Binomial Cubic Fibonacci Sums

Kunle Adegoke
Department of Physics and Engineering Physics
Obafemi Awolowo University
220005 Ile-Ife, Nigeria
adegoke00@gmail.com

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.

Keywords: Fibonacci number, Lucas number, summation identity, series, binomial coefficient, cubic Fibonacci identity.

Abstract

We evaluate some binomial cubic Fibonacci sums.

1 Introduction

As noted by Nagy et al. [4], there is a paucity of binomial cubic Fibonacci and Lucas identities in existing literature.

Let F_j and L_j be the j^{th} Fibonacci number and Lucas number, respectively. Our main goal is to evaluate the following sums,

$$\sum_{k=0}^{n} \binom{n}{k} F_{k+s}^{3}, \quad \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} F_{k+s}^{3}, \quad \sum_{k=0}^{n} 2^{k} \binom{n}{k} F_{k+s}^{3},$$

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} 2^{n-k} F_{k+s}^{3}, \quad \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} 3^{k} F_{k+s}^{3}, \quad \sum_{k=0}^{n} \binom{n}{k} 3^{n-k} F_{k+s}^{3},$$

$$\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} F_{2k+s}^{3}, \quad \sum_{k=1}^{\lceil n/2 \rceil} \binom{n}{2k-1} F_{2k+s}^{3},$$

and the corresponding series involving Lucas numbers, for any non-negative integer n and any integer s.

The Fibonacci numbers, F_j , and the Lucas numbers, L_j , are defined, for $j \in \mathbb{Z}$, through the recurrence relations

$$F_j = F_{j-1} + F_{j-2}, (j \ge 2), \quad F_0 = 0, F_1 = 1;$$

and

$$L_j = L_{j-1} + L_{j-2}, (j \ge 2), \quad L_0 = 2, L_1 = 1;$$

with

$$F_{-j} = (-1)^{j-1} F_j, \quad L_{-j} = (-1)^j L_j.$$

Throughout this paper, we denote the golden ratio, $(1 + \sqrt{5})/2$, by α and write $\beta = (1 - \sqrt{5})/2 = -1/\alpha$, so that $\alpha\beta = -1$ and $\alpha + \beta = 1$.

Explicit formulas (Binet formulas) for the Fibonacci and Lucas numbers are

$$F_j = \frac{\alpha^j - \beta^j}{\alpha - \beta}, \quad L_j = \alpha^j + \beta^j, \quad j \in \mathbb{Z}.$$
 (1)

Koshy [3] and Vajda [6] have written excellent books dealing with Fibonacci and Lucas numbers.

2 Required identities

Lemma 1. For real or complex z, let a given well-behaved function h(z) have, in its domain, the representation $h(z) = \sum_{k=c_1}^{c_2} g(k) z^{f(k)}$ where f(k) and g(k) are given real sequences and $c_1, c_2 \in [-\infty, \infty]$. Let j be an integer. Then,

$$5\sqrt{5} \sum_{k=c_1}^{c_2} g(k) z^{f(k)} F_{jf(k)}^3$$

$$= h(\alpha^{3j}) - h(\beta^{3j}) - 3 \left(h\left((-1)^j \alpha^j z \right) - h\left((-1)^j \beta^j z \right) \right),$$
(F)

$$\sum_{k=c_1}^{c_2} g(k) z^{f(k)} L_{jf(k)}^3$$

$$= h(\alpha^{3j}) + h(\beta^{3j}) + 3 \left(h\left((-1)^j \alpha^j z \right) + h\left((-1)^j \beta^j z \right) \right).$$
(L)

Proof. Set m = 3 in Adegoke [1, identities (F) and (L)].

Lemma 2. Let a, b, c and d be rational numbers and λ an irrational number. Then,

$$a + \lambda b = c + \lambda d \iff a = c, \quad b = d.$$

Lemma 3. For p and q integers,

$$1 + (-1)^p \alpha^{2q} = \begin{cases} (-1)^p \alpha^q F_q \sqrt{5}, & \text{if } p \text{ and } q \text{ have different parity;} \\ (-1)^p \alpha^q L_q, & \text{if } p \text{ and } q \text{ have the same parity.} \end{cases}$$
 (2)

$$1 - (-1)^p \alpha^{2q} = \begin{cases} (-1)^{p-1} \alpha^q L_q, & \text{if } p \text{ and } q \text{ have different parity;} \\ (-1)^{p-1} \alpha^q F_q \sqrt{5}, & \text{if } p \text{ and } q \text{ have the same parity.} \end{cases}$$
(3)

Proof. We have

$$(-1)^{p+q} + (-1)^p \alpha^{2q} = \alpha^{p+q} \beta^{p+q} + \alpha^{p+2q} \beta^p$$

= $\alpha^{p+q} \beta^p (\alpha^q + \beta^q)$
= $(-1)^p \alpha^q L_q$. (4)

Similarly,

$$(-1)^{p+q} - (-1)^p \alpha^{2q} = (-1)^{p-1} \alpha^q F_q \sqrt{5}.$$
 (5)

Corresponding to (4) and (5) we have

$$(-1)^{p+q} + (-1)^p \beta^{2q} = (-1)^p \beta^q L_q \tag{6}$$

and

$$(-1)^{p+q} - (-1)^p \beta^{2q} = (-1)^p \beta^q F_q \sqrt{5}. \tag{7}$$

Identities (4), (5), (6) and (7) imply

$$(-1)^q + \alpha^{2q} = \alpha^q L_q, \tag{8}$$

$$(-1)^q - \alpha^{2q} = -\alpha^q F_a \sqrt{5},\tag{9}$$

$$(-1)^q + \beta^{2q} = \beta^q L_q, \tag{10}$$

$$(-1)^q - \beta^{2q} = \beta^q F_a \sqrt{5}. \tag{11}$$

Lemma 4 (Hoggatt et al [2]). For p and q integers,

$$L_{p+q} - L_p \alpha^q = -\beta^p F_q \sqrt{5},\tag{12}$$

$$L_{p+q} - L_p \beta^q = \alpha^p F_q \sqrt{5}, \tag{13}$$

$$F_{p+q} - F_p \alpha^q = \beta^p F_q, \tag{14}$$

$$F_{p+q} - F_p \beta^q = \alpha^p F_q. \tag{15}$$

Lemma 5. We have

$$1 - \alpha = \beta$$
, $1 - \beta = \alpha$, $1 + \alpha^3 = 2\alpha^2$, $1 + \beta^3 = 2\beta^2$, (16)

$$1 + \alpha = \alpha^2, \quad 1 + \beta = \beta^2, \quad 1 - \alpha^3 = -2\alpha, \quad 1 - \beta^3 = -2\beta,$$
 (17)

$$1 - 2\alpha = -\sqrt{5}, \quad 1 - 2\beta = \sqrt{5}, \quad 1 + 2\alpha^3 = \alpha^3 \sqrt{5}, \quad 1 + 2\beta^3 = -\beta^3 \sqrt{5}, \tag{18}$$

$$2 + \alpha = \alpha \sqrt{5}, \quad 2 + \beta = -\beta \sqrt{5}, \quad 2 - \alpha^3 = -\sqrt{5}, \quad 2 - \beta^3 = \sqrt{5},$$
 (19)

$$1 + 3\alpha = \alpha^2 \sqrt{5}, \quad 1 + 3\beta = -\beta^2 \sqrt{5}, \quad 1 - 3\alpha^3 = -2\alpha^2 \sqrt{5}, \quad 1 - 3\beta^3 = 2\beta^2 \sqrt{5}, \quad (20)$$

$$3 - \alpha = -\beta\sqrt{5}$$
, $3 - \beta = \alpha\sqrt{5}$, $3 + \alpha^3 = 2\alpha\sqrt{5}$, $3 + \beta^3 = -2\beta\sqrt{5}$. (21)

Proof. Each identity is obtained by making appropriate substitutions for p and q in the identities given in Lemma 4.

3 Binomial cubic Fibonacci identities

Lemma 6. For non-negative integer n, integers j, r and s and real or complex x and z,

$$5\sqrt{5}\sum_{k=0}^{n} \binom{n}{k} x^{n-k} z^k F_{j(rk+s)}^3 = \alpha^{3js} (x + \alpha^{3jr} z)^n - \beta^{3js} (x + \beta^{3jr} z)^n - (-1)^{js} 3\alpha^{js} (x + (-1)^{jr} \alpha^{jr} z)^n + (-1)^{js} 3\beta^{js} (x + (-1)^{jr} \beta^{jr} z)^n,$$
(F1)

$$\sum_{k=0}^{n} \binom{n}{k} x^{n-k} z^k L_{j(rk+s)}^3 = \alpha^{3js} (x + \alpha^{3jr} z)^n + \beta^{3js} (x + \beta^{3jr} z)^n + (-1)^{js} 3\alpha^{js} (x + (-1)^{jr} \alpha^{jr} z)^n + (-1)^{js} 3\beta^{js} (x + (-1)^{jr} \beta^{jr} z)^n.$$
(L1)

Proof. Set m=3 in Adegoke [1, identities (BF') and (BL')].

Theorem 1. For non-negative integer n and any integer s,

$$\sum_{k=0}^{n} \binom{n}{k} F_{k+s}^{3} = \frac{1}{5} (2^{n} F_{2n+3s} + 3F_{n-s}), \tag{22}$$

$$\sum_{k=0}^{n} \binom{n}{k} L_{k+s}^{3} = 2^{n} L_{2n+3s} + 3L_{n-s}, \tag{23}$$

Proof. Set $x=1,\,z=1,\,j=1,\,r=1$ in (F1), utilizing identity (16), to obtain

$$5\sqrt{5}\sum_{k=0}^{n} \binom{n}{k} F_{k+s}^{3} = 2^{n} (\alpha^{3s+2n} - \beta^{3s+2n}) + 3(\alpha^{n-s} - \beta^{n-s});$$

and hence identity (22). To prove identity (23), use these (x,z,j,\ldots) values in (L1).

The s=0 special case of (22) was obtained by Stanica [5].

Theorem 2. For non-negative integer n and any integer s,

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k F_{k+s}^3 = \frac{1}{5} ((-1)^n 2^n F_{n+3s} - (-1)^s 3F_{2n+s}), \tag{24}$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} L_{k+s}^3 = (-1)^n 2^n L_{n+3s} + (-1)^s 3L_{2n+s}, \tag{25}$$

Proof. To prove identity (24), set x = 1, z = -1, j = 1, r = 1 in (F1), noting the identities in (17), to get

$$5\sqrt{5}\sum_{k=0}^{n} (-1)^k \binom{n}{k} F_{k+s}^3 = (-1)^n 2^n (\alpha^{n+3s} - \beta^{n+3s}) - 3(-1)^s (\alpha^{2n+s} - \beta^{2n+s}),$$

from which the identity follows. The proof of (25) is similar. Use these values in (L1). \Box

Stanica [5] also found the s = 0 case of identity (24).

Theorem 3. For non-negative integer n and any integer s,

$$\sum_{k=0}^{n} \binom{n}{k} 2^k F_{k+s}^3 = \begin{cases} 5^{n/2-1} (F_{3n+3s} - (-1)^s 3F_s), & n \text{ even;} \\ 5^{(n-3)/2} (L_{3n+3s} + (-1)^s 3L_s) & n \text{ odd,} \end{cases}$$
(26)

$$\sum_{k=0}^{n} \binom{n}{k} 2^k L_{k+s}^3 = \begin{cases} 5^{n/2} (L_{3n+3s} + (-1)^s 3L_s), & n \text{ even;} \\ 5^{(n+1)/2} (F_{3n+3s} - (-1)^s 3F_s) & n \text{ odd.} \end{cases}$$
 (27)

Proof. The proof of (26) proceeds with the choice j = 1, r = 1, z = 2 in (F1), employing the set of identities (18), giving

$$5\sqrt{5}\sum_{k=0}^{n} 2^{k} \binom{n}{k} F_{k+s}^{3} = (\sqrt{5})^{n} (\alpha^{3n+3s} - (-1)^{n} \beta^{3n+3s}) - 3(-1)^{n+s} (\sqrt{5})^{n} (\alpha^{s} - (-1)^{n} \beta^{s}),$$

from which the identity follows in accordance with the parity of n. The proof of (27) is similar. Use these (x, z, j, ...) values in (L1).

Theorem 4. For non-negative integer n and any integer s,

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} 2^{n-k} F_{k+s}^3 = \begin{cases} 5^{n/2-1} ((-1)^{s-1} 3F_{n+s} + F_{3s}), & n \text{ even;} \\ 5^{(n-3)/2} ((-1)^{s-1} 3L_{n+s} - L_{3s}), & n \text{ odd;} \end{cases}$$
(28)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} 2^{n-k} L_{k+s}^3 = \begin{cases} 5^{n/2} ((-1)^s 3L_{n+s} + L_{3s}), & n \text{ even;} \\ 5^{(n+1)/2} ((-1)^s 3F_{n+s} - F_{3s}), & n \text{ odd.} \end{cases}$$
(29)

Proof. The coice x=2, z=-1, j=1, z=1 in (F1), noting the set of identities (19) gives

$$5\sqrt{5}\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} 2^{n-k} F_{k+s}^{3} = (\sqrt{5})^{n} (-1)^{n} (\alpha^{3s} - (-1)^{n} \beta^{3s}) - (\sqrt{5})^{n} (-1)^{s} 3(\alpha^{n+s} - (-1)^{n} \beta^{n+s});$$

from which we get (28). The proof of (29) is similar.

Theorem 5. For non-negative integer n and any integer s,

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} 3^k F_{k+s}^3 = \begin{cases} 5^{n/2-1} (2^n F_{2n+3s} - (-1)^s 3 F_{2n+s}), & n \text{ even;} \\ -5^{(n-3)/2} (2^n L_{2n+3s} + (-1)^s 3 L_{2n+s}), & n \text{ odd;} \end{cases}$$
(30)

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} 3^k L_{k+s}^3 = \begin{cases} 5^{n/2} (2^n L_{2n+3s} + (-1)^s 3L_{2n+s}), & n \text{ even;} \\ -5^{(n+1)/2} (2^n F_{2n+3s} - (-1)^s 3F_{2n+s}), & n \text{ odd.} \end{cases}$$
(31)

Proof. Choose x = 1, z = -3, j = 1, r = 1 in (F1). This gives, with the use of the identities in (20),

$$5\sqrt{5}\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} 3^{k} F_{k+s}^{3} = (\sqrt{5})^{n} (-1)^{n} 2^{n} (\alpha^{2n+3s} - (-1)^{n} \beta^{2n+3s}) - (\sqrt{5})^{n} (-1)^{s} 3(\alpha^{2n+s} - (-1)^{n} \beta^{2n+s}).$$

Identity (30) now follows. The proof of (31) is similar.

Theorem 6. For non-negative integer n and any integer s,

$$\sum_{k=0}^{n} {n \choose k} 3^{n-k} F_{k+s}^{3} = \begin{cases} 5^{n/2-1} (2^{n} F_{n+3s} + 3F_{n-s}), & n \text{ even;} \\ 5^{(n-3)/2} (2^{n} L_{n+3s} + 3L_{n-s}), & n \text{ odd;} \end{cases}$$
(32)

$$\sum_{k=0}^{n} \binom{n}{k} 3^{n-k} L_{k+s}^{3} = \begin{cases} 5^{n/2} (2^{n} L_{n+3s} + 3L_{n-s}), & n \text{ even;} \\ 5^{(n+1)/2} (2^{n} F_{n+3s} + 3F_{n-s}), & n \text{ odd.} \end{cases}$$
(33)

Proof. Set x=3, z=1, j=1=r in (F1) and use the set of identities in (21) to obtain

$$5\sqrt{5}\sum_{k=0}^{n} \binom{n}{k} 3^{n-k} F_{k+s}^{3} = (\sqrt{5})^{n} 2^{n} (\alpha^{n+3s} - (-1)^{n} \beta^{n+3s}) + (\sqrt{5})^{n} 3(\alpha^{n-s} - (-1)^{n} \beta^{n-s});$$

from which (32) follows. The proof of (33) is similar. Use the same (x, z, ...) values in (L1).

Lemma 7. For non-negative integer n, integers j, r and s and real or complex z,

$$5\sqrt{5} \sum_{k=0}^{\lfloor n/2 \rfloor} 2 \binom{n}{2k} z^{2k} F_{j(2rk+s)}^{3}$$

$$= \alpha^{3js} (1 + \alpha^{3jr} z)^{n} + \alpha^{3js} (1 - \alpha^{3jr} z)^{n} - \beta^{3js} (1 + \beta^{3jr} z)^{n} - \beta^{3js} (1 - \beta^{3jr} z)^{n}$$

$$- (-1)^{js} \alpha^{js} 3 (1 + (-1)^{jr} \alpha^{jr} z)^{n} - (-1)^{js} \alpha^{js} 3 (1 - (-1)^{jr} \alpha^{jr} z)^{n}$$

$$+ (-1)^{js} \beta^{js} 3 (1 + (-1)^{jr} \beta^{jr} z)^{n} + (-1)^{js} \beta^{js} 3 (1 - (-1)^{jr} \beta^{jr} z)^{n},$$
(F2)

$$2\sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} z^{2k} L_{j(2rk+s)}^{3}$$

$$= \alpha^{3js} (1 + \alpha^{3jr} z)^{n} + \alpha^{3js} (1 - \alpha^{3jr} z)^{n} + \beta^{3js} (1 + \beta^{3jr} z)^{n} + \beta^{3js} (1 - \beta^{3jr} z)^{n}$$

$$+ (-1)^{js} \alpha^{js} 3(1 + (-1)^{jr} \alpha^{jr} z)^{n} + (-1)^{js} \alpha^{js} 3(1 - (-1)^{jr} \alpha^{jr} z)^{n}$$

$$+ (-1)^{js} \beta^{js} 3(1 + (-1)^{jr} \beta^{jr} z)^{n} + (-1)^{js} \beta^{js} 3(1 - (-1)^{jr} \beta^{jr} z)^{n},$$
(L2)

$$5\sqrt{5} \sum_{k=1}^{\lceil n/2 \rceil} 2 \binom{n}{2k-1} z^{2k-1} F_{j(2rk+s)}^{3}$$

$$= \alpha^{3j(r+s)} (1 + \alpha^{3jr} z)^{n} - \alpha^{3j(r+s)} (1 - \alpha^{3jr} z)^{n} - \beta^{3j(r+s)} (1 + \beta^{3jr} z)^{n} + \beta^{3j(r+s)} (1 - \beta^{3jr} z)^{n}$$

$$- (-1)^{j(r+s)} \alpha^{j(r+s)} 3 (1 + (-1)^{jr} \alpha^{jr} z)^{n} + (-1)^{j(r+s)} \alpha^{j(r+s)} 3 (1 - (-1)^{jr} \alpha^{jr} z)^{n}$$

$$+ (-1)^{j(r+s)} \beta^{j(r+s)} 3 (1 + (-1)^{jr} \beta^{jr} z)^{n} - (-1)^{j(r+s)} \beta^{j(r+s)} 3 (1 - (-1)^{jr} \beta^{jr} z)^{n},$$
(F3)

$$2\sum_{k=1}^{\lceil n/2 \rceil} \binom{n}{2k-1} z^{2k-1} L_{j(2rk+s)}^{3}$$

$$= \alpha^{3j(r+s)} (1 + \alpha^{3jr} z)^{n} - \alpha^{3j(r+s)} (1 - \alpha^{3jr} z)^{n} + \beta^{3j(r+s)} (1 + \beta^{3jr} z)^{n} - \beta^{3j(r+s)} (1 - \beta^{3jr} z)^{n}$$

$$+ (-1)^{j(r+s)} \alpha^{j(r+s)} 3(1 + (-1)^{jr} \alpha^{jr} z)^{n} - (-1)^{j(r+s)} \alpha^{j(r+s)} 3(1 - (-1)^{jr} \alpha^{jr} z)^{n}$$

$$+ (-1)^{j(r+s)} \beta^{j(r+s)} 3(1 + (-1)^{jr} \beta^{jr} z)^{n} - (-1)^{j(r+s)} \beta^{j(r+s)} 3(1 - (-1)^{jr} \beta^{jr} z)^{n}.$$
(L3)

Proof. In the identities

$$h_1(z) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} z^{2rk+s} = z^s (1+z^r)^n + z^s (1-z^r)^n,$$

$$h_2(z) = 2 \sum_{k=1}^{\lfloor n/2 \rfloor} {n \choose 2k-1} z^{2rk+s} = z^{r+s} (1+z^r)^n - z^{r+s} (1-z^r)^n,$$

identify

$$g(k) = 2\binom{n}{2k}$$
, $f(k) = 2rk + s$, $c_1 = 0$, $c_2 = \lfloor n/2 \rfloor$, $h(z) = z^s (1 + z^r)^n + z^s (1 - z^r)^n$,

and use these in (F) and (L) to obtain (F2) and (L2).

Similarly, use of

$$g(k) = 2\binom{n}{2k-1}$$
, $f(k) = 2rk+s$, $c_1 = 1$, $c_2 = \lceil n/2 \rceil$, $h(z) = z^s(1+z^r)^n - z^s(1-z^r)^n$,

in (F) and (L) gives (F3) and (L3).

Theorem 7. For non-negative integer n and any integer s,

$$10 \sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} F_{2k+s}^3 = 2^n (F_{2n+3s} + (-1)^n F_{n+3s}) - 3(-1)^s (F_{2n+s} - (-1)^s F_{n-s}),$$
(34)

$$2\sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} L_{2k+s}^3 = 2^n (L_{2n+3s} + (-1)^n L_{n+3s}) + 3(-1)^s (L_{2n+s} + (-1)^s L_{n-s}).$$
(35)

Proof. The choice of z = 1 = j = r in (F2) gives

$$10\sqrt{5} \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} F_{2k+s}^3 = 2^n (\alpha^{2n+3s} - \beta^{2n+3s}) + (-1)^n 2^n (\alpha^{n+3s} - \beta^{n+3s}) + (-1)^s (\beta^s \alpha^n - \alpha^s \beta^n) - 3(-1)^s (\alpha^{2n+s} - \beta^{2n+s});$$

from which identity (34) follows. The proof of (35) is similar; use z = 1 = j = r in (L2). \square

Corollary 8. For non-negative integer n and any integer s,

$$10\sum_{k=0}^{n} {2n \choose 2k} F_{2k+s}^{3} = \begin{cases} 4^{n} L_{n} F_{3n+3s} - (-1)^{s} 3 F_{n+s} L_{3n}, & n \text{ even;} \\ 4^{n} F_{n} L_{3n+3s} - (-1)^{s} 3 L_{n+s} F_{3n}, & n \text{ odd;} \end{cases}$$
(36)

$$2\sum_{k=0}^{n} {2n \choose 2k} L_{2k+s}^{3} = \begin{cases} 4^{n} L_{n} L_{3n+3s} + (-1)^{s} 3L_{n+s} L_{3n}, & n \text{ even;} \\ 5(4^{n} F_{n} F_{3n+3s} + (-1)^{s} 3F_{n+s} F_{3n}), & n \text{ odd.} \end{cases}$$
(37)

Proof. Write 2n for n in each of the identities (34) and (35). Simplification is achieved by the use of the following well-known Fibonacci identities which are valid for any two integers u and v having the same parity:

$$F_u + (-1)^{(u-v)/2} F_v = L_{(u-v)/2} F_{(u+v)/2}, \tag{38}$$

$$F_u - (-1)^{(u-v)/2} F_v = F_{(u-v)/2} L_{(u+v)/2}, \tag{39}$$

$$L_u + (-1)^{(u-v)/2} L_v = L_{(u-v)/2} L_{(u+v)/2}, \tag{40}$$

$$L_u - (-1)^{(u-v)/2} L_v = 5F_{(u-v)/2} F_{(u+v)/2}.$$
(41)

Corollary 9. For non-negative integer n,

$$10\sum_{k=0}^{n} {2n-1 \choose 2k} F_{2k}^{3} = \begin{cases} (2^{2n-1}-3)F_{2n-1}L_{n-1}L_{n}, & n \text{ even;} \\ (2^{2n-1}-3)5F_{2n-1}F_{n-1}F_{n}, & n \text{ odd;} \end{cases}$$
(42)

$$2\sum_{k=0}^{n} {2n \choose 2k} L_{2k}^{3} = \begin{cases} (4^{n} + 3)L_{n}L_{3n}, & n \text{ even;} \\ (4^{n} + 3)5F_{n}F_{3n}, & n \text{ odd.} \end{cases}$$
(43)

Proof. To prove (42), write 2n-1 for n in (34) and set s=0. To prove (43), set s=0 in identity (37).

Theorem 10. For non-negative integer n and any integer s,

$$10\sum_{k=1}^{\lceil n/2 \rceil} \binom{n}{2k-1} F_{2k+s}^3 = 2^n (F_{2n+3s+3} - (-1)^n F_{n+3s+3}) - (-1)^s 3(F_{2n+s+1} - (-1)^s F_{n-s-1}),$$
(44)

$$2\sum_{k=1}^{\lceil n/2 \rceil} {n \choose 2k-1} L_{2k+s}^3 = 2^n (L_{2n+3s+3} - (-1)^n L_{n+3s+3}) + (-1)^s 3(L_{2n+s+1} + (-1)^s L_{n-s-1}).$$
(45)

Proof. Set z = 1 = j = r in identity (F3) to obtain

$$\begin{split} &10\sqrt{5}\sum_{k=1}^{\lceil n/2\rceil}\binom{n}{2k-1}F_{2k+s}^3\\ &=2^n(\alpha^{2n+3s+3}-\beta^{2n+3s+3})-(-1)^n2^n(\alpha^{n+3s+3}-\beta^{n+3s+3})\\ &+(-1)^{s+1}3(\alpha^{2n+s+1}-\beta^{2n+s+1})+(-1)^{s+1}3(\alpha^n\beta^{s+1}-\alpha^{s+1}\beta^n); \end{split}$$

from which identity (44) follows. The proof of (45) is similar.

Corollary 11. For non-negative integer n and any integer s,

$$10\sum_{k=1}^{n} {2n \choose 2k-1} F_{2k+s}^{3} = \begin{cases} 4^{n} F_{n} L_{3n+3s+3} - (-1)^{s} 3L_{n+s+1} F_{3n}, & n \text{ even;} \\ 4^{n} L_{n} F_{3n+3s+3} - (-1)^{s} 3F_{n+s+1} L_{3n}, & n \text{ odd;} \end{cases}$$
(46)

$$2\sum_{k=1}^{n} {2n \choose 2k-1} L_{2k+s}^{3} = \begin{cases} 5(4^{n}F_{n}F_{3n+3s+3} + (-1)^{s}3F_{n+s+1}F_{3n}), & n \text{ even;} \\ 4^{n}L_{n}L_{3n+3s+3} + (-1)^{s}3L_{n+s+1}L_{3n}, & n \text{ odd.} \end{cases}$$
(47)

Proof. Write 2n for n in each of the identities (44) and (45) and make use of identities (38) – (41).

Corollary 12. For non-negative integer n,

$$10\sum_{k=1}^{n} {2n-1 \choose 2k-1} F_{2k-1}^{3} = \begin{cases} (2^{2n-1}+3)5F_{2n-1}F_{n-1}F_{n}, & n \text{ even;} \\ (2^{2n-1}+3)F_{2n-1}L_{n-1}L_{n}, & n \text{ odd,} \end{cases}$$
(48)

$$2\sum_{k=1}^{n} {2n \choose 2k-1} L_{2k-1}^{3} = \begin{cases} (4^{n}-3)5F_{n}F_{3n}, & n \text{ even;} \\ (4^{n}-3)L_{n}L_{3n}, & n \text{ odd.} \end{cases}$$
(49)

References

- [1] K. Adegoke, Binomial Fibonacci power sums, preprint, 2021, doi: 10.20944/preprints202105.0378.v1
- [2] V. E. Hoggatt, Jr., J. W. Phillips and H. T. Leonard, Jr., Twenty-four master identities, The Fibonacci Quarterly 9:1 (1971), 1–17.
- [3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001.
- [4] M. Nagy, S. R. Cowel and V. Beiu, Survey of cubic Fibonacci identities when cuboids carry weight, preprint, 2019, arXiv: 1902.05944v1.
- [5] P. Stănică, Generating functions, weighted and non-weighted sums for powers of secondorder recurrence sequences, *The Fibonacci Quarterly* **41**:4 (2003), 321–333.
- [6] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Press, 2008.

Concerned with sequences: A000032, A000045.