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Abstract: Refraction of an oblique shock wave on a tangential discontinuity dividing two gas flows 
with different properties is considered. It is shown that its partial reflection occurs excepting of 
geometrical diffraction of an oblique shock. Another oblique shock, expansion wave or weak dis-
continuity that coincides with Mach line, can act as a reflected disturbance. This study focuses on 
relationships which define the type of reflected discontinuity and its parameters. Domains of ex-
istence of various shock-wave structures with reflected disturbances of two types and boundaries 
between them are defined. The domains of parameters with one or two solutions exist for the 
characteristic refraction. Conditions of the regular refraction and the Mach refraction are formu-
lated, and boundaries between those two refraction types are defined for various types of gases. 
Refraction phenomena in various engineering problems (hydrocarbon gaseous fuel and its com-
bustion products, diatomic gas, fuel mixture of oxygen and hydrogen etc.) are discussed. 
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1. Introduction 
The processes of transformation of a gas-dynamic system with parameters f1 into a 

system with parameters f2 are called shock-wave processes, where f1 and f2 are some 
gas-dynamic variables before and behind the gas dynamic discontinuity. 

Gas-dynamic waves and discontinuities can be divided into two large groups. The 
first group includes normal waves and discontinuities through which the gas flows, and 
they are referred to as shock wave processes. The second group includes contact and 
tangential discontinuities, through the surfaces of which the gas does not flow, and they 
cannot be considered as shock wave process. A tangential discontinuity is also called a 
sliding line because it can separate flows of various gases with different densities, veloc-
ities and temperatures. The static pressure on opposite sides of the tangential disconti-
nuity is always the same. The tangential discontinuity is usually denoted by the symbol 
τ. It appears in shock-wave structures formed as a result of the interaction of shock waves 
with each other and with solid walls. The reason for the formation of tangential discon-
tinuity lies in the fact that at different shock waves, included in the shock-wave struc-
tures, the value of the total pressure loss and, accordingly, the flow rate is different. 

The theory of gas-dynamic discontinuities consists of two large sections, the theory 
of interference (intersections, interactions) of discontinuities and waves with each other, 
and the theory of their refraction (refraction) on contact and tangential discontinuities [1]. 
Contact and tangential discontinuities cannot intersect with each other. 

The problem of refraction of an oblique shock wave on a tangential discontinuity is 
consistently presented in [2]. There are cases of regular refraction (RRefr) [3] and Mach 
(irregular) refraction (MRefr) [4]. In the first case, the flow is everywhere supersonic. In 
the second case, there are regions where the Mach number is less than unity (M<1). 

The theory of regular refraction is developed in [5]. A number of studies are devoted 
to the experimental research of both regular and irregular refraction [6–8]. An attempt to 
systematize the flow patterns arising during refraction, both regular and Mach, is made 
in [4, 9]. A similar problem is solved in a non-stationary formulation in [10]. 
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The interaction of an oblique shock wave with the interface between the media leads 
to the development of complex non-stationary shock-wave configurations [6–8, 11]. The 
passage of a shock wave through a medium containing gas bubbles or liquid droplets 
leads to curvature of the wave front, shock waves interaction, and the development of 
multiple vortices. 

A theoretical analysis of the emerging shock-wave configurations using shock poles 
is given in [12]. The boundaries of the regions of existence of refraction modes with a 
rarefaction wave and the region of existence of refraction with a reflected shock wave 
with a change in the angle of inclination of the contact discontinuity are determined. The 
generation of vorticity and the evolution of vortex structures are discussed, as well as the 
grid convergence of the solution [13]. An exact solution to the problem of refraction of a 
plane shock wave at a contact discontinuity (regular case) is given, and the suppression 
of the Richtmyer–Meshkov instability upon application of a magnetic field is discussed in 
[14, 15]. Exact solutions of the problem are given in both one-dimensional and 
two-dimensional cases of regular refraction of a shock wave at a contact discontinuity. 

Various modes of shock wave refraction using experimental and numerical methods 
are studied in [3]. Numerical calculations are carried out on the basis of a TVD scheme of 
the 2nd order of accuracy and an approximate method for solving the Riemann problem. 
The calculated data are in good agreement with the results of measurements and the re-
sults of theoretical analysis, with the exception of the high Mach numbers of the incident 
shock wave. 

Two-dimensional calculations based on the Godunov-type scheme of the second 
order of accuracy are carried out in [16]. The density discontinuity is oriented at an angle 
of 75 degrees to the horizontal, and the Mach number of the shock wave is 1.2. The 
MUSCL scheme is used in [17] to calculate the flow structure at different angles of incli-
nation of the discontinuity. Various difference schemes are compared in [18]. 

A numerical study of the Richtmyer–Meshkov instability in the interaction of a 
strong shock wave with a discontinuity in the density of a rectilinear and sinusoidal 
shape is carried out in [19]. The refraction of a shock wave upon its interaction with a 
near-wall layer of a heated gas is investigated in [20]. A wide range of issues related to 
the interaction of shock waves with contact discontinuities and the formation of the 
Richtmyer–Meshkov instability are discussed in [21]. The refraction of a spherical shock 
wave at the air – water interface is considered in [22]. The results of calculations using the 
through-counting scheme and using the level function method are compared, which 
makes it possible to single out the contact gap and trace its evolution over time. The ap-
plication of discontinuity detection schemes as applied to the refraction of shock waves at 
the interfaces between media is discussed in [23, 24]. 

Although, many theoretical, experimental and computational studies have been 
published for past years [25–31], research of different types of refraction is far from 
complete. In this study, domains of existence of various shock-wave structures with re-
flected disturbances of two types and boundaries between them are defined. Conditions 
of the regular refraction and the Mach refraction are formulated, and boundaries be-
tween those two refraction types are defined for various types of gases. Refraction phe-
nomena in various engineering problems (hydrocarbon gaseous fuel and its combustion 
products, diatomic gas, fuel mixture of oxygen and hydrogen etc.) are discussed. 

2. Regular refraction 
The scheme of regular refraction is shown in Figure 1, where σ1 is the incident shock 

wave, σ2 is the refracted shock wave, ω3 is the reflected rarefaction wave, σ3 is the re-
flected shock wave, ν3 is the reflected weak discontinuity, τ is the tangential discontinu-
ity, ← is the left discontinuity, → is the right discontinuity, Т is the refraction point. The 
subscript + denotes the flow quantities in original flow above τ, and subscript – denotes 
the flow quantities in the original flow under τ. 
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(a) (b) (c) 

Figure 1. Regular refraction of oblique shock wave σ1 on tangential discontinuity τ: (a) refraction 
with reflected rarefaction wave, (b) refraction with reflected shock wave, (c) characteristic refrac-
tion, where the reflected discontinuity is the discontinuous characteristic. 

Refraction of the shock wave σ1 on the tangential discontinuity leads to increasing 
(Figure 1a) or decreasing (Figure 1b) of its inclination angle. In the particular case, when 
the reflected discontinuity is a discontinuous characteristic, only the curvature of the in-
cident shock wave changes. This refraction is called characteristic. 

The equation of regular refraction is written as 

3 2

1 3 2

2

,

,

.

   
       
  

 

  


 (1)

The first equation corresponds to refraction with reflected rarefaction wave (Figure 1a), 
the second equation corresponds to refraction with reflected shock wave (Figure 1b), and 
the third equation corresponds to characteristic refraction (Figure 1c). Three types of 
regular refraction on shock polar are presented in Figure 2. 

 
(a) (b) (c) 

Figure 2. Three types of regular refraction on shock polar: (a) refraction with reflected rarefaction 
wave, (b) refraction with reflected shock wave, (c) characteristic refraction. 

To solve equation (1), the conditions of dynamic compatibility are used, written in 
the form of equality of pressures p and inclination angles of the velocity vector at the 
tangential discontinuity behind the point T. These conditions are written as 

3 2

3 2.

,

p p

  
 

 (2)
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Subscript 2 denotes flow quantities behind the refracted shock wave, and subscript 3 
denotes flow quantities behind the reflected discontinuity (Figure 1). 

A partial case of regular refraction is characteristic refraction (Figure 1c), when the 
polar - and polar + intersect each other (Figure 2c). Since the reflected discontinuity is a 
discontinuous characteristic (weak discontinuity of the second order), the slope of the 
shock σ1 does not change. Then, the conditions of dynamic compatibility on τ are written 
in the form of equality of the angles of flow turn 

βσ(γ−,M−,Jc)﹦βσ(γ+,M+,J). (3)

The flow turn angle at the shock is expressed by the formula 

  
  

1 1
arctan

1 1
m

m

JJ J

J J J

     
         

 (4)

Here, γ is the ratio of specific heat capacities at constant pressure and constant volume, 
and ε﹦(γ–1)/(γ+1). The maximum intensity of the shock wave is Jm﹦(1+ε)M2–ε. 

For the case when a reflected discontinuity is a shock wave, an equation similar to 
equation (3) is written in the form 

     , 1 1, , 22 1/ˆ, M , M , MJ J JJ             ﹦  (5)

Subscripts 1 and 2 denote relevant shock waves (Figure 1b) and flow quantities behind 
them, and subscript ^ denotes the flow quantities behind shock wave. 

The Mach number behind the incident shock in equation (5) is found from the rela-
tion 

      
2

1
1 1 1

1

M 1 1
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E J
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EJ
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       (6)

For the cases shown in Figures 1a and 2a, when the reflected discontinuity is a rar-
efaction wave, the conditions of dynamic compatibility take the form 
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 

     

 (7)

In equation (7) for Mω, J2/J1 is substituted instead J, and 1M̂  is substituted instead M. 
Then, Prandtl-Mayer function ω(M) is found for Mω and 1M̂ . 

3. Characteristic refraction 
In different technical problems, where there is refraction on the mixing layer or the 

interface between two media, different types of reflected discontinuities are preferable. 
So, with a reflected shock wave, the initial shock is enhanced, which is good for super-
sonic air intakes and wave compressors, but not good in cases where a shock wave at-
tenuation is required [32, 33]. If it is required to protect a certain device from the impact 
of a shock wave, then refraction with a reflected rarefaction wave is preferable. Charac-
teristic refraction separates these two cases. 

The characteristic refraction corresponds to the intersection of shock polar J(M+) and 
shock polar J(M-), which is realized at a strictly defined intensity of the initial oblique 
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jump Jc﹦Jc(M+,M–,γ+,γ–) at which equation (3) is satisfied. The condition for the equality 
of the intensities of the shocks Jc(M+,γ+)﹦Jc(M–,γ–) reduces to the cubic equation 

3
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 z  (8)
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If the same gas flows on both sides of τ, then γ+﹦γ–, ε+﹦ε–, Γ+﹦Γ–, and equation (8) is 
simplified 
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Substituting (9) into (8) and excluding the solution z﹦–(1– ε) that has no physical 
meaning, the unique solution is 
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+ +  (10)

The equation (10) determines the intensity of the inlet shock, at which the characteristic 
refraction is realized, provided that the same gases flow on both sides of the tangential 
discontinuity. 

The case when the same gases flow on both sides of τ, for example, air with γ﹦1.4 is 
considered. An important conclusion follows directly from equation (10) that character-
istic refraction is possible if 

2

M
M

M 1


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 (11)
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Formula (11) is interpreted in such a way that the shock polars do not intersect if M<21/2, 
since one of them lies completely inside the other (Figure 3). 

 

Figure 3. Domain of existence of characteristic refraction in air (the shaded area). 

Equation (11) follows from the condition J>1, but on the other hand, the condition 
J<Jm must also be satisfied. Then both shocks, the original shock σ1 and the refracted 
shock σ2, must be straight lines. Therefore, the second condition is that curves corre-
sponding to characteristic refraction have an envelope 

  22 1
,M M

1 1mJ  

  
  

   
 (12)

It corresponds to M–﹦∞. Solutions of equation (10) with limitations (11) and (12) are 
shown in Figure 4. 

 

Figure 4. The values of the intensity Jc of the incident shock for characteristic refraction. The dashed 
line shows the envelope corresponding to the case when the refracted shock has the maximum in-
tensity J2﹦Jm. 

In the general case, when γ+≠ γ–, it is necessary to solve the cubic equation (8). Unlike 
the previous case, the solution can have from one to three roots. Since z≥0, it follows from 
(8) that when one of the roots is equal to zero (z=0), the polars J(γ–,M–) and J(γ+,M+) have 
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the same derivatives at the origin (Г–﹦Г+), since A0﹦0. From the equality Г–﹦Г+ it follows 
that between the numbers М– and М+ there must be a relation 

Mା
ଶ =

Гష
మ

ଶఊశ
మ ቈ1 ± ට1 −

ଶఊష
మ

Гష
మ ቉. (13)

The discriminant of equation (13) exists if γ+≥ γ–. Therefore 

Mି ≥ 2
ఊశ
మ

ఊష
మ ൬1 + ට1 −

ఊష
మ

ఊశ
మ൰, (14)

or 

Mି ≤ 2
ఊశ
మ

ఊష
మ ൬1 − ට1 −

ఊష
మ

ఊశ
మ൰. 

(15)

Equations (14) and (15) determine the region of existence of characteristic refraction. The 
other two roots are obtained by solving the quadratic equation 

𝐴ଷ
଴𝑧 + 𝐴ଶ

଴𝑧 + 𝐴ଵ
଴ = 0. (16)

In equation (16), the coefficients A are calculated by formulas (8) taking into account the 
relationship (13) between the Mach numbers M– and M+. These equations allow to con-
struct domains of existence (Figure 5). 

 

Figure 5. The domains of existence of characteristic refraction at the interface between the hot hy-
drocarbon fuel mixture (γ﹦1.1) and the products of its combustion (γ﹦1.25), where domains 1, 2 
and 3 are the first, second and third roots of equation (8). 

Figure 6 shows the dependence of the intensity of the incident shock wave corre-
sponding to the characteristic refraction. It is seen that there are solutions with one and 
two roots of equation (8). The three roots are not physically realized. 
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Figure 6. Dependence of the intensity Jc of the incident shock corresponding to the characteristic 
refraction on the Mach numbers M– and M+ in flows separated by a tangential discontinuity. The 
dotted line shows the dependencies corresponding to the case when the refracted shock has the 
maximum intensity J2﹦Jm. 

4. Domains of existence 
If the intensity of the incident shock is 𝐽ଵ ≠ 𝐽௖, then it passes the tangential discontinuity with 

partial reflection. Depending on the intensity of the tangential discontinuity Jτ, the reflected dis-
continuity r3 can be either a compression shock σ3 or a rarefaction wave ω3. If r3 is a shock wave, 
then at certain intensities J1 of the incident shock, the solution of equation (5) may be not existent, 
since polar (3) emitted from point (1) corresponding to J1 does not intersect with polar (1) (Figure 
7). The shock-wave structure corresponding to MRef is shown in Figure 8. 

 
(a) (b) 

Figure 7. Regular refraction when the flow behind the reflected flow is supersonic (a) and subsonic (b). 
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Figure 8. Shock wave configuration for Mach refraction. 

For irregular refraction, the incident shock σ1 branches with the formation of a reflected shock 
σ3 and a main shock σ2 (the Mach stem). The main shock experiences characteristic refraction on 
the tangential discontinuity τ. The Mach stem is enclosed between two points T and T1, from which 
tangential discontinuities originate, τ and τ1. Figure 9 shows the regions of existence of a 
shock-wave structure with a different type of reflected discontinuity r3 (Figure 1), which are 
formed during refraction of the shock σ1 at the tangential discontinuity τ. 

 

Figure 9. Domains of existence of various types of hydrocarbons formed during refraction of a 
shock with intensity J propagating from a flow with a Mach number M-=2 into a flow with a Mach 
number M+.. The grey area corresponds to irregular refraction with a supersonic flow M1>1 behind 
a shock σ1, and white area corresponds to irregular refraction with a subsonic flow behind a shock 
σ1. 

It can be seen that at M–=2 and M+<2, there are quite extensive regions with both the reflected 
shock wave σ3 and the reflected rarefaction wave ω3. As M– increases, the domains of existence of 
the reflected σ3 at M+<M– are significantly reduced (Figures 10 and 11). 
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Figure 10. Domains of existence of various types of hydrocarbons formed during refraction of a 
shock with intensity J, propagating from a flow with a Mach number M–=3 into a flow with a Mach 
number M+. 

 

Figure 11. Domains of existence of various types of hydrocarbons formed during refraction of a 
shock with intensity J, propagating from a flow with a Mach number of M–=5 to a flow with a Mach 
number of M+. 

The boundary of irregular refraction with supersonic flow behind the shock σ1 (gray area in 

Figures 9-11) is bounded from above by the intensity of the incoming shock J﹦Js. It should also be 
noted that the line corresponding to the characteristic refraction at M+<M– gradually shifts to the 
left and goes into the MRef region. This is especially noticeable in Figure 11. The red arrow shows 
a thin line corresponding to the solution in the plane of the shock polar in Figure 12. This line marks 
the characteristic refraction. 
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   (a) (b) 

Figure 12. Ambiguity of the solution on the polar plane: irregular refraction (A), characteristic re-
fraction (B): (a) solutions on the plane of shock polar, (b) shock-wave structure corresponding to the 
Mach refraction MRef. 

In the area enclosed between the solid line separating the gray and blue areas and the thin line, 
the solutions are ambiguous. One solution (point B in Figure 12a) corresponds to characteristic 
refraction, the other solution (point A in Figure 12b) corresponds to MRef with shock-wave 
structure shown in Figure 12b. The flow above τ behind the refracted shock σ4 is subsonic. Between 
these two lines lies a region with a reflected rarefaction wave. Consequently, depending on the 
initial conditions, either RRef with a reflected wave or MRef with a shock-wave structure can be 
realized as shown in Figure 12b. 

Figures A1–A17presented in Appendix A show the domains of existence of MRef and RRef 
refractions with different types of reflected discontinuities, where R  

 
 is the line of character-

istic refraction, R  
 

 is RRef with reflected wave, R  
 

 is with a reflected shock. 

4. Conclusions 
The refraction of an oblique shock wave on a tangential discontinuity is considered. The 

domains of existence of shock-wave structures with reflected discontinuities of two types are 
constructed, the rarefaction wave and the shock wave, and the characteristic refraction separating 
these two cases. It is shown that for characteristic refraction there are parameter regions with one 
and two solutions. Conditions for the existence of regular and Mach refraction are formulated, 
boundaries separating them are constructed for various gases. 
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Appendix A 

 

Figure A1. Domains of existence of reflected discontinuities for refraction from a gas consisting of 
combustion products into a diatomic gas. The Mach number of the flow from which the shock 
comes is M–=2. 

 

Figure A2. Domains of existence of reflected discontinuities for refraction from a gas consisting of 
combustion products into a diatomic gas. The Mach number of the flow from which the shock 
comes is M–=3. 
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Figure A3. Domains of existence of reflected discontinuities for refraction from a gas consisting of 
combustion products into a diatomic gas. The Mach number of the flow from which the shock 
comes is M–=5. 

 
Figure A4. Domains of existence of reflected discontinuities for refraction from a gas consisting of 
combustion products into a monatomic gas. The Mach number of the flow from which the shock 
comes is M–=2. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 June 2021                   doi:10.20944/preprints202106.0546.v1

https://doi.org/10.20944/preprints202106.0546.v1


 14 of 21 
 

 
Figure A5. Domains of existence of reflected discontinuities for refraction from a gas consisting of 
combustion products into a monatomic gas. The Mach number of the flow from which the shock 
comes is M–=3. 

 
Figure A6. Domains of existence of reflected discontinuities for refraction from a gas consisting of 
combustion products into a monatomic gas. The Mach number of the flow from which the shock 
comes is M–=5. 
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Figure A7. Domains of existence of reflected discontinuities for refraction in a flow of diatomic gas. 
The Mach number of the flow from which the shock comes is M–=2. 

 
Figure A8. Domains of existence of reflected discontinuities for refraction in a flow of diatomic gas. 
The Mach number of the flow from which the shock comes is M–=3. 
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Figure A9. Domains of existence of reflected discontinuities for refraction in a flow of diatomic gas. 
The Mach number of the flow from which the shock comes is M–=5. 

 
Figure A10. Domains of existence of reflected discontinuities for refraction from a monatomic gas 
into a gas consisting of combustion products. The Mach number of the flow from which the shock 
comes is M–=2. 
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Figure A11. Domains of existence of reflected discontinuities for refraction from a monatomic gas 
into a gas consisting of combustion products. The Mach number of the flow from which the shock 
comes is M–=3. 

 
Figure A12. Domains of existence of reflected discontinuities for refraction from a monatomic gas 
into a gas consisting of combustion products. The Mach number of the flow from which the shock 
comes is M–=5. 
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Figure A13. Domains of existence of reflected discontinuities for refraction from a diatomic gas into 
a gas consisting of combustion products. The Mach number of the flow from which the shock 
comes is M–=2. 

 
Figure A14. Domains of existence of reflected discontinuities for refraction from a diatomic gas into 
a gas consisting of combustion products. The Mach number of the flow from which the shock 
comes is M–=3. 
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Figure A15. Domains of existence of reflected discontinuities for refraction from a diatomic gas into 
a gas consisting of combustion products. The Mach number of the flow from which the shock 
comes is M–=5. 

 
Figure A16. Domains of existence of reflected discontinuities for refraction from a hydro-
gen/oxygen mixture at Mach number M–=3.27 corresponding to Chapman-Judge detonation. 
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Figure A17. Domains of existence of reflected discontinuities for refraction from a pro-
pane/air/combustion products mixture at Mach number M–=5.46 corresponding to Chapman-Judge 
detonation. 
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