of
different noise strengths oy, during convergence process of the algorithm.
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Figure 4. Comparison between the convergence speed of AWSG and SSG, during convergence
process of the algorithm.

MAE(dB) = 20Log190AMEy, Vk. The modeling performance of AWSG using norm-
2, which is defined in (15), is compared with norm-1 (MAE), in Figure 5. According
to this result, the modeling performance using norm-1 (MAE) is around 3 dB better
than that of norm-2, which is root mean square error (RMSE). Norm-2 results in poorer
modeling performance, because it magnifies the large error spikes that usually happens
in borderlines, where the sensor population is limited.

i i [g(xi/ y]) _gk(xi/ ]/])]2

RMSE; =
i=1j=1 PxQ

(15)

Spatial modeling cost:

The relative spatial modeling cost of the proposed ML algorithm for AWSG and SSG
is presented in Figure 6. The relative spatial modeling cost is calculated based on
R = Costgsg(k)/Cost gqwsc (k). According to this figure, AWSG has relatively smaller
spatial modeling cost than that of SSG. Also as this figure shows that, by increasing the
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Figure 6. Comparison between the spatial modeling cost of AWSG and SSG. The relative cost
R = Costggg(k)/Cost gys (k) is sketched for two different filtered noise strength in sensor
observations.

standard deviation of noise from o = 0.1 to 0.3, the cost of the algorithm (the percentage
of the reporting wireless sensor nodes to the FC), increases, due to increase in false de-
tections. Increase in the number of false detection has been addressed in other literature,
as well [25].

Spatial tracking cost:
The spatial tracking cost of the proposed ML algorithm using SSG is illustrated in Figure
7. According to this figure, as the observation noise’s strength increases, the tracking
cost of the algorithm, rises. However, the percentage of reporting sensors to the FC is
maintained around 10% or less, when the standard deviation of the additive filtered
noise is below 0.5. According to (1), the number of reporting sensors to the FC depends
on A, later in this section we show that the final A for SSG and AWSG is almost the same.
Accordingly, we expect that the cost of AWSG and SSG be nearly the same. Evaluations
based on computer simulations proves this expectation.

The effect of sensor population on spatial modeling cost using AWSG is illustrated
in Figure 8. The results of this figure are related to observation noise of o,;se = 0.3 and
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tracking instances. The sensors apply moving average filter on their local observations to reduce
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Figure 8. The percentage of reporting sensors to the FC for two different sensor populations. The
number of reporting sensors does not tangibly change, when the sensor population changes.

two sensor population of 10,000 and 12,000. According to this figure, with 10,000 sensors
in the sensor field, around 8.5% of the sensors (around 850 sensors), report to the FC.
Once the sensor population increases to 12,000 sensors, the total reporting sensors is
7.45% (around 895 sensors). This outcome that was also reported for WSG in [36], states
that by increasing the number of sensors in the sensor field, the cost of the algorithm
does not tangibly rise.

Spatial Tracking MAE:

The spatial modeling AME of AWSG at different observation noise’s strength are illus-
trated in Figure 9. A comparison between the results of this figure and Figure 3 and
Figure 4, clears that the spatial tracking MAE of the proposed tracking algorithm is
about the same as that of spatial modeling MAE after convergence. Therefore, using
the final spatial modeling parameters for tracking is a tractable approach. According to
Figure 9, as the spatial signal changes due to its temporal variations, the spatial tracking
MAE slightly increases. As result, in the course of time the model gradually becomes
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Figure 9. The spatial tracking MAE of AWSG at different observation noise’s strength. As the
standard deviation of the observation noise increases, the modeling performance drops.
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Figure 10. Variation of A in the course of convergence in SSG and AWSG in the presence of filtered

observation noise.

poorer and another round of spatial modeling will be required.

Convergence of A:

The variation of A in the course of the convergence for AWSG and SSG is illustrated in
Figure 10. According to this figure, in SSG A sharply rises first and then aggressively
drops until convergence. This figure also shows that A in AWSG gradually drops in the
course of the convergence of the algorithm. This figure shows that both SSG and AWSG
converge to around the same final values. According to this figure, and based on (1), it
is expected that the tracking cost of AWSG and SSG be around the same value. Also,
due to the sharp rise in A in SSG, the relative cost of AWSG over SSG drops suddenly.
This fact is illustrated in Figure 6. The results of Figure 10 also show that A is slightly
sensitive to observation noise’s strength.

Signal strength range span ratio (SRSR):

Convergence of SRSRy , Vk during the spatial modeling process is the other factor,
which is used in development of AWSG and SSG in (10) and (12), respectively. SRSR,
which is defined in (6) converges to around 1.0, in the course of spatial modeling. This
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Figure 11. Convergence of SRSR during the iteration steps of the algorithm. The effect of
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convergence is illustrated in Figure 11. According to this figure, the presence of noise
results in some final misadjustment and noisy variation around 1.0. By increase of the
noise strength in sensor observations the misadjustment is expected to rise.

6. Conclusion

Two machine learning (ML) approaches based on adaptive weight stochastic gradi-
ent (AWSG) and scaled stochastic gradient (SSG) are proposed and discussed for spatial
signal modeling and tracking. The spatial signal, which is monitored using sensor
observations, is modeled with a number of its contour lines at equally spaced levels.
The fusion center (FC) calls for a subset of sensor observations that fall within a given A
margin of each of these contour levels. The ML algorithm iteratively varies the number
of contour levels and A until convergence. Convergence of A and the signal strength’s
range are two measures that can be used for convergence of the algorithm. Performance
evaluations based on computer simulations show that the proposed algorithms have
relatively the same cost and modeling/tracking performance. The tracking cost of the
algorithm is around 10% or less, when the filtered observation noise’s standard devia-
tion is around 0.5 or less. With the increase of observation noise strength, the cost also
increases. The number of reporting sensors to the FC remains almost the same, when
the sensor population increases. The tracking MAE of AWSG and SSG are around the
spatial modeling MAE, in the same noise strength.
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