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Abstract: This paper concerns a new methodology for accuracy assessment of global positioning1

system verified experimentally with LiDAR (Light Detection and Ranging) data alignment at2

continent scale for autonomous driving safety analysis. Accuracy of GPS (Global Positioning3

System) positioning of an autonomous driving vehicle within a lane on the road is one of the4

key safety considerations. Safety is addressed as a geometry of the problem, where the aim5

is to maintain knowledge that the vehicle (its bounding box) is within its lane. Accuracy of6

GPS positioning is checked by comparing it with mobile mapping tracks in the recorded high7

definition source. The aim of the comparison is to see if the GPS positioning remains accurate up8

to the dimensions of the lane where the vehicle is driving. For this reason, a new methodology9

is proposed. Methodology is composed of six elements: 1) Mobile mapping system minimal10

setup, 2) Global positioning data processing, 3) LiDAR data processing, 4) Alignment algorithm,11

5) Accuracy assessment confirmation and 6) Autonomous driving safety analysis. The research12

challenge is to assess positioning accuracy of moving cars taking into account the constraints of13

the coverage of limited access highways in the United States of America. The available coverage14

limits the possibility of repeatable measurements and introduces an important challenge being15

the lack the ground truth data. State-of-the-art methods are not applicable for this particular16

application, therefore a novel approach is proposed. The method is to align all the available LiDAR17

car trajectories to confirm the GNSS+INS (Global Navigation Satellite System + Inertial Navigation18

System) accuracy. For this reason, the use of LiDAR metric measurements for data alignment19

implemented using SLAM (Simultaneous Localization and Mapping) was investigated, assuring20

no systematic drift by applying GNSS+INS constraints. SLAM implementation used state-of-the-21

art observation equations and the Weighted Non-Linear Least Square optimization technique that22

enables integration of the required constraints. The methodology was verified experimentally23

using arbitrarily chosen measurement instruments (NovAtel GNSS+INS, LiDAR Velodyne HDL32)24

mounted onto mobile mapping systems. The accuracy was assessed and confirmed by the25

alignment of 32785 trajectories with total length of 1,159,956.9 km and of total 186.4 ∗ 109 optimized26

parameters (six degrees of freedom of poses) that cover the United States region in the 2016–201927

period. It is demonstrated that the alignment improves the trajectories, thus final map is consistent.28
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The proposed methodology extends the existing methods of global positioning system accuracy29

assessment focusing on realistic environmental and driving conditions. The impact of global30

positioning system accuracy on autonomous car safety is discussed. It is shown that 99% of31

the assessed data satisfies the safety requirements (driving within lanes of 3.6 m) for Mid-Size32

(width 1.85 m, length 4.87 m) vehicle and 95% for 6-Wheel Pickup (width 2.03–2.43 m, length33

5.32–6.76 m). The conclusion is that this methodology has great potential for global positioning34

accuracy assessment at global scale for autonomous driving applications. LiDAR data alignment35

is introduced as a novel approach to GNSS+INS accuracy confirmation. Further research is needed36

to solve the identified challenges.37

Keywords: global positioning, SLAM; GNSS+INS; road survey; mobile mapping; autonomous38

driving safety39

1. Introduction40

Problem statement: The goal of presented research is to measure the impact of41

global positioning system on autonomous driving safety. The research challenge is to42

assess positioning accuracy of moving cars taking into account the constraints of the43

coverage of limited access highways in the USA. Due to the nature of the measurement44

it is difficult to perform repeatable data collections since cars never follow the same45

trajectories. The actual coverage limits the possibility of repetitive measurements and46

introduces an important challenge being lack of the ground truth data. Therefore, the47

repeatability test method e.g. [1] is not applicable. Thus, accuracy assessment requires a48

new approach that is formulated as a novel measurement methodology discussed in this49

paper.50

Problem formulation: Accuracy of GPS (Global Positioning System) positioning51

of an autonomous driving vehicle within a lane on the road is one of the key safety52

considerations. Safety is addressed as a geometry of the problem, where the aim is to53

maintain knowledge that the vehicle (its bounding box) is within its lane. Accuracy of54

GPS positioning is checked by comparing it with mobile mapping tracks in the recorded55

high definition source. The aim of the comparison is to see if the GPS positioning remains56

accurate up to the dimensions of the lane where the vehicle is driving. For this reason,57

a new methodology is proposed. The problem is to confirm the global positioning58

system accuracy assessed in our case by state-of-the-art NovAtel algorithm and relate it59

to autonomous driving safety. The localization accuracy requirements for US freeway60

operation that are discussed in [2] are addressed. It is investigated how to use LiDAR61

metric measurements to align all available trajectories to confirm the global positioning62

accuracy assessed by NovAtel algorithm [3]. This required visiting the same places many63

times which was assessed using a mobile mapping road survey performed at a continent64

scale. Based on this data collection many challenges were determined and addressed65

in the paper. Some of the challenges are the following: large area coverage, the impact66

of environmental conditions, dynamic changes of road geometry like roadworks. The67

most important requirement for calculating alignment is to assure no systematic drift of68

aligned trajectories. Thus, the alignment method should work by means of Least Squares69

using assessed trajectories as constraints. Another problem is to maintain the shape of70

aligned trajectories; thus, motion model must constrain all relative consecutive poses.71

Bearing in mind the requirements for aligned trajectories, the result is optimal, therefore72

the confirmation of the assessment accuracy of the trajectories can be applied. It can only73

be achieved by means of massive data processing performed to obtain quantitatively74

correct results.75

Problem assessment: A new methodology is proposed for global positioning sys-76

tem accuracy assessment to analyze the impact on autonomous driving safety. It was77

verified experimentally using an arbitrarily chosen measurement instruments. Usage of78
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Figure 1. The scheme of the experimental verification of proposed methodology for GNSS+INS
accuracy assessment using LiDAR SLAM for autonomous driving safety analysis.

LiDAR metric measurements for alignment as accuracy assessment confirmation tool79

was investigated. The methodology is composed of six elements:80

• Mobile mapping system minimal setup.81

• Global positioning data processing.82

• LiDAR data processing.83

• Alignment algorithm.84

• Accuracy assessment confirmation.85

• Autonomous driving safety analysis.86

The scheme of the experimental verification is shown in Figure 1. To verify the method-87

ology, the accuracy was assessed and confirmed by alignment of 32785 trajectories88

with total length of 1,159,956.9 km and of total 186.4 ∗ 109 optimized parameters (six89

degrees of freedom poses) that cover United States region in the 2016–2019 period. The90

GNSS+INS accuracy of fast-moving vehicles was measured at a large scale, covering91

as much of the limited access highways in the USA as possible, as realistic dynamic92

conditions are considered a core requirement. Mobile mapping system architecture, its93

hardware components, all necessary state-of-the-art observation equations and optimiza-94

tion techniques used for building a SLAM system are explained. The impact of the global95

positioning system on autonomous driving safety is discussed as it will affect entire96

society in the near future. GNSS+INS NovAtel was chosen as a reference global posi-97

tioning measurement instrument mounted on mobile mapping systems equipped with a98

single Velodyne HDL32 3D LiDAR. GNSS receivers are integrated with mobile mapping99

systems and the measurements are post-processed using a combination of NovAtel100

PPP (Precise Point Positioning) and PPK (Post-Processed Kinematic) algorithms, thus101

obtaining the most accurate positioning from the point of view of applied measurement102

instrument. This choice of the assessed global positioning system as a reference gives103

important insights into what can happen when lower quality measurement instruments104

are used in autonomous cars. To reach satisfactory results it was decided to use mobile105

mapping data covering most of the limited access highways in the USA. This mobile106

mapping data consists of GNSS+INS, odometry measurement processed into trajectories107

(set of consecutive 6DoF poses) and Velodyne HDL32 LiDAR measurements. The aim108

of experimental verification of the proposed methodology is to use GNSS+INS trajectories as109

objects of accuracy assessment, align them using LiDAR data, confirm the accuracy and perform110

autonomous driving safety analysis. It is possible only if it is assured that the alignment111

does not introduce any systematic drift. For this reason the use of the state-of-the-art112

LiDAR SLAM algorithm was investigated. The algorithm was implemented starting113

from the beginning using the Weighted Non-Linear Least Square Method capable of114
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aligning these trajectories based on LiDAR observations, motion model and GNSS + INS115

constraints. Based on this investigation some deviations in accuracy of GNSS+INS are116

demonstrated. It is a very important research topic since the era of autonomous driving117

is approaching. The challenges related to the proposed methodology are addressed. The118

first challenge is that there is no ground truth for such scope of data. Moreover, accurate119

tracking of the fleet of fast-moving mobile mapping systems is impossible considering120

continent scale coverage. The second challenge is assuring no systematic drift in the121

aligning procedure. The third challenge is related to many factors affecting alignment122

algorithm relying on LiDAR measurements. The fourth challenge is related to dynamic123

conditions of the data collection and many environmental changes (e.g. roadworks,124

weather conditions) that could affect LiDAR-based alignment.125

The main requirement is to collect large-scale, mobile mapping data (LiDAR,126

GNSS+INS) covering as large area as possible and visiting certain locations multiple127

times. The GNSS+INS accuracy was assessed using LiDAR information. It is advised128

to use multiple mobile mapping systems with the same setup of the measurement in-129

struments. Thus, the results of the experiments are not affected by bias of using only130

one measurement instrument. This paper addresses an approach for the continent scale131

SLAM experiment, which is a contribution to Mobile Robotics domain where the large132

scale is an interesting research topic. The term "large scale" corresponds to applications133

where the volume of data and the total length of the trajectories is significant and re-134

quires high computational resources to process. For this purpose, the term "continent135

scale SLAM" is introduced, as it is more adequate for the future autonomous driving136

systems. This is an important research topic from perspective of recent developments137

in localization of autonomous cars [4,5]. It is evident that autonomous cars can collect138

data and contribute to global map updates, thus it is a large-scale problem that inspires139

many researchers.140

The term SLAM [6] corresponds to the "chicken and egg dilemma". Therefore, it141

is necessary to have a proper map representation that is compatible with observations142

derived from sensors to localize the vehicle within the map, and accurate localization143

is needed to build the map. The core concept is the pose that represents position and144

orientation at a given time. A set of consecutive poses makes up a trajectory. Attaching145

measurements to the trajectory as relative poses gives an opportunity to reconstruct a146

map of raw measurements e.g. the point cloud in case of using LiDAR technology. The147

calibration parameters have to be also considered to assure proper transformation from148

the trajectory pose to the sensor origin.149

This paper concerns the concepts and methods known from Mobile Robotics and150

Geodesy domains. These domains introduce methodology for map building based151

on computing absolute pose of measurement instruments assuming raw information152

typically transformed into feature space [7]. It is addressed how to fill the gap between153

these domains, which also discussed in [8]. Therefore, the problem of fusing GNSS+INS154

and LiDAR observations to align all trajectories assuring no systematic drift is the main155

research topic discussed in this paper. The results of this research is a new methodology156

of GNSS+INS accuracy assessment. The paper is organized as follows: section 2 discusses157

the state of the art related to mobile mapping approaches and available data sets. Section158

3 concerns an experimental verification of proposed methodology and it defines the159

minimal setup of mobile mapping systems, GNSS+INS data processing, LiDAR data160

processing, SLAM algorithm assuring no systematic drift of aligned trajectories and161

impact on autonomous driving safety. Section 4 addresses real-world challenges affecting162

data alignment being our important feedback for the research community. In section 5163

experimental validation details are provided and the results are discussed in section164

5.2. The impact of GNSS+INS positioning on autonomous driving safety is elaborated in165

section 6. Final conclusions are given in section 7.166
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2. State of the art167

Trajectory, sensor readings and map are terms commonly used in Mobile Robotics168

in the context of SLAM. Trajectory can be expressed as consecutive 6-DOF poses [9].169

Collecting consistent 3D laser data using a moving mobile mapping system is often170

difficult because the precision of collected data is related to motion estimation. For171

this reason, trajectory of the sensor during the scan must be taken into account while172

constructing 3D point clouds. To address this issue many researchers use the stop-173

scan fashion – they stop a moving platform and take stationary scans [10,11]. On the174

contrary, in the recent research advances the continuous-time mapping is favored [12,13].175

Continuous-time mapping relates to the new term of time calibration method [14], and176

it introduces a continuous-time, simultaneous localization and a mapping approach177

for mobile robotics. In comparison, mobile mapping systems used in geodesy use178

synchronized sensor readings.179

Mobile Mapping Systems are composed of proprioceptive, exteroceptive and in-180

teroceptive sensors. Proprioceptive sensors measure internal state of the system in the181

environment such as position, velocity, accelerations, and temperature. Exteroceptive182

sensors measure parameters external to the system such as pressure, forces and torques,183

vision, proximity, and active ranging. Vision sensors include monocular, stereo/multiple184

cameras, equirectangular/spherical cameras, and structured lighting (e.g. so called185

RGBD cameras). There are active ranging systems laser line scanners, such as: LiDAR,186

RADAR, and SONAR. Interoceptive sensors measure electrical properties (voltage, cur-187

rent), temperature, battery charge state, stress/strain and sound. All above-mentioned188

sensors are connected to the dedicated electronics that synchronizes all inputs with GNSS189

receiver, thus all raw data can be transformed into global reference systems. There is a190

need to cope with GNSS denied environments, thus recent developments show progress191

of mobile mapping technologies that also use SLAM algorithms. A mobile mapping192

device capable of building the map was introduced in [15]. Such devices use the advan-193

tage of a rotating LiDAR to perceive full 360-degree distance measurements. Further194

developments introduce equirectangular cameras that can augment metric information195

with spherical images. Many mobile mapping applications incorporate equirectangular196

camera FLiR Ladybug5/5+ to perceive 360-degree spherical images [16]. High-end197

mobile mapping systems [17] [18] use more precise measurement instruments, which is198

involves a higher cost.199

2.1. Large-scale data sets200

In recent research since mobile mapping systems are more and more affordable201

many open-source large data sets appeared. The GNSS-specific dataset [19] contains202

GNSS data from two sensors recorded during real-world urban driving scenarios. A203

mass-market receiver is used, and the ground truth is derived from a highly accurate204

reference receiver. The complex urban data set [20] provides LiDAR data and stereo205

images with various position sensors targeting a highly complex urban environment.206

It captures features in urban environments (e.g. metropolitan areas, complex buildings207

and residential areas). The data of 2D and 3D of LiDAR is provided. Raw sensor data208

for vehicle navigation and development tools is given in a ROS file format.209

Authors of the Multi Vehicle Stereo Event Dataset [21] provide a collection of data210

helpful in the development of the 3D perception algorithms for event-based cameras.211

An interesting data set [22] collects data from the AtlantikSolar UAV (Unmanned Aerial212

Vehicle) that is a small-sized, hand-launchable, solar-powered device optimized for213

large-scale aerial mapping and inspection applications. Authors of [23] provide the214

Oxford RobotCar data set that contains over 100 repetitions of a consistent route through215

Oxford, United Kingdom, captured over a period of over a year. Additionally, authors216

provide RTK Ground Truth [24]. Authors of [25] provide the Málaga Stereo and Laser217

Urban Data Set that was gathered in urban scenarios with a car equipped with stereo218

camera (Bumblebee2) and five LiDARs. The KITTI-360 data set [26], which is well-219

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2021                   doi:10.20944/preprints202106.0462.v1

https://doi.org/10.20944/preprints202106.0462.v1


Version June 16, 2021 submitted to Journal Not Specified 6 of 33

known in Mobile Robotics and Machine Vision domains, collects data from autonomous220

driving platform called Annieway. For each of the benchmarks, authors also provide221

an evaluation metrics. They distinguish several use cases: processing raw data [27],222

performing road benchmark [28], stereo benchmark [29]. Another large-scale dataset: the223

Kagaru Airborne Stereo data set [30] is a vision dataset gathered from a radio-controlled224

aircraft flown at Kagaru, Queensland, Australia on 31st August 2010.225

2.2. Long-term data sets226

Long-term data sets collect multi-season data. The purpose is to address the impact227

of multi season, varying weather, and other disturbances into localization algorithms.228

Authors of [31] provide the KAIST multi-spectral data set that covers regions from urban229

to residential for autonomous systems. They claim that this data set provides different230

perspectives of the world captured in coarse time slots (day and night) in addition to231

fine time slots (sunrise, morning, afternoon, sunset, night, and dawn). The interesting232

Visual-Inertial Canoe data set [32] collects data from a canoe along the Sangamon233

River in Illinois. Authors claim that the canoe was equipped with a stereo camera, an234

IMU, and a GPS device, which provide visual data suitable for stereo or monocular235

applications, inertial measurements, and position data for the ground truth. University236

of Michigan North Campus Long-Term (NCLT) Vision and LiDAR Dataset [33] consist237

of omnidirectional (equirectangular) imagery, 3D LiDAR, planar LiDAR, GPS, and238

proprioceptive sensors for odometry collected using a Segway robot. Authors conducted239

this research to facilitate researchers focusing on long-term autonomous operation in240

changing environments. Alderley, Queensland Day/Night Dataset [34] consists of241

vehicle data for vision-based place recognition with manually annotated ground truth242

frame correspondences. It is reported that the data set was captured in two different243

conditions for the same route: one on a sunny day and one during a rainy night.244

Outdoor scenario is impacted by change of the environmental conditions and it is245

related to long-term localization [35] and long-term navigation [36]. The term indoor-246

outdoor transition [37] sometimes referred to as indoor-outdoor switching corresponds247

to the scenarios when UV (Unmanned Vehicle) changes location between indoor-like to248

outdoor-like environments. Indoor environments have a rich set of challenges related249

to e.g. long-narrow paths, surfaces with limited texture information, thus localization250

algorithms are affected by perceptual aliasing confusion [38]. The evaluation of the251

navigation and localization capabilities is performed via the quantitative evaluation of252

the quality of an estimated trajectory [39].253

Lyft [40] - Level 5 Perception Dataset 2020 is relevant as both a large-scale and254

long-term dataset. It is maintained by the autonomous vehicles that collect raw sensor255

data on other cars, pedestrians, traffic lights, and more. This dataset features raw LiDAR256

and camera inputs collected by the autonomous fleet within a bounded geographic area.257

2.3. Large scale surveying and mapping258

Large scale surveying and mapping relates to the shape of the Earth and spatial259

relations between objects near its surface. Thus, it is evident that global and local260

coordinate systems are useful for calculations. To describe position in global reference261

system (global geocentric Terrestrial system) the coordinates are defined with respect to262

center of Earth. Spatial relations between objects can be described using a local reference263

system. 3D Cartesian geocentric coordinates are not very convenient for describing264

positions on the surface of the Earth. It is actually more convenient to project the curved265

surface of the Earth on a flat plane, which is related to map projections. Usually, local266

coordinate system has the y-axis pointing in the North direction, the z-axis in the up267

direction, and the x-axis completing the pair and therefore pointing in the East direction.268

This type of system is referred to as topocentric coordinate system. For the coordinates269

it is common to use the capital letters ENU instead of x, y, z [41] and it is called Local270

Tangent Plane Coordinates. The alternative way of expressing z coordinate as positive271
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(a)
Figure 2. MoMa van a TomTom B.V. Mobile Mapping proprietary technology providing calibrated
data.

number (convenient for airplanes) is NED. All observation equations described in this272

paper are expressed in right-handed local 3D Cartesian coordinate system, therefore it is273

important to keep in mind the transformation function from local to global coordinate274

system looking at the GPS data used for georeferencing [42].275

Rigid transformation in SE(3) can be separated into two parts: translation and rigid276

rotation. There are plenty ways to express rotations [43,44] such as using Tait-Bryan and277

Euler angles, Quaternions [45], Rodriguez [46–48] and e.g. Cayley formula [49]. Further278

information on how to construct transformation matrices can be found in [50–52]. The279

information on how to compute derivatives for rotations can be found in [53,54].280

3. Experimental verification of the methodology281

Experimental verification of the proposed methodology is composed of six elements:282

• Mobile mapping system minimal setup (section 3.1) provides necessary information283

to build the mobile measurement instrument capable of collecting required data284

sets.285

• GNSS+INS data processing (section 3.2) provides information concerning initial286

trajectories calculation based on NovAtel PPP (Precise Point Positioning) and PPK287

(Post-Processed Kinematic) algorithms.288

• LiDAR data processing (section 3.3) discusses the LiDAR data filtering and classifi-289

cation into basic primitives.290

• Alignment algorithm (section 3.4) concerns observation equations and constraints291

used for building SLAM optimization system.292

• GNSS+INS accuracy assessment (section 3.5) explains the accuracy calculations per-293

formed using GNSS+INS NovAtel algorithm and confirmed with SLAM alignment.294

• Impact on autonomous driving safety (section 3.6).295

This methodology enables continent scale GNSS+INS accuracy assessment using massive296

LiDAR data and SLAM-based trajectory alignment.297

3.1. Mobile mapping system minimal setup298

The minimal setup of the mobile mapping system is at least one 3D LiDAR,299

GNSS+INS positioning system and odometry. To assess positioning systems other300

than GNSS+INS an additional measurement instrument should be integrated with mo-301

bile mapping data acquisition pipeline. All data should be synchronized. An example of302

such mobile mapping system is MoMa (Mobile Mapping) van - TomTom B.V. proprietary303

technology is shown in Figure 2. It is composed of NovAtel ProPak6®/PwrPak7 GNSS304

receiver, NovAtel VEXXIS GNSS-850 GNSS antennas, ADIS 16488/KVH 1750 Inertial305

Measurement Unit, DIY odometer, Velodyne Lidar HDL-32E and FLiR Ladybug 5/5+306

LD5P. All data is synchronized, and the relative poses of all sensors are obtained from307

in-house calibration procedure.308
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Figure 3. Diagram from "Precise Positioning with NovAtel CORRECT Including Performance
Analysis released in 2015 by NovAtel Inc."

Table 1: Quality categories by NovAtel.

NovAtel quality 3D accuracy (m)
1 0.0 - 0.15
2 0.05 - 0.4
3 0.2 - 1.0
4 0.5 - 2.0
5 1.0 - 5.0
6 2.0 - 10.0

3.2. GNSS+INS data processing309

GNSS+INS measurements are post-processed using a combination of NovaTel PPP310

(Precise Point Positioning) and PPK (Post-Processed Kinematic) algorithms shown in311

Figure 3 - left. All data is processed by NovaTel Waypoint Post-Processing Software SDK312

(Software Development Kit) 8.90 [3]. PPK and PPP methods incorporate information313

from GLONASS Satellite Constellation, Satellite Constellation, Geostationary Satellite314

(GEO) and Reference Stations [55]. The expected accuracy is shown in Figure 3 - right.315

Due to fact that PPK relates to RTK (Real-Time Kinematic) this method can reach much316

higher precision compared to PPP. NovAtel introduces 6 classes of accuracy, as shown in317

Table 1. For the experiment purpose all post-processed GNSS+INS data was transformed318

to ITRF2008 epoch 2019.0000.319

3.3. LiDAR data processing320

3D data derived from Velodyne HDL-32 utilizes 32 LiDAR channels aligned from
+10.67 to -30.67 degrees to provide an unmatched vertical field of view and a real-time
360-degree horizontal field of view. It generates a point cloud of up to 695,000 points
per second with a range of up to 100 m and a typical accuracy of ±2 cm. Reflectivity
is used (values 0-255) and 3D coordinates of the measured points in Euclidean space
as (x,y,z). In this particular application 3D data is downsampled for equal 3D points
distribution and filtered for traffic noise reduction. The remaining point cloud is distin-
guished into basic primitives (point, cylindrical, plane) and assigned semantic labels
related to reflectivity. Therefore, the result is a set of (points with high reflectivity),
(points with low reflectivity), (lines with high reflectivity), (lines with low reflectivity),
(planes with high reflectivity), (planes with low reflectivity). This segmentation allows
matching similar primitives as corresponding landmarks. To distinguish primitives of
high and low reflectivity empirically estimated threshold is used, thus 3D points with
reflectivity more than 40 are considered as highly reflective and others as having low
reflectivity. Traffic noise is a challenging aspect since most of the road surveys were
performed in realistic conditions, thus RANSAC (Random Sample Consensus) [56] was
applied for extracting surface planes. This method efficiently identifies surface planes
even for a large volume of noisy traffic data (Figure 4 - left) and the relevant imple-
mentation is available in PCL (Point Cloud Library) [57]. When data is downsampled
and filtered, grouping of points into basic primitives as lines, cylinders and planes is
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Figure 4. Left - point cloud affected by noise from traffic, right - filtered and classified LiDAR data.

(a) GNSS+INS and processed LiDAR data. (b) Aligned data.
Figure 5. Visualization of the alignment algorithm: 1) LiDAR observations have to converge, 2) no
systematic drift, 3) aligned trajectories must retain shape. Green - accurate data, red - inaccurate
data.

introduced, assuming low-high reflective threshold (Figure 4: right). The result of this
classification is the semantic label l assigned for each query point. In that sense the
impact of perceptual aliasing confusion [38] is addressed, thus the issue related to outlier
observations (incorrectly matched landmarks) is addressed. In literature there are many
techniques for automatic classification of point clouds such as semantic Classification of
3D Point Clouds with Multiscale Spherical Neighborhoods [58] that uses local features
for classification. Another interesting technique - contour detection in unstructured 3D
point clouds was elaborated in [59]. In our application an additional basic primitive
as the direction of the line and the normal vector of the plane are calculated and used
for constructing observation equations. For calculating the direction of the line and the
normal vector of the plane the following covariance matrix is used:

C(NR) =
1
N ∑

p∈N
(p− p̄)(p− p̄)T (1)

its eigen-values λ1 > λ2 > λ3 ∈ R and corresponding eigenvectors e1, e2, e3 ∈ R3.
where N is the number of points p found in certain radius R and p̄ is the centroid of
the neighborhood NR (all points inside the sphere of radius=R). The eigen-values and
eigen-vectors are used for local shape description (linearity: equation 2, planarity -
equation 3) similar as in [60].

Linearity = (λ1 − λ2)/λ1 (2)

Planarity = (λ2 − λ3)/λ1 (3)

The implementation details are available in the form of point cloud processing tutorial321

available in [61].322

3.4. Alignment algorithm323

The goal is to find an optimal solution for the desired poses of all GNSS+INS
trajectories acquired with MoMa vans assuming information from LiDAR (Figure 5).
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The problem is formulated using the Weighted Non-Linear Least Square method, a
special case of Generalized Least Squares, known e.g. in photogrammetry [62] and
LiDAR data matching [63]. SLAM problem is nonlinear [7] due to rotations, therefore a
first-order Taylor expansion is used to construct the design matrix A. More information
concerning observations and the Least Square method can be found in [64,65]. It is
assumed that observational errors are uncorrelated, thus the weight matrix P is diagonal
and the problem becomes (

ATPA
)

∆x = ATPb (4)

Larger values of elements in P determine higher impact of the observation equation on
optimization process. Similar approach can be found in work on continuous 3D scan
matching [13] where authors additionally incorporated a Cauchy function applied to the
residuals b to cope with outliers. To solve a single iteration as

∆x =
(

ATPA
)−1(

ATPb
)

(5)

the sparse Cholesky factorization [66] is used. More implementation details concerning324

semantic data registration are available as Lesson 16 of tutorial [61].325

Rotation matrix representation as Tait-Bryan angles [52] is used. Angles associated
with the sequence (x, y, z) correspond to (ω,ϕ,κ) as (roll, pitch, yaw). They are commonly
used in aerospace engineering and computer graphics. In the three-dimensional space
rotations via each axis are given:

Rx(ω) =

(
1 0 0
0 cos(ω) −sin(ω)
0 sin(ω) cos(ω)

)
, Ry(ϕ) =

(
cos(ϕ) 0 sin(ϕ)

0 1 0
−sin(ϕ) 0 cos(ϕ)

)
, Rz(κ) =

(
cos(κ) −sin(κ) 0
sin(κ) cos(κ) 0

0 0 1

)
(6)

Therefore, rotation matrix R is expressed as:

Rωϕκ =

(
cos(ϕ)cos(κ) −cos(ϕ)sin(κ) sin(ϕ)

cos(ω)sin(κ)+sin(ω)sin(ϕ)cos(κ) cos(ω)cos(κ)−sin(ω)sin(ϕ)sin(κ) −sin(ω)cos(ϕ)
sin(ω)sin(κ)−cos(ω)sin(ϕ)cos(κ) sin(ω)cos(κ)+cos(ω)sin(ϕ)sin(κ) cos(ω)cos(ϕ)

)
(7)

and finally the optimization problem concerns finding updates ∆xij for all trajectory
poses composed of six parameters including translation part (x,y,z) and rotation part
(ω, ϕ, κ)

∆xij =
(
∆xij, ∆yij, ∆zij, ∆ωij, ∆ϕij, ∆κij

)
(8)

where i corresponds to ith trajectory and j corresponds to jth pose.326

In the proposed methodology the required observation equations forming SLAM327

alignment are defined:328

• Semantic point-to-point (subsection 3.4.1).329

• Semantic point-to-projection (subsection 3.4.2).330

• Motion model and GNSS+INS as relative poses constraints (subsection 3.4.3).331

Similar approaches can be found in [9,13,67–70] and the implementation of SLAM [71].332

It is worth to mention another family of observation equations that corresponds to local333

geometric features - called surfels in [13]. This particular application of SLAM has to334

assure no systematic drift of aligned trajectories. For this reason assessed GNSS+INS335

input trajectories are treated as constraints implemented using relative pose observa-336

tion equation (subsection 3.4.3). It means that the desired relative pose Pt(x,y,z,ω,ϕ,κ)337

between input GNSS+INS trajectory node and aligned one is Pt(0,0,0,0,0,0). Another338

important aspect of proposed methodology requires no change of the shape of aligned339

trajectories, thus motion model (as consecutive relative poses of GNSS+INS input trajec-340

tories) is used as a constraint also implemented as relative pose observation equation341

(subsection 3.4.3). In this case the desired relative pose between consecutive nodes of342

aligned trajectories is calculated from GNSS+INS input trajectories and constrains the343
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(a) GNSS+INS input trajectories. (b) Aligned trajectories.
Figure 6. The idea of aligning trajectories assuring no systematic drift by incorporating GNSS+INS
input data as the constraints. Springs visualize the constraints.

optimization process. This approach guarantees similar shape of aligned trajectories344

to the input data which is crucial for our application. In that sense the optimization345

process will try to maintain shape, positions and orientations of all input trajectories.346

All the LiDAR-based observation equations can affect the above-mentioned constraints347

to minimize the displacement of corresponding landmarks observed from different348

viewpoints. The idea is presented in Figure 6.349

3.4.1. Semantic point-to-point observation equation350

The raw LiDAR measurement is represented as source point Ps(xs,ys,zs) in Eu-
clidean space as point in a local reference frame. The matrix [R,T] is the transformation
of source point Ps into target point Pt(xt,yt,zt) in global reference frame, thus

ΨR,T(xs, ys, zs) = Pt = [R, T]Ps (9)

The transformation [R,T] has a unique representation as a pose (x, y, z, ω, ϕ, κ), composed351

of position (x, y, z) and orientation (ω, ϕ, κ). Orientation corresponds to Tait-Bryan352

angles respectively ω : x − axis, ϕ : y − axis, κ : z − axis and the x-y-z convention353

for [R,T] building is incorporated. Formula 10 denotes the point-to-point observation354

equation used in optimization, where there are C pair-correspondences of source point355

to target point.356

min
R,T

C

∑
i=1

(
(xt

i , yt
i , zt

i)−ΨR,T(xs
i , ys

i , zs
i )
)2 (10)

Semantic point-to-point observation equation is defined by Equation 11, where
there are Cl correspondences of neighboring points with the same semantic label l.

min
R,T

Cl

∑
i=1

(
(xt

i,l , yt
i,l , zt

i,l)−ΨR,T(xs
i,l , ys

i,l , zs
i,l)
)2

(11)

Semantic labels are assigned during LiDAR data processing (section 3.3).357

3.4.2. Semantic point-to-projection observation equation358

Classification into planes and lines enables incorporating the point-to-projection
observation equations. These observations are derived from matching points having the
same semantic label. It means that observations are built from points with the same local
shape characteristics. It is evident that once these projections are calculated using the
above described point-to-point approach they can be used as the observation equations.
Look at the projection of point Psrc,l(xsrc,l , ysrc,l , zsrc,l) that can be transformed to global
coordinate system as point Psrc,g(xsrc,g, ysrc,g, zsrc,g) using matrix [R,T]. Thus,xsrc,g

ysrc,g

zsrc,g

 = ΨR,T(xsrc,l , ysrc,l , zsrc,l) = [R, T]

xsrc,l

ysrc,l

zsrc,l

 (12)
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to find point Psrc,g to line projection as Pproj,g in global reference system line repre-
sentation is used as target direction vector Vtrg,ln(xtrg,ln, ytrg,ln, ztrg,ln) and target point
on line Ptrg,g(xtrg,g, ytrg,g, ztrg,g) expressed in global reference system. Therefore, the
point-to-line projection is as follows:

Pproj,g = Ptrg,g +
a · b
b · b b, a =

xsrc,g − xtrg,g

ysrc,g − ytrg,g

zsrc,g − ztrg,g

, b =

xtrg,ln

ytrg,ln

ztrg,ln

 (13)

where (·) is a dot product.359

To find point Psrc,g to plane projection as Pproj,g the following plane equation is
considered:

ax + by + cz + d = 0,
∥∥[a b c

]∥∥ = 1 (14)

Vpl = (a, b, c) is the unit vector orthogonal to plane and d is the distance from the origin
to the plane. It satisfies following condition with point in 3D space

[
a b c d

]
x
y
z
1

 = 0 (15)

Therefore projection Pproj,g can be computed with:

Pproj,g =

xsrc,g

ysrc,g

zsrc,g

−
xsrc,g

ysrc,g

zsrc,g

 ·Vpl

Vpl (16)

where (·) is a dot product. To build point-to-line projection or point-to-plane projection360

observation Equation 11 can be incorporated.361

3.4.3. Relative pose observation equation362

Relative pose observation equation concerns a relative pose P (x,y,z,ω,ϕ,κ) from
pose A f rom to pose Bto (P = A−1

f romBto) and a desired pose Pt, therefore optimization

will converge by moving poses A f rom and Bto to reach the desired relative pose Pt. To
construct observation equation the function m2v is incorporated to compute vector
(x,y,z,ω,ϕ,κ) from matrix P assuming Tait-Bryan angle convention. Therefore, optimiza-
tion problem is defined in Equation 17, where (xt

i ,y
t
i ,z

t
i ,ω

t
i ,ϕ

t
i ,κ

t
i ) is a target relative pose

(the desired one) that the optimization is supposed to converge with.

min
RA ,TA ,RB ,TB

C

∑
i=1

(
(xt

i , yt
i , zt

i , ωt
i , ϕt

i , κt
i )−m2v(A−1

f romBto)i

)2
(17)

3.5. GNSS+INS accuracy assessment363

Figure 1 shows the implementation of the proposed methodology for GNSS+INS364

accuracy assessment using LiDAR SLAM data alignment as confirmation tool. Once365

mobile mapping data covering expected region is collected, it is processed using methods366

described in section 3.2 and section 3.3. GNSS+INS data processing provides trajectories367

and accuracy assessment for each node of trajectory as one of the following classes (Class368

1: 0–0.15 m, Class 2: 0.05–0.4 m, Class 3: 0.2–1.0 m, Class 4: 0.5–2.0 m, Class 5: 1.0–5.0 m,369

Class 6: 2.0–10.0 m). To confirm this accuracy assessment LiDAR SLAM alignment370

is performed for all of these trajectories. This method provides an optimal solution371

guaranteeing no systematic drift by minimizing distance between landmarks in aligned372

trajectories. Relative poses are calculated for all corresponding nodes between the input373

trajectories and the aligned ones. This relative poses are concatenated into histograms374
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Figure 7. Bounding box geometry duirng a turn maneuver. This shows the allowable maximum
position error of the vehicle to ensure it is within the lane known as the alert limits (Figure
from [2]).

in section 5.2, therefore it is possible to quantitatively verify the percentage of the data375

set satisfying certain accuracy condition defined as Class 1–6. It was experimentally376

proven that accuracy assessment provided by NovAtel GNSS+INS processing tool is377

very similar to the SLAM output. This confirmed accuracy assessment can be used for378

considering the impact GNSS+INS positioning on safety discussed in section 6. The379

cause of SLAM errors is discussed as a real-world challenge in section 4. Due to volume380

of processed data and manual verification SLAM errors are considered to have minor381

impact for the overall confirmation of the accuracy assessment.382

3.6. Impact on autonomous driving safety383

Localization accuracy requirements for US freeway operation that are discussed
in [2] are addressed. Safety is addressed as an alert limit for the defined geometry of the
problem, where the aim is to maintain knowledge that the vehicle (its bounding box) is
within its lane. Horizontally, this is expressed as lateral (side-to-side) and longitudinal
(forward-backward) components. Vertically, the vehicle must know what road level
it is on (location among multi-level roads). The relationship between the road width
and curvature and the bounding box around the vehicle is shown in Figure 7. The
relationship between the lateral x and longitudinal y bounds and road geometry w is
defined in Equation 18.

x =

√(
r +

w
2

)2
−
(y

2

)2
+

w
2
− r (18)

Authors of [2] define alert limits related to the vehicle length lv and width wv as 19:

Lateral Alert Limit = x−wv
2

Longitudinal Alert Limit = y−lv
2

(19)
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(a) Data collected by TomTom B.V. MoMa cars
that were evaluated in this paper.

(b) The triangle net used for creating NAD
27 [8].

Figure 8. Real-world challenge: high volume of data covering United States. Green rectangles
correspond to visited regions by MoMa cars collecting data.

For the impact of GNSS positioning on safety the following aspects are considered:384

vehicle type, a mean distance between lanes of 3.6 m (limited access highways in the385

United States of America), Lateral Alert Limit and Longitudinal Alert Limit. Reference386

values of accuracy and alert limits of relative positioning for different types of vehicle387

versus map are shown in Table 2 [2]. It is to be assumed that during an autonomous

Table 2: Localization requirements for US freeway operation with interchanges. This
assumes minimum lane widths of 3.6 meters and allowable speeds up to 137 km/h (85
mph).

388

drive the same GNSS+INS system is used for positioning and the real-time calculations389

have the same accuracy as in postprocessing presented in the experiment. It is expected390

that alert limits will be satisfied throughout the trip, so that the car is safely positioned391

within lanes. Alert limits should be satisfied for all vehicle types assessed in [2] driving392

on limited access highways in the United States of America (mean distance between393

lanes is 3.6 m) and when all assessed GNS+INS data are Class 1 and Class 2 (positioning394

accuracy 0–0.4 m). In other cases, the assessed global positioning accuracy exceeds alert395

limit violations and the percentage of such data is the result of measuring the impact on396

safety.397

4. Real-world challenges398

To reconstruct the map of a continent e.g. North America it is necessary to cope399

with many challenges caused by the volume of data (Figure 8) and errors related to400

raw data acquired in different times. For the comparison the original triangle net used401

in geodesy [8] is also shown. The dominant issue is related to the gap between two402

time-intervals where data was acquired, thus changes in the observed environment403

could occur having negative impact on SLAM convergence and finally the result could404

yield a suboptimal solution.405
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Figure 9. Real-world challenge: high volume of data because of the need of full coverage of the
environment - the city sector covered by many trajectories of MoMa vans.

Another challenge is related to having a sufficient coverage of the map, thus it406

is evident that many places have to be observed (visited) many times to reduce the407

possible impact of factors such as noisy data, low quality data, heavy traffic (Figure408

4), etc. The area is covered sufficiently when there are many overlaps from LiDAR409

measurements point of view. As in many mobile mapping approaches it is advised410

to guarantee at least 70% coverage (70% of LiDAR data from one trajectory can find411

correspondences to LiDAR data of other trajectories). Figure 9 demonstrates a multi-412

session SLAM subsystem covering city subarea. This region had to be visited many413

times (colored lines) since the scene is composed of multilevel constructions such as414

overpassing roads and underground tunnels. Red lines show challenging multi-session415

correspondences such as multilevel underground cross section etc. SLAM techniques416

require as good correspondences between observations as possible, thus any disruptive417

information can affect the algorithm convergence making it a suboptimal solution. After418

the experiment it was found that in some cases it was almost impossible to automatically419

find the correspondences between sessions where geometrical or other changes appeared.420

Therefore, the observed real-world challenges were classified into certain classes: a) lack421

of observations (Figures 10,11), b) roadworks (Figure 12), c) vegetation (Figure 13), d)422

repainting (Figure 14), e) multi level changes 15, f) unknown obstacles (Figure 16). Such423

classification is proposed due to different impact on alignment process. In the current424

form of the SLAM implementation these challenges are addressed by motion model and425

GNSS+INS constraints that maintain the poses of the trajectories. The most challenging426

problem is repainting of the lane dividers since a rather small discrepancy between the427

old and new paintings can affect alignment. Fortunately, this issue does not affect the428

entire accuracy assessment, since a large volume of data is processed and the probability429

of repainting all lane dividers in the whole United States region is rather low. Unknown430

obstacles are considered as point-to-point observation equations.431

5. Experimental validation432

5.1. Scope of data set433

The scope of data covered by the experiment includes 32785 trajectories collected434

in the USA by MoMa vans between 2016 and 2019. The total length of trajectories435

is 1,159,956.9 km and 11,526,543 nodes were used in the analysis. Since calculations436

performed by SLAM take 200 times more 6DOF nodes, the result of optimizing 186.4 ∗ 109
437

parameters is reported. In Table 3 there is information collected about the distribution of438

the data source from the point of view of reported NovAtel accuracy. It can be observed439
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(a) Image view. (b) LiDAR view.

(c) Image view. (d) LiDAR view.
Figure 10. Real-world challenge: lack of LiDAR observations caused by environmental conditions,
(ab) - typical environmental conditions, (cd) - winter conditions, only high reflective surfaces were
detected by LiDAR.

Table 3: Quality categories distribution in analyzed data.

NovAtel quality distance [km] % of total 3D accuracy (m)
1 710958 61.29 0.0 - 0.15
2 378453 32.63 0.05 - 0.4
3 49335 4.25 0.2 - 1.0
4 14132 1.22 0.5 - 2.0
5 715 0.06 1.0 - 5.0
6 59 0.01 2.0 - 10.0

raw 6304 0.54 -

that most of the accuracies of the input data are within the range of 0.0–1.0 m. Typical440

scenarios for limited access highways in the USA is shown in Figure 17.441

5.2. Results442

The major issue within the context of large scale SLAM systems corresponds to443

availability of the ground truth data. The methodology for evaluating such systems444

assuming existence of the ground truth data source can be found in [72]. Since the only445

ground-truth information comes from input GNSS+INS data it can be justified if SLAM446

moves poses within certain interval. It that sense it is possible to justify how much447

SLAM had to move trajectories to reach more consistent result. In Table 4 the results are448

summarized. For each category the difference between GNSS+INS and SLAM result was449

computed as relative pose. These values were summarized in histograms, therefore it is450

possible to justify the percentage of data maintaining the reported quality. An interesting451

observation is that results for the 2D error are more optimistic, therefore it is claimed452

that the post-processed GNSS+INS data are less precise in altitude what was shown453

as example in Figure 18. It can be observed in Table 4 that 52.5% of post-processed454

GNSS+INS data of class 1 are moved not more than 15 cm by SLAM according to the 3D455

error. 81.7% of data of class 2 are moved not more than 0.4 m by SLAM according to the456

3D error. 91.7% of data of class 3 are moved not more than 1.0 m by SLAM according457

to the 3D error. Looking at the 2D error it is claimed that 84% of data of class 1 are458
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(a) Image view. (b) LiDAR view.

(c) Image view. (d) LiDAR view.
Figure 11. Real-world challenge: lack of LiDAR observations caused by environmental conditions,
(ab) - typical environmental conditions, (cd) - winter conditions, only high reflective surfaces were
detected by LiDAR. It is the same location but MoMa van was driving in opposite directions.

(a) Left - year 2017, right - year 2019. (b) Left - year 2017, right - year 2018.

(c) Left - year 2017, right - year 2019. (d) Left - year 2017, right - year 2019.
Figure 12. Real-world challenge - roadworks.
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(a) Left - year 2017, right - year 2018. (b) Left - year 2016, right - year 2018.

(c) Left - year 2017, right - year 2018. (d) Left - year 2017, right - year 2018.
Figure 13. Real-world challenge - vegetation.

(a) Left - year 2018, right - year 2019. (b) Left - year 2018, right - year 2018.

(c) Left - year 2018, right - year 2018. (d) Left - year 2017, right - year 2019.
Figure 14. Real-world challenge - repainting.

(a) Left - year 2017, right - year 2018. (b) Left - year 2015, right - year 2017.

(c) Left - year 2015, right - year 2019. (d) Left - year 2015, right - year 2019.
Figure 15. Real-world challenge - multi level changes.
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(a) Left - year 2018, right - year 2019. (b) Left - year 2015, right - year 2019.

(c) Not reflective dots. (d) Not reflective dots.
Figure 16. Real-world challenge - unknown obstacles and objects of interest. Figure 16a: barriers,
Figure 16b: road lateral slope, Figures 16c, 16d: Botts’ dots instead of lane dividers.

Figure 17. Typical scenarios for limited access highways in the USA.
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(a) Post-processed GNSS+INS data. (b) Result of SLAM.

(c) Post-processed GNSS+INS data. (d) Result of SLAM.
Figure 18. The visualization of post-processed GNSS+INS data and SLAM result.

Table 4: Qualities verified using SLAM.

Quality 3D accuracy (m) % 3D diff % 2D diff % Altitude diff
1 0.0 - 0.15 52.5 84.0 65.6
2 0.05 - 0.4 81.7 93.7 88.3
3 0.2 - 1.0 91.7 97.8 94.5
4 0.5 - 2.0 96.1 99.0 97.3
5 1.0 - 5.0 88.6 97.8 91.6
6 2.0 - 10.0 98.4 99.5 99.2

moved by no more than 15 cm by SLAM. Therefore, it can be seen that the accuracy of459

altitude is much worse than the accuracy of longitude and latitude. This observation460

must be taken into consideration during navigation on multi-level roads. Additionally,461

the plots of yaw, pitch, roll errors are shown in Figure 20. The most problematic angle462

is roll since it corresponds mainly with long straight trajectories where this angle is463

difficult to measure by IMU, therefore SLAM produces the most significant corrections.464

An interesting observation is that there are many situations where the accuracy of post-465

processed GNSS+INS data is better than reported by NovAtel. It can be seen e.g. on466

Figure 32 where it is evident that large amount of data around 60% has 3D accuracy467

better than 0.5 m. Manual inspection was performed using HD map of the SLAM468

alignment and based on the inspection it is concluded that this technique can confirm the469

accuracy assessed by NovAtel algorithm and it can improve trajectories even when some470

minor errors of SLAM appear. The causes of these errors were collected as challenges471

in section 4. The investigation of SLAM errors is going to be the focus of our future472

research. Figures 19-34 demonstrate the quantitative results collected in Table 4.473

6. Impact of GNSS+INS positioning on safety474

For the impact of GNSS positioning on safety the following aspects are considered:475

a hypothetical Mid-Size vehicle type, a mean distance between lanes as 3.6 m (limited476

access highways in the United States of America) and Lateral Alert Limit as 0.72 m and477

Longitudinal Alert Limit as 1.40 m according to [2] (as a reference reported values of478

accuracy and alert limits of relative positioning for different types of vehicle versus479
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(a) Histograms of the 3D er-
rors. (b) Histograms of 2D errors.

(c) Histograms of altitude er-
rors.

Figure 19. Histograms of 3D, 2D and altitude errors measured as cumulated relative poses between
GNSS+INS and SLAM alignment.

(a) Histograms of yaw errors.
(b) Histograms of pitch er-
rors. (c) Histograms of roll errors.

Figure 20. Histograms of yaw, pitch, roll errors measured as cumulated relative poses between
GNSS+INS and SLAM alignment.

Figure 21. Histograms of 2D errors for category 0 (raw GNSS data) measured as cumulated relative
poses between GNSS+INS and SLAM alignment.

Figure 22. Histograms of 2D errors for data of NovAtel category 1 (accuracy range 0–0.15 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.

Figure 23. Histograms of 2D errors for data of NovAtel category 2 (accuracy range 0.05–0.4 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.
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Figure 24. Histograms of 2D errors for data of NovAtel category 3 (accuracy range 0.2–1.0 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.

Figure 25. Histograms of 2D errors for data of NovAtel category 4 (accuracy range 0.5–2.0 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.

Figure 26. Histograms of 2D errors for data of NovAtel category 5 (accuracy range 1.0–5.0 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.

Figure 27. Histograms of 2D errors for data of NovAtel category 6 (accuracy range 2.0–10.0 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.

Figure 28. Histograms of the 3D error for category 0 (raw GNSS data) measured as cumulated
relative poses between GNSS+INS and SLAM alignment.
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Figure 29. Histograms of the 3D error for data of NovAtel category 1 (accuracy range 0–0.15 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.

Figure 30. Histograms of the 3D error for data of NovAtel category 2 (accuracy range 0.05–0.4 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.

Figure 31. Histograms of the 3D error for data of NovAtel category 3 (accuracy range 0.2–1.0 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.

Figure 32. Histograms of the 3D error for data of NovAtel category 4 (accuracy range 0.5–2.0 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.

Figure 33. Histograms of the 3D error for data of NovAtel category 5 (accuracy range 1.0–5.0 m
plotted as a blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.
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Figure 34. Histograms of the 3D error for data of NovAtel category 6 (accuracy range 2.0–10.0 m
plotted as blue rectangle) measured as cumulated relative poses between GNSS+INS and SLAM
alignment.

Table 5: 2D error distribution as difference between GNSS+INS trajectories and aligned
by LiDAR SLAM.

population [%] err.below [m]
50 0.0517
68 0.0994
70 0.1083
80 0.1593
90 0.2681
95 0.4267
98 0.7414
99 1.0617

99.7 1.7683
99.99 5.9762

map are shown in Table 2). This scenario is the most optimistic one since a small480

vehicle is considered. It is assumed that during an autonomous drive there is the same481

GNSS+INS system for positioning and the real-time calculations have the same accuracy482

as in postprocessing presented in the experiment. From all trajectories (total length:483

1.159.956 km) 710.958 km is class 1 (61.3%), 378.453 is class 2 (32.63%) and 49.335 is484

class 3 (4.25%). The defined accuracy by NovAtel for class 1 is (0.0 - 0.15 m) for class485

2 ( 0.05–0.4) and class 3 (0.2 - 1.0), thus if the entire data set can reach such classes it486

can be considered as high probability of satisfying the Alert Limits for Mid-Size (width487

1.85 m, length 4.87 m) vehicle localization moving on limited access highways in the488

United States of America. In our case it is calculated 14.132 km of class 4 (1.22%) 715489

km of class 5 (0.006%), 59 km of class 6 (0.005%) and 6304 km of raw data (0.54%). To490

summarize, 98.17% of processed data belongs to classes 1–3 while 1.83% of data does491

not belong to classes 1–3 and could cause exceeding the alert limits. To verify these492

classes, further calculations are peformed related to the alignment of the trajectories as493

part of the proposed methodology. A result is shown in Table 5 and it is measured as494

cumulative 2D displacements of the GNSS+INS trajectories to the aligned one. Almost495

99% of data satisfies NovAtel 1–3 classes, therefore this additional calculation confirms496

the fact of more than 1% of data that could cause hitting alert limits for a Mid-Size497

vehicle. As a further reference altitude error distribution is presented in Table 6 and498

rotation (roll) error distribution in Table 7. For the larger vehicles e.g. for 6-Wheel Pickup499

(width 2.03–2.43 m, length 5.32–6.76 m) the Lateral Alert Limit is 0.4 m thus according to500

the proposed methodology only around 95% of data satisfies it.501

6.1. Qualitative example502

Consider a route between Los Angeles and San Diego (Figure 35). Figures 36-51503

show an interesting subset of identified potential safety issues related to alert limits504

for this trip. In each figure the left one corresponds to GNSS+INS trajectories (brown505

color), the right one corresponds to aligned trajectories (also brown color). Lines (LiDAR506

observations) are marked by blue color. Alerts are marked as red cycles.507
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Table 6: Altitude error distribution as difference between GNSS+INS trajectories and
aligned by LiDAR SLAM.

population [%] err.below [m]
50 0.1009
68 0.1813
70 0.1919
80 0.2638
90 0.3935
95 0.5441
98 0.8032
99 1.0740

99.7 1.7763
99.99 8.4054

Table 7: Rotation (roll) error distribution as difference between GNSS+INS trajectories
and aligned by LiDAR SLAM.

population [%] err.below [deg]
50 0.2044
60 0.2959
68 0.3939
70 0.4239
80 0.6218
90 1.01
95 1.4414
98 2.0626
99 2.5552

99.7 3.7421
99.99 8.1119

Figure 35. Route between Los Angeles and San Diego with a marked interesting subset of alert
limits.

Figure 36. Exceeded alert limit (1) at latitude: 34.0406, longitude: -118.1704
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Figure 37. Exceeded alert limit (2) at latitude: 33.9038, longitude: -118.1852

Figure 38. Exceeded alert limit (3) at latitude: 33.8771, longitude: -118.1454

Figure 39. Exceeded alert limit (4) at latitude: 33.7615, longitude: -117.8633

Figure 40. Exceeded alert limit (5) at latitude: 33.1732, longitude: -117.3485
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Figure 41. Exceeded alert limit (6) at latitude: 32.9049, longitude: -117.2239

Figure 42. Exceeded alert limit (7) at latitude: 32.8902, longitude: -117.2054

Figure 43. Exceeded alert limit (8) at latitude: 32.8736, longitude: -117.1982

Figure 44. Exceeded alert limit (9) at latitude: 32.7718, longitude: -117.1322
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Figure 45. Exceeded alert limit (10) at latitude: 32.7616, longitude: -117.1271

Figure 46. Exceeded alert limit (11) at latitude: 32.6696, longitude: -117.0813

Figure 47. Exceeded alert limit (12) at latitude: 32.6659, longitude: -117.0799

Figure 48. Exceeded alert limit (13) at latitude: 32.6621, longitude: -117.0781
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Figure 49. Exceeded alert limit (14) at latitude: 32.6562, longitude: -117.0724

Figure 50. Exceeded alert limit (15) at latitude: 32.5816, longitude: -117.0374

Figure 51. Exceeded alert limit (16) at latitude: 32.5495, longitude: -117.0391
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7. Conclusion508

This paper concerns a new methodology for accuracy assessment of global posi-509

tioning system at continent scale for assessing autonomous driving safety. Safety is510

addressed as an alert limit for the defined geometry of the problem, where the aim is to511

maintain knowledge that the vehicle (its bounding box) is within its lane. Hypothetical512

Mid-Size and 6-Wheel Pickup types of vehicles were considered and the mean distance513

between lanes as 3.6 m as representative boundaries of the vehicles moving on the514

limited access highways in the United States of America. A new methodology of the515

global positioning accuracy assessment is proposed, incorporating mapping systems516

performing road surveys covering United States region in the 2016–2019 period. It is517

composed of six elements: 1) Mobile mapping system minimal setup, 2) Global position-518

ing data processing, 3) LiDAR data processing, 4) Alignment algorithm, 5) Accuracy519

assessment confirmation and 6) Autonomous driving safety analysis. It relates to the520

main goal of measuring the impact of global positioning on autonomous driving safety521

assessed as calculation of GNSS+INS accuracy confirmed with additional trajectory522

alignment. The novelty of the approach is the large-scale evaluation based on massive523

mobile mapping data, GNSS+INS processing for accuracy assessment and introducing524

LiDAR SLAM-based data alignment to confirm accuracy. The research challenge was525

to assess the positioning accuracy of the moving cars assuming full coverage of limited526

access highways in the United States of America. The expected coverage limits the527

possibility of repetitive measurements and introduces an important challenge of lack528

of availability of the ground truth data. Therefore, state-of-the-art methodology is not529

applicable for this particular application and a novel approach is proposed. The idea is530

to align all trajectories using LiDAR to confirm the accuracy reported by state-of-the-art531

GNSS+INS data processing performed at a large scale. For this reason, it is investigated532

how to use of LiDAR metric measurements for data alignment implemented using533

SLAM (Simultaneous Localization and Mapping) assuring no systematic drift thanks to534

applying GNSS+INS constraints. The SLAM implementation is using state-of-the-art535

observation equations and the Weighted Non-Linear Least Square optimization tech-536

nique capable of integration of required constraints. The methodology was verified537

experimentally using arbitrarily chosen measurement instruments (NovAtel GNSS+INS,538

LiDAR Velodyne HDL32) mounted onto mobile mapping systems. The accuracy was539

assessed and confirmed for 32785 trajectories with total length of 1,159,956.9 km and of540

total 186.4 ∗ 109 optimized parameters (six degrees of freedom poses) that cover United541

States region in the 2016–2019 period. The proposed methodology extends the existing542

methods of global positioning system accuracy assessment with the focus on realistic543

conditions and full area coverage. The impact of global positioning system accuracy on544

autonomous car safety is discussed. It is shown that 99% of the assessed data satisfied545

safety requirements (driving within lanes of 3.6 m) for Mid-Size vehicle and 95% for546

6-Wheel Pickup. The conclusion is that this methodology has great potential for global547

positioning accuracy assessment at global scale for autonomous driving applications.548

Further research is required to solve challenges affecting data alignment as the reference549

tool for accuracy confirmation.550

Author Contributions: Conceptualization, All; methodology, All; software, All; validation, All;551

formal analysis, All; investigation, All; resources, All; data curation, All; writing—original draft552

preparation, J.B; writing—review and editing, All; visualization, All; supervision, K.M; All authors553

have read and agreed to the published version of the manuscript.554

Funding: This research received no external funding.555

Data Availability Statement: Not applicable.556

Acknowledgments: The authors would like to thank TomTom B.V. for providing access to exper-557

imental data, the commercially available product for validation of proposed Methodology and558

computational resources for performing this experiment.559

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2021                   doi:10.20944/preprints202106.0462.v1

https://doi.org/10.20944/preprints202106.0462.v1


Version June 16, 2021 submitted to Journal Not Specified 31 of 33

Conflicts of Interest: The authors declare no conflict of interest.560

Abbreviations561
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LiDAR Light Detection and Ranging
GPS Global Positioning System
GNSS+INS Global Navigation Satellite System + Inertial Navigation System
SLAM Simultaneous Localization and Mapping
RANSAC Random Sample Consensus
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