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Abstract: The object of this paper is the bending analysis of isotropic rectangular Kirchhoff plates subjected to non-
uniform heating (NUH) using the Fourier transform method. The bottom and top surfaces of the plate are assumed to
have different changes in temperature, whereas the change in temperature of the mid-surface is zero. According to
classical plate theory, the governing equation of the plate contains second derivatives of the NUH; these derivatives are
zero by constant value of the NUH, which leads to its absence in the governing equation. This paper presented an
approach by which Fourier sine transform was utilized to describe the NUH, while the double trigonometric series of
Navier and the simple trigonometric series of Lévy were utilized to describe the deflection curve. Thus, the NUH
appeared in the governing equation, which simplified the analysis. Rectangular plates simply supported along all edges
were analyzed, bending moments, twisting moments, and deflections being determined. In addition, rectangular plates
simply supported along two opposite edges were analyzed; the other edges having various support conditions (free,

simply supported, and fixed).

Keywords: Isotropic rectangular plate; Kirchhoff-Love plate theory; non-uniform heating; Fourier sine transform;

Navier solution; Lévy solution

1. Introduction

The Kirchhoff—Love plate theory (KLPT) is a two-dimensional mathematical model that is used to determine the
stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler—Bernoulli
beam theory and was developed in 1888 by Love using assumptions proposed by Kirchhoff [1]. The KLPT is governed
by the Germain—Lagrange plate equation; this equation was first derived by Lagrange in December 1811 in correcting
the work of Germain [2] who provided the basis of the theory. For rectangular plates, Navier [3] in 1820 introduced a
simple method for the analysis when a plate is simply supported along all edges; the applied load and the deflection
were expressed in terms of Fourier components and double trigonometric series, respectively. Another approach was
proposed by Lévy [4] in 1899 for rectangular plates simply supported along two opposite edges; the applied load and the
deflection were expressed in terms of Fourier components and simple trigonometric series, respectively. Various studies

have focused on the bending analysis of plates using the Fourier transform method. Mama et al. [5] solved by the
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method of finite Fourier sine transform the boundary value problem of simply supported rectangular Kirchhoff plates
subjected to applied transverse loads. Kamel [6] described the operational properties of the finite Fourier transform
method, with the purpose of solving boundary value problems of partial differential equations, which has some
applications on potential and steady-state temperature. Mama et al. [7] presented the single finite Fourier sine integral
transform method for the flexural analysis of rectangular Kirchhoff plate with opposite edges simply supported, and the
other edges clamped for the case of triangular load distribution on the plate domain. Sayyad et al. [8] assessed a
trigonometric plate theory for the static bending analysis of plates resting on Winkler elastic foundation; the theory
considered the effects of transverse shear and normal strains. Onyia et al. [9] presented the elastic buckling analysis of
rectangular thin plates using the single finite Fourier sine integral transform method. Ike [10] presented the double
Fourier cosine series method for solving the flexural problem of Kirchhoff plates resting on an elastic foundation of the
Winkler type.

In this paper the bending analysis of isotropic rectangular Kirchhoff plates subjected to a non-uniform heating (NUH)
was conducted. The Fourier sine transform was utilized to describe the NUH, while the double trigonometric series of

Navier and the simple trigonometric series of Lévy were utilized to describe the deflection.

2. Materials and methods

2.1  Governing equations of the plate subjected to non-uniform heatin

The Kirchhoff—Love plate theory (KLPT) [1] is used for thin plates and shear deformations are not considered. The
spatial axis convention (X, Y, Z) is represented in figure 1 below.

Rectangular plate
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Figure 1. Spatial axis convention X, Y, Z

The equations of the present Section are related to the KLPT. Displacements in x-, y-, and z- directions are denoted by

u(x,y,z), v(x,y,z), and w(x,y,z), respectively, and are given by

oW oW
ux,v,z)=—2—, ViX,V¥,Z)=—2—, W(X,Y,Z)=W(X,Y). (1a, b, c)
(%y,2)=—2— (x,y,2) Y (X,y,2) =w(X,y)
The strains are related to the displacements using Equations (1a-c) as follows:
ou o°w oV o°w ou ov o°w
Ep = =—I— £y =" ="1—, Yy =—F—=—21——. (b0
OX OX oy oy oy OX oxoy
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The strains are also related to stresses and NUH as follows: (3a, b, c, d)
o (o) AT oz o AT T AT
Eg ="V w A2l £y =2V o 20 g, Yoy = KT:—aT 7
E E d E E d

d
where E is the elastic modulus, v is the Poisson’s ratio, ot iS the coefficient of thermal expansion, AT = ATps - ATis
is the difference between the temperature changes at bottom surface (ATps at z = d/2) and top surface (AT at z
= -d/2) of the plate, d is the plate thickness, and kT is the thermal curvature strain. The temperature changes are

assumed to vary linearly through the plate thickness. Combining Equations (2a-c) and (3a-c) yields

Ez o*'w  o*w Ez o'w  o*w
Oy =——5X| 5 +Vv—+({1+V)K; |, o0, =——%X| —+v—+(1+V)x; |,
17 | a¢ oy w102 (o ox
E O*W Ez o°w
£, =Gy, ==—x| 22 o |- _EE_, OW
2(1+v) OXOY (1+v) oxdy

The bending moments per unit length Mxx and myy, and the twisting moments per unit length myy, can be expressed

(4a, b, ¢)

using Equations (4a-c) as follows;

d/2 2 2
m, = axxzdz=—Dx(a\;V+vaV2V+(1+v)KT],
412 ox oy
d/.2 2 2
m,, = _ awzdz:—Dx(aV2V+vngzv+(1+v)/q], (5a-d)
-d/2
d/‘Z 2 3
m,, = z'xyZdZ=—D><(1—v)><aW, Dziz,
s OXoy 12(1-v?)

where D is the flexural rigidity of the plate. The governing equation of an isotropic Kirchhoff plate is given by

2 o’m,,  o°m
o a0y T T o
X X

where q(x,y) denotes the applied transverse load per unit area. Substituting Equations (5a-c) into Equation (6) yields the

governing equation of the isotropic plate subjected to a NUH
o'w 9 o'w N o'w 1+ v)k, 01+ v)Ky
oxtoxeoy? oyt ox? dy?

The Kirchhoff shear forces per unit length are introduced to satisfy the boundary and continuity conditions; they

(7)

combine shear forces and twisting moments, and can be expressed for an isotropic plate as follows:

6’ 6° o’ 0’
v =—Dx[_‘g"+(2—v) " J v :—Dx(ﬁ‘g‘%(z—v) z } (82, b

" OX OX0y? Y OX>0y


https://doi.org/10.20944/preprints202106.0479.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 December 2021 d0i:10.20944/preprints202106.0479.v2

ISOTROPIC RECTANGULAR PLATES SUBJECTED TO NON-UNIFORM HEATING

2.2 Rectangular isotropic plate simply supported along all edges
Let the plate be simply supported along all edges. The plate dimensions in x- and y-directions are denoted by a and b,
respectively. The solution of Navier [3] which satisfies the boundary conditions is considered for the deflection curve
w(x,y) as follows:

w(X,y) = ZZW sin "X sin m;y )

The Fourier sine transform of (1+v)«T is given by

. MmzX . Nz 16(1+v)x
L+V)i =D, Ky SIN——5iN Y ok = K oa
pom a b r2mn
m, n being odd numbers.
Substituting Equations (9) and (10a-b) into Equation (7) yields wmn and the deflection function as follows:
Kt
W, = " = (11a)
Mz (A4
- + R
(a) (bj
16a° 1+v Ky . MxX . Nnr
w(x,y) = ( ) ZZ sin sin by' (11b)

MmN m2 + ( na/b) a

Substituting Equations (9), (10a-b), and (11a) into Equations (5a-c) yields the bending moments mxx and myy, and the

twisting moments Mxy, as follows:

2 2
M, (X, Y)Z—DXZZ Wi —(%j —v(%[j + Ko [SIN mm(sin nry (12q)
m n a

a b
2 /b)’
16(1+v) ZZ m?+v(na 2 _1|sin ™ gin 7Y
24 (na/b) a b
16(1+v) vm2+(na/b)’ . MzX . Nnxy
m.. (X, —11sin sin ,
(X Y) = szn m2+(na/b)2 a 0 (12b)
16(1—v?) 1 mzx _ nxy
m, (X,y)=——=D COoS CoS——. 12
5 (6 Y) - methHma " - (12¢)

a
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2.3 Rectangular isotropic plate simply supported along two opposite edges
Let the plate be simply supported along the edges x = 0 and x = a. The solution of Lévy [4] which satisfies the boundary

conditions is considered for the deflection curve w(x,y) as follows:

. MxX (13)
WX, ) = 3 Fp(Y)sin =2
m a
The Fourier sine transform of (1+v)«r is given by
7rx 4(1+v)x
A+v)i; = ZKTm sin—, &, _Adtv)e : (143, b)
a zm

m being an odd number. Substituting Equations (13) and (14a-b) into Equation (7) yields the differential equation

d'F(y) (mz) d’F,(y) mz
dy* Z(aj dy’ +(a)F()KTm(aj (15)

The solution of Equation (15) is as follows:

F (y)=A cha y+B a yxsha y+C. sha y+D. a yxcha,y+m

o. = mz (16a-b)

m
a
where the coefficients Am, Bm, Cm, and Dy, are determined using the boundary and continuity conditions.

The slope in y-direction is determined using Equations (13), (14a), and (16a-b) as follows:

ow(X, Y) _ Z dF..(y) sin 77X (17)
oy - dy a
- A sha, y+B. (Shamy+amyxchamy)+ sinw
- Zm:am C.cha, y+D, (cha,y+a,yxsha,y) a

Substituting Equations (13) and (14a) into Equations (5a-c) yields the equations of bending moments and twisting

moments as follows:

[ (mz mzX
mXX:—Dme: —( " j F.(y)+v dy(y)+KTm Sln—a (184)
d’F_(y) mz _mzX
My =-DxD =32 —v| o | Faly)+ iy fsin =" (180)
=—D><(1 V)X Zmﬂ dF, (y) _ (18c)

y a
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Substituting Equations (16a-b) into Equations (18a-c) yields the bending moments and twisting moments as follows:

A.che, y+B, (Z—Cha y+a,yxsha, yj+
m, =-Dx) o} (v-1) sin /%

C,sha, y+D, (—sha y+a,yxcha,y

(19a)

(19b)
j+

2
A.che, y+B, (1— cha, y+a, yxsha,y
Vv . MrzX
m, =-Dx) a?(1-v) sin——
2 Ko a
C,sha,y+D, | —sha,y+a,yxcha,y |+—
i 1-v a,
sha_y+B_(sha_ y+a_ yxcha y)+
meZ—DX(l—V)XZQ’; Aﬂ my m( my my my) COS@. (19¢)
= | Cucha,y+D, (cha,y+a,yxshe,y) a
Substituting Equation (13) into Equation (8b) yields the equation of the Kirchhoff shear forces Vy as follows:
3 2
—DxY dF—n@—(z—v)(mﬂj GFuly) |gipy MX (20)
- dy a dy a
Substituting Equations (16a-b) into Equation (20) yields the Kirchhoff shear forces Vy as follows:
- . (21)
A sha y+B (—sha y+a yxcha, y]
3 -1 M X
v, :—DxZam(v—l) sin—
m V+ a
C.cha, y+D (—1cha y+a. yxsha, yj

The closed-form expressions of deflection (Equation (16a-b)), slope (Equation (17)), bending moment myy ((Equation
(19b)), and Kirchhoff shear forces Vy (Equation (21)), enable satisfying the boundary conditions along the edgesy = 0
and y = b, leading to the determination of the coefficients Am, Bm, Cm, and Dm. The bending moments, twisting

moments, and displacements are calculated using Equations (19a-b), Equation (19c), and Equations (13), (14b), and
(16a-b), respectively.
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3  Results and discussion

3.1 Analysis of rectangular plates simply supported along all edges
The bending analysis of rectangular plates simply supported along all edges and subjected to a non-uniform heating was
conducted. Detailed analysis and results are presented in Appendix A and in the Supplementary Material “Rectangular
plates simply supported along all edges.” The bending moments (mxx, myy) and displacements w at the plate center are
determined, whereas the twisting moments mxy are determined at plate angles. The results related to the solution of
Navier [3] are listed in Table 1 for various aspect ratios a/b and Poisson’s ratios, whereby 2500 terms are considered
(m, n odd numbers from 1 to 99). The results related to the solution of Lévy [4] are listed in Table 2 for various aspect

ratios a/b and Poisson’s ratios, whereby 51 terms are considered (m odd numbers from 1 to 101).

Table 1. Bending moments Mxx and Myy, twisting moments My, and displacements, using the solution of Navier.

alb = 1,00 1,50 2,00 3,00 5,00 10,00 20,00
mxx / DkT= | -0.49365 | -0.75517 | -0.88390 | -0.97080 | -0.99268 | -0.99367 | -0.99367

Poisson's | Myy / DkT= -0.49365 | -0.23214 | -0.10341 | -0.01651 0.00538 0.00636 0.00636
ratiov=10.0 mxy / DxT= | 3.26372 3.20110 3.09701 2.90740 2.63519 2.23414 1.81309
W/ bT = 0.0737 0.1008 0.1139 0.1227 0.1249 0.1250 0.1250
mxx / DxT= | -0.47391 | -0.72497 | -0.84854 | -0.93197 | -0.95298 | -0.95393 | -0.95392

Poisson's | MYy / DxT= -0.47391 | -0.22285 | -0.09928 | -0.01585 0.00516 0.00611 0.00611
ratiov=0.20 | myy /peT= | 3.13317 3.07306 2.97313 2.79111 2.52978 2.14477 1.74057
W/ bT = 0.0884 0.1209 0.1366 0.1472 0.1499 0.1500 0.1500

Table 2. Bending moments mxx and Myy, twisting moments myy, and displacements, using the solution of Lévy.

alb = 1,00 1,50 2,00 3,00 5,00 10,00 20,00

mxx/ DeT= | -05000 | -0.7615 | -0.8902 | -0.9771 | -0.9990 | -1.0000 | -1.0000

boissoms | myy/DxT= | 05062 | 02447 [ -01160 | -0.0291 | -0.0072 | -0.0062 | -0.0062
ratiov=00 | o po= | 36475 | 34723 | 33071 | 30535 | 27285 | 22872 | 1.8460
wibxT= | 00737 | 01008 | 01139 | 01227 | 01249 | 01250 | 0.1250

It was noted that the double trigonometric series converges slowly. For high values of a/b and far from the edges x =0
and x = a, the plate has a beam-like behavior in y-direction and 6w/0x2 = 0. According to classical beam theory (CBT),
the deflection at the center of the beam is «Tb%/8. Given Poisson’s ratio = zero, the results for bending moment

mxx (Equation (5a)) and deflection at the plate center are in good agreement with CBT.
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3.2 Analysis of rectangular plates simply supported alongx =0and x =a
The solution of Lévy was applied at the deflection curve. Detailed analysis and results are presented in the
Supplementary Material “Rectangular plates simply supported along two opposite edges and having various support
conditions along other edges.” The bending moments are determined at the plate center (mxx, myy) and at mid-spans of
the free edge (mxx,fr) /fixed edge (myy,fe), and the displacements are determined at the plate center and at mid-span of

the free edge. The results are listed in Table 3 for various support conditions, aspect ratios a/b, and Poisson’s ratios.

Table 3. Bending moments mxx, myy, and mxx,fr, and displacements.

| ab= | 05 | o075 | 100 | 200 | 500 | 12000 | 2000
Edges x = 0 and x = a simply supported (SS), edge y = b/2 fixed, and edge y = -b/2 SS

mxx / DiT= -0.2807 | -0.6079 | -0.8248 | -1.0203 | -1.0002 | -1.0000 | -1.0015

Poisson's myy / DkT= -0.8414 | -0.7039 | -0.6553 | -0.7169 | -0.7627 | -0.7627 | -0.7617
ratiov=0.0 | v fe/peT= | -20162 | -1.9578 | -1.8618 | -15965 | -1.5254 | -1.5255 | -1.5254
W/ b2cT = 0.0241 0.0353 0.0392 0.0348 0.0313 0.0313 0.0314

mxx / DiT= -0.2957 | -0.6554 | -0.9040 | -1.1534 | -1.1402 | -1.1400 | -1.1415

Poisson's myy / DxT= -0.8340 | -0.7476 | -0.7413 | -0.8621 | -0.9123 | -0.9122 | -0.9114
ratiov=020 | v fe/peT= | 24194 | -2.3494 | -22342 | -19158 | -1.8304 | -1.8305 | -1.8305
W/ b2T = 0.0290 0.0424 0.0471 0.0417 0.0375 0.0376 0.0377

Edges x = 0 and x = a simply supported, edge y = b/2 fixed, and edge y = -b/2 free
mxx / DicT= -0.1914 | -0.4556 | -0.6975 | -1.1099 | -1.0367 | -1.0017 | -1.0010
myy / DkT= -0.8962 | -0.7867 | -0.7261 | -0.6175 | -0.1616 | -0.0204 | -0.0121

Poisson's | <0/ DxT= | -20885 | -2.0662 | -20327 | -13459 | -0.2174 | -0.0350 | -0.0255

ratiov =0.0
mxx,fr / DxT= -0.3640 -0.4999 -0.7190 -1.3053 -1.1228 -1.0102 -1.0043
w/ b2cT = 0.0202 0.0376 0.0446 -0.0709 -0.4176 -0.4958 -0.4999
mxx / DkT= -0.2190 -0.5218 -0.7968 -1.2438 -1.0275 -0.9616 -0.9611
myy / DxT= -0.8736 -0.8087 -0.7958 -0.7173 -0.1420 -0.0154 -0.0116

POISSON'S |\ v fe/DxT= | -24409 | -2.4545 | -2.3951 | -15161 | -0.1764 | -0.0336 | -0.0306

ratio v=0.20
mxxfr/ DxT= | -0.2732 | -0.4310 | -0.6881 | -1.3778 | -1.0956 | -0.9664 | -0.9631
W/ b2T = 0.0226 0.0416 0.0467 -0.1185 | -0.5344 | -0.5984 | -0.5998
Edges x =0, x = a, and y = b/2 simply supported, and edge y = -b/2 free
mxx/ DxT= | -0.0163 | -0.1085 | -0.2444 | -0.7160 | -0.9929 | -1.0000 | -1.0000
Poisson's myy / DxT= -0.9599 | -0.8051 | -0.6175 | -0.1432 | -0.0075 | -0.0127 | -0.0126

ratiov=00 | e fr/DeT= | -0.3408 | -0.3644 | -0.4168 | -0.7132 | -0.9906 | -1.0042 | -1.0042
wibxT= | 00208 | 00453 | 00753 | 01793 | 02477 | 02500 | 0.2501
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ox/ DxT= | -0.0250 | -0.1161 | -0.2412 | -0.6692 | -0.9480 | -0.9600 | -0.9601
Poissons myy/DxT= | -09079 | -07490 | -0.5678 | -01332 | -0.0086 | -0.0122 | -0.0120
ratio v=020| o per= | -0.2465 | -02717 | -0.3270 | -0.6381 | -0.9442 | -0.9630 | -0.9631
W/ b2 = 00233 | 00510 | 0.0849 | 02062 | 0.2955 | 0.3000 | 0.3002

For high values of a/b and far from the edges x = 0 and x = a, the plate has a beam-like behavior in y-direction and
0*w/ox2 = 0. Let us consider the plate having fixed—pinned edges in y-direction (y = + b/2); according to CBT , the
bending moments myy at the fixed end and at mid-span of the corresponding beam are -1.5xDxT and -0.75xDxT,
respectively. Given Poisson’s ratio = zero, the results for bending moment myy are in good agreement with CBT.
For a plate having fixed—free edges in y-direction (y = + b/2), the deflection at the free end of the corresponding beam
according to CBT is - kth?/2. Given Poisson’s ratio = zero, the results for bending moment mxx (Equation (5a))

and deflection at free end are in good agreement with CBT.

3.3 Analysis of rectangular plates simply supported at x = 0 and x = a, and having identical
support conditions along y = +b/2
The solution of Lévy was applied at the deflection curve. Detailed analysis and results are presented in Appendix B,
Appendix C, and in the Supplementary Material “Rectangular plates simply supported along two opposite edges and
having identical support conditions along other edges.” The edges x = 0 and x = a are simply supported, the other edges
are both fixed or both free. The bending moments are determined at the plate center (mxx, myy) and at mid-spans of the
free edge (mxx,fr) /fixed edge (myy,fe), and the displacements are determined at the plate center and at mid-span of the

free edge. The results are listed in Table 4 for various support conditions, aspect ratios a/b, and Poisson’s ratios.

Table 4. Bending moments mxx, myy, and mxx,fe, and displacements.

| ab= | 05 | o075 | 100 | 200 | 500 | 12000 | 2000
Edges x = 0 and x = a simply supported, and edges y = £b/2 fixed

mxx/ DxT= | 04450 | -0.8544 [ -1.0403 | -1.0467 | -0.9999 [ -1.0000 | -1.0000

boisson's | Myy/DkT= | 07631 | -06843 | 07363 | -09599 | -0.9937 | -0.9936 | -0.9937
ratio v=00 | v fo/per= | 19289 | -17002 | -1.4440 | -10175 | -0.9872 | -0.9873 | -0.9873
W/ 2T = 0.0200 0.0210 0.0158 0.0017 0.0000 0.0000 0.0000

mxx/ DxT= | 04787 | -0.9510 | -1.1866 | -1.2479 | -1.1999 | -1.2000 | -1.2000

boissoms | myy/DxT= | 07841 | -0.7877 [ -0.8948 | -11646 | -11039 | -1.1939 | -1.1939
ratiov=020 | muvte/peT= | 23147 | -20403 | -1.7328 | -12210 | -11847 | -1.1847 | -1.1847
W/ b2eT = 0.0240 0.0253 0.0190 0.0020 0.0000 0.0000 0.0000
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Edges x = 0 and x = a simply supported, and edges y = £b/2 free

mxx / DicT= 0.0793 0.1219 0.1236 0.0517 0.0017 0.0000 0.0000

Poisson's myy / DxT= -0.9991 | -0.9015 | -0.7501 | -0.2646 | -0.0026 0.0063 0.0064
ratiov=0.0 | o fr/peT= | -0.3245 | -0.2937 | -0.2467 | -0.0891 | -0.0009 0.0021 0.0021
W/ 22T = 0.1330 0.1376 0.1383 0.1329 0.1267 0.1254 0.1251

mxx / DxT= 0.0570 0.0868 0.0866 0.0334 0.0008 0.0000 0.0000

Poisson's myy / DkT= -0.9313 | -0.8121 | -0.6539 | -0.2051 0.0009 0.0061 0.0061
ratiov=0.20| oy peT= | -0.2331 | -0.2084 | -0.1717 | -0.0562 0.0001 0.0015 0.0015
W/ 2T = 0.1556 0.1564 0.1534 0.1391 0.1278 0.1257 0.1252

For the fixed—fixed plate in y-direction (y = + b/2), high values of a/b and far from the edges x = 0 and x = a, the plate
has a beam-like behavior in y-direction and 6?w/ox2 = 0. The deflection curve of the corresponding beam according to
CBT is zero throughout the beam; the results for bending moments mxx and myy (Equation (5a-b)) and
deflection are in good agreement with CBT. For the free—free plate in y-direction (y = + b/2), high values of a/b and far
from the edges x = 0 and x = a, the plate has a beam-like behavior in x-direction and the deflection at the center of the

corresponding beam according to CBT is k1a%/8; the deflection results are in good agreement with CBT.

4 Conclusion
The bending analysis of isotropic rectangular Kirchhoff plates subjected to a non-uniform heating (NUH) was
conducted in this paper. The temperature changes were assumed to vary linearly through the plate thickness. The NUH
was transformed using Fourier series; simple and double trigonometric series were considered. The deflection curve was
formulated using the double trigonometric series of Navier and the simple trigonometric series of Lévy. Rectangular
plates simply supported along all edges were analyzed, as well as those simply supported along two opposite edges.
Bending moments, twisting moments, and deflections were determined. Numerical results were presented, and for high

aspect ratios those results were in good agreement with those of the classical beam theory.

The following aspect was not addressed in this study but could be analyzed in the future:

v Rectangular anisotropic plate

Supplementary Materials: The following files were uploaded during submission:

. “Rectangular plates simply supported along all edges”

. “Rectangular plates simply supported along two opposite edges and having various support conditions along other
edges”

. “Rectangular plates simply supported along two opposite edges and having identical support conditions along

other edges.”
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Appendix A: Rectangular plates simply supported along all edges

The double trigonometric series of Navier was considered. The bending moments at the plate center, the twisting
moments at the angles, and the displacement at the plate center, were calculated using Equations (12a-b), Equation
(12c), and Equation (11b), respectively.

| m2 /by
mXX(x:E, :9):—16(1“/) Dic; x> L |m2+v(na 2 1 [sin M gjn N2
2 2 72 = 5 mn| m2+(na/b) 2 2
a b 16(1+v) vm2+(na/b) mz . nz
m (X==,y==)= —1{sin—sin—
WA 2 ZZ n| m2+(na/b)’ 2 2
16(1—v?)
o =t——=Dx; x _
’ 7[2 ! ;Zn: m29+n2§ (Al-4)
a
a b, 16a° (1+V)K‘ . mzx . nr
W(X=—,y=— sin ——sin
=2 =9)" T e+ na/b) 2 2

The simple trigonometric series of Lévy was also considered. For simplification purpose the origin of the y-axis was
shifted to the middle of the plate, so that the edges were at y = + b/2. The satisfaction of the boundary conditions yields:

Aﬂ :_L Bm :Cm = Dm =0 . (A5-6)
a’cha b
m m o

The bending moments at the plate center, the twisting moments at the angles, and the displacement at the plate center,
were calculated using Equations (19a-b), (A5-6), Equations (19c¢), (A5-6), and Equations (13), (14b), (16a-b), and (A5-
6), respectively.

4(1-v?) 1 1 . mx

Dr; x » — sin
— m cha, b/2 2

mXX(x:E,y=O):—
2 (A7-8)
a 4(1-v?) 1 1. mz

m,(x==,y=0)=————D 1-—— | =sin—

w¥=2¥=0) X2 iz S 2

T m
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b 4(1-v? 1
mxy(x:O,y:E): (7; )DKTme:Etanamblz

(A9-10)

a 4a*(1+v)k 1 1 . m
W(X:E’y:()):¥2[ j sin % V4

T ~ che, b/2 2
4 (L+v)xk; a° 1 1 .. mrx
= 1- S n—
T b* <= cha, b/2 2

Appendix B: Rectangular plate simply supported along x = 0 and x = a, and fixed along y = + b/2

The simple trigonometric series of Lévy was considered. The origin of the y-axis was shifted to the middle of the plate,

so that the plate edges were at y = + b/2. The satisfaction of the boundary conditions yields:

sha,b/2+a, bl/2xcha, bl?2 K‘Tm

An =7 sha b/ 2xcha bi2+a bi2  a?
(B1-3)
- sha b/?2 i ¢ D=0
sha, b/2xcha b/2+a, b/2 a

The bending moments at plate center/mid-span of the fixed edge, and the displacement at the plate center were calculated
using Equations (19a-b), (B1-3), and Equations (13), (14b), and (16a-b), respectively.

4(1-v —a,b/2xche,b/2+she, bl 2x(1-2/(1-
mxx(x:E,y:O): ( ) KXZ il o X( ( V)) sin 2
2 sha, b/2xcha,b/2+a,b/2 2
4(1-v? —a,b/2xcha, b/2+she, bl 2x(1+2v/(1-
m (ng,y:O)z— ( )DKTXZE Col 1 7 “n X( VI V))+1 sin 1%
Y2 T —~m sha, b/2xcha, b/2+a bl2 2

a b b 2 b b b) «p, | . M7
myy(x:z,y=§)=—Dme:a;(1—v){AnchamE+Bm(l—chamE+am§xsham§)+L]sm7

(B4-7)

2
W(x:%,y:O):A'a (1+v)k; Zis[l sha, b/2+a bl2xcha, b/zj 7

7 ~m sha, b/2xcha b/2+ca bl2 2
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Appendix C: Rectangular plate simply supported along x =0 and x = a, and free along y = + b/2

The simple trigonometric series of Lévy was considered. The origin of the y-axis was shifted to the middle of the plate,

so that the plate edges were at y = + b/2. The satisfaction of the boundary conditions yields:

(1+v)sha,b/2—-(1-v)a,bl/2xcha,bl/2 «

A, " (3+v)sha, bl 2xcha,b/2—(1-v)a /2 a -
B (1-v)she,b/2 KTm c b g
m = (3+v)sha,b/2xcha,b/2-(1-v)a, 0/2 o =D, =

The bending moments at plate center /free edge, and the displacement at the plate center were calculated using Equations
(19a-b), (C1-3), and Equations (13), (14b), (16a-b), and (C1-3), respectively, as follows:

a 2v | . mx
m. (x=—,y=0)=-Dx 2(y -1 +B, —— [sin— C4-7
(=21 -0)--Dx Y (- )An 2 kin® o
a 2 K . Mz
m, (x=—,y=0)=-Dx» a*(1-v +B +—M Isin
0 Anchamg+
a , . mrz
m (x=2y=2)=-D 1 sin —
a(X=2y=9)=DxQen(v-1) Ty N
B,| —cCha, —+a, —xsha,, —
v-1 "2 2 2
a K.\ . mrx
w(x=—=,y=0)= +—M Isin
(x==.,y=0) Z A, o ;
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