Preprint
Article

Fighting the COVID-19 Infodemic with Neonet: A Text-Based Supervised Machine Learning Algorithm

This version is not peer-reviewed.

Submitted:

17 June 2021

Posted:

18 June 2021

Read the latest preprint version here

A peer-reviewed article of this preprint also exists.

Abstract
The spread of the Coronavirus pandemic has been accompanied by an infodemic. The false information that is embedded in the infodemic affects people’s ability to have access to safety and follow proper procedures to mitigate the risks. Here, we present a novel supervised machine learning text mining algorithm that analyzes the content of a given news article and assign a label to it. The NeoNet algorithm is trained by noun-phrases features which contributes a network model. The algorithm was tested on a real-world dataset and predicted the label of never-seem articles and flags ones that are suspicious or disputed. In five different fold comparisons, NeoNet surpassed prominent contemporary algorithm such as Neural Networks, SVM, and Random Forests. The analysis shows that the NeoNet algorithm predicts a label of an article with a 100% precision using a non-pruned model. This highlights the promise of detecting disputed online contents that may contribute negatively to the COVID-19 pandemic. Indeed, using machine learning combined with powerful text mining and network science provide the necessary tools to counter the spread of misinformation, disinformation, fake news, rumors, and conspiracy theories that is associated with the COVID19 Infodemic.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

785

Views

1297

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated