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Abstract: The object of this paper is the bending analysis of isotropic rectangular Kirchhoff plates subjected to a 

thermal gradient (TG) using the Fourier transform method. The bottom and top surfaces of the plate are assumed to have 

different changes in temperature, whereas the change in temperature of the mid-surface is zero. According to classical 

plate theory, the governing equation of the plate contains second derivatives of the TG; these derivatives are zero by 

constant value of the TG, which leads to the absence of the TG in the governing equation. This paper presented an 

approach by which Fourier sine transform was utilized to describe the TG, while the double trigonometric series of 

Navier and the simple trigonometric series of Lévy were utilized to describe the deflection. Thus, the TG appeared in 

the governing equation, which simplified the analysis. Rectangular plates simply supported along all edges were 

analyzed, bending moments, twisting moments, and deflections being determined. In addition, rectangular plates simply 

supported along two opposite edges were analyzed, the other edges having various support conditions (free, simply 

supported, and fixed).    

 

Keywords: Isotropic rectangular plate; Kirchhoff–Love plate theory; thermal gradient; Fourier sine transform; Navier 

solution; Lévy solution 

 

1. Introduction 

The Kirchhoff–Love plate theory (KLPT) is a two-dimensional mathematical model that is used to determine the 

stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler−Bernoulli 

beam theory and was developed in 1888 by Love using assumptions proposed by Kirchhoff [1]. The KLPT is governed 

by the Germain−Lagrange plate equation; this equation was first derived by Lagrange in December 1811 in correcting 

the work of Germain [2] who provided the basis of the theory. For rectangular plates, Navier [3] in 1820 introduced a 

simple method for the analysis when a plate is simply supported along all edges; the applied load and the deflection 

were expressed in terms of Fourier components and double trigonometric series, respectively. Another approach was 

proposed by Lévy [4] in 1899 for rectangular plates simply supported along two opposite edges; the applied load and the 

deflection were expressed in terms of Fourier components and simple trigonometric series, respectively. Various studies 

have focused on the bending analysis of plates using the Fourier transform method. Mama et al. [5] solved by the 
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method of finite Fourier sine transform the boundary value problem of simply supported rectangular Kirchhoff plates 

subjected to applied transverse loads. Kamel [6] described the operational properties of the finite Fourier transform 

method, with the purpose of solving boundary value problems of partial differential equations, which has some 

applications on potential and steady-state temperature. Mama et al. [7] presented the single finite Fourier sine integral 

transform method for the flexural analysis of rectangular Kirchhoff plate with opposite edges simply supported, and the 

other edges clamped for the case of triangular load distribution on the plate domain. Sayyad et al. [8] assessed a 

trigonometric plate theory for the static bending analysis of plates resting on Winkler elastic foundation; the theory 

considered the effects of transverse shear and normal strains. Onyia et al. [9] presented the elastic buckling analysis of 

rectangular thin plates using the single finite Fourier sine integral transform method. Ike [10] presented the double 

Fourier cosine series method for solving the flexural problem of Kirchhoff plates resting on an elastic foundation of the 

Winkler type.    

In this paper the bending analysis of isotropic rectangular Kirchhoff plates subjected to a thermal gradient (TG) was 

conducted. The Fourier sine transform was utilized to describe the TG, while the double trigonometric series of Navier 

and the simple trigonometric series of Lévy were utilized to describe the deflection.         

 

  

2. Materials and methods 

2.1 Governing equations of the plate subjected to thermal gradient 

The Kirchhoff–Love plate theory (KLPT) [1] is used for thin plates and shear deformations are not considered. The 

spatial axis convention (X, Y, Z) is represented in figure 1 below. 

 

Figure 1. Spatial axis convention X, Y, Z  

 

The equations of the present Section are related to the KLPT.  Displacements in x-, y-, and z- directions are denoted by 

u(x,y,z), v(x,y,z), and w(x,y,z), respectively, and are given by 

  

              (1a, b, c) 

The strains are related to the displacements using Equations (1a-c) as follows:  
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The strains are also related to stresses and thermal gradient as follows:  

 

 

where E is the elastic modulus,  is the Poisson’s ratio, T is the coefficient of thermal expansion, T = Tbs - Tts   

is the difference between the temperature changes at bottom surface (Tbs at z = d/2) and top surface (Tts at z 

= -d/2) of the plate, d is the plate thickness, and T is the thermal curvature strain. The temperature changes are 

assumed to vary linearly through the plate thickness. Combining Equations (2a-c) and (3a-c) yields 

 

 

 

 

 

 

The bending moments per unit length mxx and myy, and the twisting moments per unit length mxy, can be expressed 

using Equations (4a-c) as follows;  

 

 

 

 

  

  

 

 

 

 

where D is the flexural rigidity of the plate. The governing equation of an isotropic Kirchhoff plate is given by 

 

              (6) 

where q(x,y) denotes the applied transverse load per unit area. Substituting Equations (5a-c) into Equation (6) yields the 

governing equation of the isotropic plate subjected to a thermal gradient 

 

              (7) 

The Kirchhoff shear forces per unit length are introduced to satisfy the boundary and continuity conditions; they 

combine shear forces and twisting moments, and can be expressed for an isotropic plate as follows: 

 

              (8a, b)  
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2.2 Rectangular isotropic plate simply supported along all edges 

Let the plate be simply supported along all edges. The plate dimensions in x- and y-directions are denoted by a and b, 

respectively. The solution of Navier [3] which satisfies the boundary conditions is considered for the deflection curve 

w(x,y) as follows:  

           

            (9)  

The Fourier sine transform of (1+)T is given by   

(10a, b) 

 

m, n being odd numbers. 

Substituting Equations (9) and (10a-b) into Equation (7) yields wmn and the deflection function as follows:   

             (11a) 

 

 

   (11b) 

 

Substituting Equations (9), (10a-b), and (11a) into Equations (5a-c) yields the bending moments mxx and myy, and the 

twisting moments mxy, as follows:  
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2.3 Rectangular isotropic plate simply supported along two opposite edges 

Let the plate be simply supported along the edges x = 0 and x = a. The solution of Lévy [4] which satisfies the boundary 

conditions is considered for the deflection curve w(x,y) as follows:  

              (13) 

The Fourier sine transform of (1+)T is given by   

(14a, b) 

 

m being an odd number. Substituting Equations (13) and (14a-b) into Equation (7) yields the differential equation  

               

              (15) 

 

The solution of Equation (15) is as follows: 

 

 

where the coefficients Am, Bm, Cm, and Dm are determined using the boundary and continuity conditions. 

The slope in y-direction is determined using Equations (13), (14a), and (16a-b) as follows:  

 

 

 

 

 

 

Substituting Equations (13) and (14a) into Equations (5a-c) yields the equations of bending moments and twisting 

moments as follows: 
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Substituting Equations (16a-b) into Equations (18a-c) yields the bending moments and twisting moments as follows: 

 

 

 

 

 

 

 

 

 

 

Substituting Equation (13) into Equation (8b) yields the equation of the Kirchhoff shear forces Vy as follows: 

                 (20) 

 

Substituting Equations (16a-b) into Equation (20) yields the Kirchhoff shear forces Vy as follows:  

 

 

 

The closed-form expressions of deflection (Equation (16a-b)), slope (Equation (17)), bending moment myy ((Equation 

(19b)), and Kirchhoff shear forces Vy (Equation (21)), enable satisfying the boundary conditions along the edges y = 0 

and y = b, leading to the determination of the coefficients Am, Bm, Cm, and Dm. The bending moments, twisting 

moments, and displacements are calculated using Equations (19a-b), Equation (19c), and Equations (13), (14b), and 

(16a-b), respectively. 
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3 Results and discussion 

3.1 Analysis of rectangular plates simply supported along all edges  

The bending analysis of rectangular plates simply supported along all edges and subjected to a thermal gradient was 

conducted. Detailed analysis and results are presented in Appendix A and in the Supplementary Material “Rectangular 

plates simply supported along all edges.” The bending moments (mxx, myy) and displacements w at the plate center are 

determined, whereas the twisting moments mxy are determined at plate angles. The results related to the solution of 

Navier [3] are listed in Table 1 for various aspect ratios a/b and Poisson’s ratios, whereby 2500 terms are considered  

(m, n odd numbers from 1 to 99). The results related to the solution of Lévy [4] are listed in Table 2 for various aspect 

ratios a/b and Poisson’s ratios, whereby 51 terms are considered (m odd numbers from 1 to 101). 

 

Table 1. Bending moments mxx and myy, twisting moments mxy, and displacements, using the solution of Navier.  

 

 a/b = 1,00 1,50 2,00 3,00 5,00 10,00 20,00 

Poisson's 

ratio  = 0.0 

mxx / DT= -0.49365 -0.75517 -0.88390 -0.97080 -0.99268 -0.99367 -0.99367 

myy / DT= -0.49365 -0.23214 -0.10341 -0.01651 0.00538 0.00636 0.00636 

mxy / DT= 3.26372 3.20110 3.09701 2.90740 2.63519 2.23414 1.81309 

w / b²T = 0.0737 0.1008 0.1139 0.1227 0.1249 0.1250 0.1250 

Poisson's 

ratio  = 0.20 

mxx / DT= -0.47391 -0.72497 -0.84854 -0.93197 -0.95298 -0.95393 -0.95392 

myy / DT= -0.47391 -0.22285 -0.09928 -0.01585 0.00516 0.00611 0.00611 

mxy / DT= 3.13317 3.07306 2.97313 2.79111 2.52978 2.14477 1.74057 

w / b²T = 0.0884 0.1209 0.1366 0.1472 0.1499 0.1500 0.1500 

 

Table 2. Bending moments mxx and myy, twisting moments mxy, and displacements, using the solution of Lévy.  

 a/b = 1,00 1,50 2,00 3,00 5,00 10,00 20,00 

Poisson's 

ratio  = 0.0 

mxx / DT= -0.5000 -0.7615 -0.8902 -0.9771 -0.9990 -1.0000 -1.0000 

myy / DT= -0.5062 -0.2447 -0.1160 -0.0291 -0.0072 -0.0062 -0.0062 

mxy / DT= 3.6475 3.4723 3.3071 3.0535 2.7285 2.2872 1.8460 

w / b²T = 0.0737 0.1008 0.1139 0.1227 0.1249 0.1250 0.1250 

 

It was noted that the double trigonometric series converges slowly. For high values of a/b and far from the edges x = 0 

and x = a, the plate has a beam-like behavior in y-direction and 2w/x² = 0. According to classical beam theory (CBT), 

the deflection at the center of the beam is Tb²/8. Given Poisson’s ratio = zero, the results for bending moment 

mxx (Equation (5a)) and deflection at the plate center are in good agreement with CBT.     
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3.2 Analysis of rectangular plates simply supported along x = 0 and x = a  

The solution of Lévy was applied at the deflection curve. Detailed analysis and results are presented in the 

Supplementary Material “Rectangular plates simply supported along two opposite edges and having various support 

conditions along other edges.” The bending moments are determined at the plate center (mxx, myy) and at mid-spans of 

the free edge (mxx,fr)  fixed edge (myy,fe), and the displacements are determined at the plate center and at mid-span of 

the free edge. The results are listed in Table 3 for various support conditions, aspect ratios a/b, and Poisson’s ratios. 

 

Table 3. Bending moments mxx,  myy, and mxx,fr, and displacements. 

 a/b = 0.50 0.75 1.00 2.00 5.00 10.00 20.00 

Edges x = 0 and x = a simply supported (SS), edge y = b/2 fixed, and edge y = -b/2 SS 

Poisson's 

ratio  = 0.0 

mxx / DT= -0.2807 -0.6079 -0.8248 -1.0203 -1.0002 -1.0000 -1.0015 

myy / DT= -0.8414 -0.7039 -0.6553 -0.7169 -0.7627 -0.7627 -0.7617 

myy,fe / DT= -2.0162 -1.9578 -1.8618 -1.5965 -1.5254 -1.5255 -1.5254 

w / b²T = 0.0241 0.0353 0.0392 0.0348 0.0313 0.0313 0.0314 

Poisson's 

ratio  = 0.20 

mxx / DT= -0.2957 -0.6554 -0.9040 -1.1534 -1.1402 -1.1400 -1.1415 

myy / DT= -0.8340 -0.7476 -0.7413 -0.8621 -0.9123 -0.9122 -0.9114 

myy,fe / DT= -2.4194 -2.3494 -2.2342 -1.9158 -1.8304 -1.8305 -1.8305 

w / b²T = 0.0290 0.0424 0.0471 0.0417 0.0375 0.0376 0.0377 

Edges x = 0 and x = a simply supported, edge y = b/2 fixed, and edge y = -b/2 free 

Poisson's 

ratio  = 0.0 

mxx / DT= -0.1914 -0.4556 -0.6975 -1.1099 -1.0367 -1.0017 -1.0010 

myy / DT= -0.8962 -0.7867 -0.7261 -0.6175 -0.1616 -0.0204 -0.0121 

myy,fe / DT= -2.0385 -2.0662 -2.0327 -1.3459 -0.2174 -0.0350 -0.0255 

mxx,fr / DT= -0.3640 -0.4999 -0.7190 -1.3053 -1.1228 -1.0102 -1.0043 

w / b²T = 0.0202 0.0376 0.0446 -0.0709 -0.4176 -0.4958 -0.4999 

Poisson's 

ratio  = 0.20 

mxx / DT= -0.2190 -0.5218 -0.7968 -1.2438 -1.0275 -0.9616 -0.9611 

myy / DT= -0.8736 -0.8087 -0.7958 -0.7173 -0.1420 -0.0154 -0.0116 

myy,fe / DT= -2.4409 -2.4545 -2.3951 -1.5161 -0.1764 -0.0336 -0.0306 

mxx,fr / DT= -0.2732 -0.4310 -0.6881 -1.3778 -1.0956 -0.9664 -0.9631 

w / b²T = 0.0226 0.0416 0.0467 -0.1185 -0.5344 -0.5984 -0.5998 

Edges x = 0, x = a, and y = b/2 simply supported, and edge y = -b/2 free 

Poisson's 

ratio  = 0.0 

mxx / DT= -0.0163 -0.1085 -0.2444 -0.7160 -0.9929 -1.0000 -1.0000 

myy / DT= -0.9599 -0.8051 -0.6175 -0.1432 -0.0075 -0.0127 -0.0126 

mxx,fr / DT= -0.3408 -0.3644 -0.4168 -0.7132 -0.9906 -1.0042 -1.0042 

w / b²T = 0.0208 0.0453 0.0753 0.1793 0.2477 0.2500 0.2501 
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Poisson's 

ratio  = 0.20 

mxx / DT= -0.0250 -0.1161 -0.2412 -0.6692 -0.9480 -0.9600 -0.9601 

myy / DT= -0.9079 -0.7490 -0.5678 -0.1332 -0.0086 -0.0122 -0.0120 

mxx,fr / DT= -0.2465 -0.2717 -0.3270 -0.6381 -0.9442 -0.9630 -0.9631 

w / b²T = 0.0233 0.0510 0.0849 0.2062 0.2955 0.3000 0.3002 

 
For high values of a/b and far from the edges x = 0 and x = a, the plate has a beam-like behavior in y-direction and 

2w/x² = 0. Let us consider the plate having fixed−pinned edges in y-direction (y =  b/2); according to CBT , the 

bending moments myy at the fixed end and at mid-span of the corresponding beam are -1.5DT and -0.75DT, 

respectively. Given Poisson’s ratio = zero, the results for bending moment myy are in good agreement with CBT.    

For a plate having fixed−free edges in y-direction (y =  b/2), the deflection at the free end of the corresponding beam 

according to CBT is - Tb²/2. Given Poisson’s ratio = zero, the results for bending moment mxx (Equation (5a)) 

and deflection at free end are in good agreement with CBT.    

 

3.3 Analysis of rectangular plates simply supported at x = 0 and x = a, and having identical 

support conditions along y = b/2  

The solution of Lévy was applied at the deflection curve. Detailed analysis and results are presented in Appendix B, 

Appendix C, and in the Supplementary Material “Rectangular plates simply supported along two opposite edges and 

having identical support conditions along other edges.” The edges x = o and x = a are simply supported, the other edges 

are both fixed or both free. The bending moments are determined at the plate center (mxx, myy) and at mid-spans of the 

free edge (mxx,fr)  fixed edge (myy,fe), and the displacements are determined at the plate center and at mid-span of the 

free edge. The results are listed in Table 4 for various support conditions, aspect ratios a/b, and Poisson’s ratios. 

 

Table 4. Bending moments mxx,  myy, and mxx,fe, and displacements. 

 a/b = 0.50 0.75 1.00 2.00 5.00 10.00 20.00 

Edges x = 0 and x = a simply supported, and edges y = b/2 fixed 

Poisson's 

ratio  = 0.0 

mxx / DT= -0.4450 -0.8544 -1.0403 -1.0467 -0.9999 -1.0000 -1.0000 

myy / DT= -0.7631 -0.6843 -0.7363 -0.9599 -0.9937 -0.9936 -0.9937 

myy,fe / DT= -1.9289 -1.7002 -1.4440 -1.0175 -0.9872 -0.9873 -0.9873 

w / b²T = 0.0200 0.0210 0.0158 0.0017 0.0000 0.0000 0.0000 

Poisson's 

ratio  = 0.20 

mxx / DT= -0.4787 -0.9510 -1.1866 -1.2479 -1.1999 -1.2000 -1.2000 

myy / DT= -0.7841 -0.7877 -0.8948 -1.1646 -1.1939 -1.1939 -1.1939 

myy,fe / DT= -2.3147 -2.0403 -1.7328 -1.2210 -1.1847 -1.1847 -1.1847 

w / b²T = 0.0240 0.0253 0.0190 0.0020 0.0000 0.0000 0.0000 
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Edges x = 0 and x = a simply supported, and edges y = b/2 free 

Poisson's 

ratio  = 0.0 

mxx / DT= 0.0793 0.1219 0.1236 0.0517 0.0017 0.0000 0.0000 

myy / DT= -0.9991 -0.9015 -0.7501 -0.2646 -0.0026 0.0063 0.0064 

mxx,fr / DT= -0.3245 -0.2937 -0.2467 -0.0891 -0.0009 0.0021 0.0021 

w / a²T = 0.1330 0.1376 0.1383 0.1329 0.1267 0.1254 0.1251 

Poisson's 

ratio  = 0.20 

mxx / DT= 0.0570 0.0868 0.0866 0.0334 0.0008 0.0000 0.0000 

myy / DT= -0.9313 -0.8121 -0.6539 -0.2051 0.0009 0.0061 0.0061 

mxx,fr / DT= -0.2331 -0.2084 -0.1717 -0.0562 0.0001 0.0015 0.0015 

w / a²T = 0.1556 0.1564 0.1534 0.1391 0.1278 0.1257 0.1252 

 

For the fixed−fixed plate in y-direction (y =  b/2), high values of a/b and far from the edges x = 0 and x = a, the plate 

has a beam-like behavior in y-direction and 2w/x² = 0. The deflection curve of the corresponding beam according to 

CBT is zero throughout the beam; the results for bending moments mxx and myy (Equation (5a-b)) and 

deflection are in good agreement with CBT. For the free−free plate in y-direction (y =  b/2), high values of a/b and far 

from the edges x = 0 and x = a, the plate has a beam-like behavior in x-direction and the deflection at the center of the 

corresponding beam according to CBT is Ta²/8; the deflection results are in good agreement with CBT.     

   

4 Conclusion 

The bending analysis of isotropic rectangular Kirchhoff plates subjected to a thermal gradient was conducted in this 

paper. The temperature changes were assumed to vary linearly through the plate thickness. The thermal gradient was 

transformed using Fourier series; simple and double trigonometric series were considered. The deflection curve was 

formulated using the double trigonometric series of Navier and the simple trigonometric series of Lévy. Rectangular 

plates simply supported along all edges were analyzed, as well as those simply supported along two opposite edges. 

Bending moments, twisting moments, and deflections were determined. Numerical results were presented, and for high 

aspect ratios those results were in good agreement with those of the classical beam theory.  

The following aspect was not addressed in this study but could be analyzed in the future: 

✓ Rectangular anisotropic plate  

Supplementary Materials: The following files were uploaded during submission:  

• “Rectangular plates simply supported along all edges” 

• “Rectangular plates simply supported along two opposite edges and having various support conditions along other 

edges”  

• “Rectangular plates simply supported along two opposite edges and having identical support conditions along 

other edges.” 
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Appendix A: Rectangular plates simply supported along all edges  

The double trigonometric series of Navier was considered. The bending moments at the plate center, the twisting 

moments at the angles, and the displacement at the plate center, were calculated using Equations (12a-b), Equation 

(12c), and Equation (11b), respectively.  

 

 

 

 

 

 

 

 

 

 

The simple trigonometric series of Lévy was also considered. For simplification purpose the origin of the y-axis was 

shifted to the middle of the plate, so that the edges were at y =  b/2. The satisfaction of the boundary conditions yields: 

                 .  

 

The bending moments at the plate center, the twisting moments at the angles, and the displacement at the plate center, 

were calculated using Equations (19a-b), (A5-6), Equations (19c), (A5-6), and Equations (13), (14b), (16a-b), and (A5-

6), respectively. 
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Appendix B: Rectangular plate simply supported along x = 0 and x = a, and fixed along y =  b/2  

The simple trigonometric series of Lévy was considered. The origin of the y-axis was shifted to the middle of the plate, 

so that the plate edges were at y =  b/2. The satisfaction of the boundary conditions yields: 

                 . 

 

 

 

 

The bending moments at plate center  mid-span of the fixed edge, and the displacement at the plate center were calculated 

using Equations (19a-b), (B1-3), and Equations (13), (14b), and (16a-b), respectively. 
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Appendix C: Rectangular plate simply supported along x = 0 and x = a, and free along y =  b/2  

The simple trigonometric series of Lévy was considered. The origin of the y-axis was shifted to the middle of the plate, 

so that the plate edges were at y =  b/2. The satisfaction of the boundary conditions yields:  

                 . 

 

 

 

 

The bending moments at plate center  free edge, and the displacement at the plate center were calculated using Equations 

(19a-b), (C1-3), and Equations (13), (14b), (16a-b), and (C1-3), respectively, as follows:  
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