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Abstract: This paper is devoted to the foundational problems of 

dendrogramic holographic theory (DH-theory). We use the ontic-
epistemic (implicate-explicate order) methodology. The epistemic 

counterpart is based on representation of data by dendrograms 
constructed with hierarchic clustering algorithms. The ontic Universe is 

described as the p-adic tree; it is zero dimensional, totally disconnected, 
disordered, and bounded (in p-adic ultrametric). Interrelation classical-

quantum loses its sharpness; generally simple dendrograms are ``more 

quantum’’ than complex one. We use the CHSH-inequality as a measure of 
quantum(-likeness). We demonstrate that it can be violated by classical 

experimental data represented by dendrograms. The seed of this 
violation is neither nonlocality nor rejection of realism. This is 

nonergodicity of dendrogramic time series. Generally, violation of 
ergodicity is one of the basic features of DH-theory. We also consider DH-

theory for Minkovski geometry and monitor the dependence of CHSH-
violation and nonergodicity on geometry as well as a Lorentz 
transformation of data. 

Introduction 

A model for the Universe based on the hierarchic relational 

representation of its components was suggested in [1]. The present paper is 
devoted to the foundational problems structured within Primas-
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Atmanspacher [2,3] ontic-epistemic and Herz-Boltzmann [4,5] descriptive-
observational structuring of physical theories (see also [6,7,8]), as well as 

Bohm’s [9] implicate-explicate order viewpoint on the Universe. One of the 
aims of our study is re-establishing of realism in physics (cf. [10]-[18]).   

We also describe representation of experimental data by dendrograms 

using hierarchic clustering algorithms. It leads to the p-adic model at the ontic 
level. (From this viewpoint, our research is a part of p-adic theoretical 

physics, see, e.g., [19]-[28], see section 6.) In [1], we named our theory 
dendrogramic holographic theory (DH-theory). In this paper, we shall not 
discuss holography (see [1]) but proceed with the same name.   

The p-adic tree (p> 1 is a natural number) is the infinite tree with the 
homogeneous structure of branching at each node, one incoming and p 

outcoming edges. This tree is endowed with natural metric (so-called 
ultrametric) and the algebraic structure of a ring (see appendix A).   

We recall that an ontic theory is about reality as it is and the epistemic one 

is about knowledge collected through observations. The ontic Universe is 
unapproachable by observers. Nevertheless, its structure can be 

theoretically reconstructed by increasing the size of dendrograms; observer 
O generates approximations of the ontic Universe. The limiting mathematical 

structure is uniquely determined -- the p-adic tree (or algebraically a ring  
denoted as Zp).  

One of the main aims of novel mathematical modelling of ontic-epistemic 

structuring is better understanding of the classical-quantum 
interrelation. We recall that quantum mechanics is an epistemic model, it 

is about observations’ outcomes (see Bohr [29,30] and Plotnitsky [31-33 

). In DH-theory, ``quantumness” is present only at the level of 

dendrograms, and the p-adic ontic Universe is classical. The heuristic 
criterium of quantum-likeness is very natural: simple dendrograms are 

more quantum(-like) than complex dendrograms. As a test of quantum-
likeness, we use the CHSH-inequality, not for the standard observables, 

but for new observables reflecting the hierarchic relational structure of 

data. It should be highlighted that the original experimental data used in 
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this paper is classical. Its quantum-like structure becomes visible through 
dendrogramic representation. The seed of the violation of the CHSH-

inequality is neither nonlocality nor rejection of realism. This is 
nonergodicity of dendrogramic time series. This is the good place to recall 

that a few authors had coupled quantum behaviour with violation of 
ergodicity [34-38]. We also consider DH-theory for Minkovski geometry 

and monitor the dependence of CHSH-violation and nonergodicity on 
geometry as well as a Lorentz transformation of data. 

The reader who is not interested in foundations can jump directly to 
section 7 devoted to experimental data, correlations, and violation of the 

CHSH-inequality for hierarchic observables and its correlation of 
nonergodicity of data.  

2. Dendrogram representation of the Universe 
2.1. Systems as clusters of clicks of detectors 

By Bohr the outcomes of measurements are not the objective properties 
of systems [29-33]. They quantitively represent interrelation between a 

system S and an observer O. An ontic system exists independently of O. 
However, it is unapproachable by the observer; in fact, O constructs its 
approximate representation by using data.  

Consider an observer O constructing representation of surrounding 
environment, in the extreme case, of the Universe. In DH-theory, the observer 

has the free choice not only to perform or not perform some observation, but 
even the free choice for decomposition of collected data into blocks and 

treating these blocks as (epistemic) systems’ representation. The 

fundamental entities of the epistemic theory are events (cf. [14, 39-43]), not 

systems. Systems are determined as clusters of events – say clicks of detectors 
(or other detection events). This position is very close to the view of Zeilinger 
on quantum mechanics (private discussions of with Akh). 
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illustration 1. Dendrogramic representation of two time series (graphs) 
by dendrograms, LHS: d=5, RHS: d= 30.  

2.2. Representation of systems by dendrograms 

Simple collection of experimental statistical data does not tell observer O 

about the genuine hierarchic interrelations between physical processes 
under observations. Such hierarchic structure which can be approximately 

recovered with the aid of clustering algorithms. This hierarchic clustering 
leads to the treelike geometry. In DH-theory, (epistemic) systems are 

described by dendrograms, finite trees. Any observer O can reconstruct his 
environment and, in the limit, the whole O-Universe by collecting 
observational data.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 June 2021                   doi:10.20944/preprints202106.0369.v1

https://doi.org/10.20944/preprints202106.0369.v1


5 

In DH-thery, decomposition of the O-Universe into subsystems is done 
through decomposition of data into blocks. Each block of data is represented 

by dendrogram -- this is a system. The data can be subdivided into blocks in 
different ways. The O-Universe can be decomposed into systems of different 

complexity depending on blocks’ size. We illustrate this process on Fig. 1a by 
dividing data into the blocks of the equal size, d=5, LHS, and Fig1 b, d=30. 

2.3. P-adic metric for hierarchic relations 

 
The points at the baselevel of any dendrogram D (see Fig.1) represent 

the relational characteristics of the system expressed by D. For the simplest 
hierarchic algorithms, based on choices of just two alternatives – two 

branching at vertexes, the basepoints can be described by vectors with 
coordinates 0/1. The natural distance between these characteristics is given 

by 2-adic ultrametric r_2: longer the common root of the paths going from 

the dendrogram’s root to points a, b – shorter the distance between them 
(see appendix A). This metric encodes the hierarchic relations inside the 

dendrogramic system and with its surrounding environment. More general 
hierarchic clustering algorithms with p-branching at vertexes generate 

representation of systems by dendrograms having more complex topology. 
(Here p>1 is a natural number determining the tree structure). The branches 

(and the corresponding end-points) are encoded by vectors with the 
coordinates belonging to the set{0,1,…,p-1}. The corresponding common 
root distance is denoted by r_p. 

Take two points a, b at the baselevel of dendrogram D representing a 
system, the common root distance r_p(a,b) gives the quantification of 

closeness of these two system’s characteristics w.r.t. the hierarchic order 
relation. The quantity 

                           R_D = max{ r_p(a,b): a, b belong to D}  

(dendrogram’s diameter) determines the degree of hierarchic interrelation 
between the elements of the dendrogram-system. If R_D is small the system’s 

characteristics are highly relationally connected, if R_D  is large, the system 
is relationally sparse.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 June 2021                   doi:10.20944/preprints202106.0369.v1

https://doi.org/10.20944/preprints202106.0369.v1


6 

2.4. Epistemic realism, hidden variables 

Each dendrogram D can be represented by the vectors with 
coordinates belonging to the set {0,1,…,p-1}. These are (hierarchic relational) 

hidden variables. Observer can invent relational observables defined as 
functions of these hidden variables: A=A(u). This is the realistic model of 

observations which is constructed by the observer O through hierarchic 
structuring of the experimental data. This approach can be called realism 

without reality, as opposite to reality without realism viewpoint on quantum 
physics suggested by Plotnitsky [33, 44]. Such hidden variables are 

constructed on the basis of experimental data, they are so to say epistemic 
variables. But the mathematical model is realistic in the sense of set-

theoretical representation of states - hidden variables and observables - 
functions of these variables.    

3. From epistemic (explicate) to ontic (implicate): p-adic Universe. 

 
By considering the data blocks of increasing size, in the limit O can 

reconstruct the ontic description. The dendrogram based epistemic theory 

leads to the p-adic geometry of the ontic Universe. (The role of the model 

parameter p will be discussed in section 5.) In the limit, dendrograms of 

increasing size generate the infinite p-adic tree endowed with the p-adic 
ultrametric. Its infinite branches are points of the ring Z_p; in fact, Z_p 

coincides the unit ball. Thus, w.r.t. the hierarchic p-metric the Universe, is 
bounded. Topologically the p-adic universe differs crucially from the 

Universe endowed with the Euclidean or Minkowski geometry. The basic 
properties of Z_p match very well with the Bohm’s views on implicate order. 

This space is disordered, zero dimensional, and totally disconnected. 
 

4. From ontic (implicate) to epistemic (explicate) 

In section 3, the mathematical structure of the ontic Universe was 
approached from the special dendrogram representation of experimental 

data. Now, we proceed another way around: from the ontic p-adic model to 
the epistemic dendrogramic model. Our previous epistemic-to-ontic 

pathway (section 3) centralized the role of an observer O. This can make the 
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impression that the personal observer perspective plays the crucial role in 
DH-theory (cf. with QBism [45]). Now, by starting with p-adic ontic model we 
diminish subjective component. 

The points of the p-adic tree Z_p represent all possible events which can 
happen in the Universe. Thus, as well as the epistemic Universe, the ontic 

Universe is represented as a set of events. However, these are not 
observational events; they cannot be associated with say the clicks of 

detectors. We consider the p-adic points, absolute events. An absolute event 
is the endpoint of the infinitely long path of the p-adic tree, mathematically a 
sequence  

                                    a=a1….an …., with coordinates aj=0,1,…, p-1.  

Each finite cutoff of the infinite path a is an element of the explicate order, it 

can be interpreted as the characteristic of a physical system. The latter is 
determined in a variety of ways depending on the embedding of the finite 

path a’=a1….an into various dendrograms. We consider the following process 

of structuring of the Z_p -universe.  Let us select some set of points S of Z_p 
(finite or infinite), these points are geometrically presented as paths starting 

at the root of the p-adic tree.  Thus, S is a subtree of this tree. The common 
roots of these paths determine relational closeness of corresponding points 

in S. As well as in the epistemic model, these points can be considered as 
characteristics of S. Observer is not involved in this consideration. Roughly 

speaking the system S exists irrespectively whether somebody looks at it or 
not.  

Now take the tree of an ontic system S and cut it at some level, say n steps 

from the root. Such dendrogram expresses a system S_n belonging to the 

explicate level of nature’s description. In principle, there is no need to couple 

it to some observer. This construction provides the realist interpretation 
even for systems represented by finite dendrograms. The only subjective 

element is the place of cutoff (cf. with the problem of boundary between 
quantum and classical world’s).  
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5. The role of clustering algorithm 

Different hierarchic clustering algorithms generate different 
dendrograms and observer’s free will also covers algorithm’s choice. 

However, in the ontic description this dependence on the algorithm’s choice 
is washed out. All algorithms with p-alternatives branching generate 

approximations for the same ontic model of the Universe, given by the p-adic 
tree. The rings of p-adic numbers Z_p  are not isomorphic for different p. 

However, their topological and algebraic properties are the same. Similar 
problem had been discussed in p-adic theoretical physics [19-28]: What p 

does correspond to the physical reality? There were various suggestions, 
including such exotic choices as p=127 [26]. The pragmatic solution was to 

treat all p-adic models on the equal grounds and consider the p-adic encoding 
similarly to representation of real numbers by using different bases. 

Of course, there exist clustering algorithms which generate 

nonhomogeneous trees, with different branching indexes for different 
vertexes.  Such dendrogramic models lead to arbitrary trees (arbitrary 

ultrametric spaces). One may try to exclude such models by appealing to 

relational scale homogeneity of nature. In any event, we keep to p-adic 

models. Our original choice of the concrete hierarchic clustering algorithm 

[1] was motivated by studies including data-analysis of Murtagh [46-48]. In 
the present paper, we played with a few other algorithms, but their outputs 

are very similar with slight difference in details. In the following result 
section (section 11.3) we have applied seven different linkage clustering 

algorithms with no apparent differences in CHSH values outcomes (Figure 5 
at section 11.3). We refer the interested reader to the matlab software web-
site for details on those seven linkage clustering algorithms [49].  

6. ``Traditional p-adic theoretical physics’’: emphasis of the number-
theoretic structure 

We recall that on p-adic trees, it is possible to introduce arithmetic 
operations; algebraically these spaces are similar to the real line. However, 

topologically p-adic trees differ crucially from the real line. P-adic theoretical 

physics (see, e.g., [19-28] and references herein) floured in 1990s stimulated 
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by string theory [19, 21,22]. Its main problem which finally led to essential 
damping of its development during the recent years was the absence of 

coupling with the real experimental data.  Roughly speaking there are no 
measurement devices generating p-adic outputs. But, as was clearly stated 

by Volovich [26], there are neither measurement devices generating 
irrational numbers, due to the finite precision of measurements all their 

outputs are rational numbers. Volovich claimed that the only physical 

numbers are the rational numbers. Since rational numbers are dense both in 

real and p-adic fields, he suggested unification of standard and p-adic physics 

on the basic of rational numbers. Although he did not use the ontic-epistemic 
terminology, we can say that for him mathematically epistemology is based 

on rational numbers, beyond this general rational epistemology one can 
recover the real and p-adic ontic models. We suggest another epistemology 

for p-adic ontology. This is the hierarchic relational epistemology. It differs 
crucially from the real-order epistemology of “standard physics”. We can say 

Volovich’s approach was number theoretical and our approach is hierarchic 
relational.  

The DH-framework provides the rigid coupling of theory and 

experimental data.  We hope that it will lead to the renaissance of p-adic 
modelling in physics. (We guess that its main theoretical results can be 
adapted to DH-theory.) 

7. Dendrogram viewpoint onto classical-quantum interrelation 

In our epistemic model, the sharp classical-quantum separation 

disappears. The degree of classically is based on system’s complexity – the size 
and topological complexity of its dendrogram representation. Quantum 

systems are characterized by low complexity of their dendrograms. So, 

electrons and atoms can behave quantum in some measurements, because 

they have very simple hierarchic structure of interrelation between their 

components. In our approach, not only systems described by quantum 
mechanics, but even classical physical systems can exhibit quantum(-like) 
behavior within hierarchic representation of experimental data. 
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How can one measure the degree of ``quantumness’’? In quantum 
physics, one of the most important tests is based on the CHSH inequality and 

other Bell type inequalities [50-55].  We select four system’s characteristics 
(the end points of dendrograms representing systems) a,a’,b,b’ and calculate 

the correlations for pairs (a,b), (a,b’), (a’,b), (a’,b’). Finally, CHSH-combination 
of correlations is formed and problem of its exceeding of two is studied via 

numerical simulation. For Alice and Bob, there are fixed settings a, a’ and b, 

b’, respectively. Experimenter calculates the correlations Cab, Cab’, Ca’b, 

Ca’b’ and then the CHSH-combination of them: 

C=Cab - Cab’+Ca’b+Ca’b’ 

Inequality |C| >2 means data collected in experimental runs is consistent with 

predictions of quantum theory and contradict to local legalism, i.e., it cannot 

be described by hidden variables model which is local.  

We consider two time series of experimental data. Data is collected in 

measurements of one fixed classical physical observable. The outcomes of 
this observable carry the information about hierarchic relations between 

characteristics of a physical system under measurement. (Data is 
decomposed in the systems by the observer.) These relations are not visible 

in the straightforward graphic representation of data (see Fig.1). They are 

extracted from `` real data’’ with the aid of clustering algorithm. 

The standard viewpoint on violation of the Bell type inequalities [50-55] 

is that it shows that “Quantum correlations are stronger than classical ones.” 

By  
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illustration 2. The scheme of the CHSH-test for two fixed settings a and b of 
polarization beam splitters.  

By trying to explain this difference between quantum and classical 

correelations, Bell and his followers pointed to contradiction between 
quantum theory and local realism. The latter is mathematically formalized as 

representation of observables by functions of hidden variables; locality 
means that say Alice’s functions do not depend on settings selected for Bob’s 

functions, i.e., Sa=Sa (u), where u is the hidden variable. 

The interpretation of the violation of the Bell inequalities is the subject of hot 
foundational debates (see, e.g., [56-60]). A plenty of so called loopholes were 

pointed out. Two basics of them, the nonlocality and detection efficiency 
loopholes [61, 62], were successfully closed in 2015-experiments [63-66].  

 
8. The role of nonergodicity 

 

De Broglie [67] was the first who highlighted that the experimentally 

obtained probabilities may deviate from ontic probability distribution of 

hidden variables. He justified this possibility within his double solution 
theory – in terms of the pilot wave. It seems that Krennikov’s works [68-

70] were the first publications in which there was pointed out to the 
difference between the frequency experimental probabilities and the 

measure-theoretic distributions of hidden variables. Khrennikov 
appealed to the von Mises’ frequency probability theory. The latter 

straightforwardly implied that the Bell type inequalities can be violated 
for local models. However, it seems to be impossible to formalize 

mathematically the notion of realism within the von Mises frequency 
theory [71]. Finally, in [37] the interplay between frequency and 

measure-theoretic probabilities was structured within ergodic theory 

and it was shown that the violation of ergodicity is a sufficient condition 
for the violation of the Bell type inequalities. However, this was shown in 

the purely theoretical framework. In our further considerations, we shall 
show that in DH-theory the Bell inequalities are violated because of 

nonergodicity of time series of experimental data restructured with 
hierarchic clustering algorithms,  
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Hence, in DH-theory the Bell type inequalities are not the tool for 
rejection of the local realistic description or classical probability model 

(Kolmogorov [72], 1933).  For our purpose, it is more natural to treat 
these inequalities as expressing the degree of quantumness of 

experimental statistical data – in the spirit of article [73].   

As was mentioned in introduction, a few authors pointed out that 
quantum effects can be derived in classical statistical framework by rejecting 

the assumption of ergodicity [34-38]. In particular, in [35] it was guessed 

that the originally so emphasized the difference between quantum and 

classical statistical modeling can be eliminated by rejecting the hypothesis of 
ergodicity of data; even the black body radiation can be modelled classically, 

but within nonergodic statistical mechanics. In paper [37], nonergodicity was 

pointed as one of the sufficient conditions for violation of the Bell type 

inequalities, the condition which is equally important as nonlocality and 
rejection of realism (the hidden variables description).  

DH-theory gives the possibility to introduce hidden variables (of the 

special type) beyond any experimental data and consider a class of realistic 
observables, those represented as functions of hidden variables. Hence, 

straightforwardly it seems that Bell type inequalities cannot be violated 
under the assumption of locality. However, we show the violation of the 

CHSH inequality for special selection of ``settings’’ determining the 

observables. The reason for this is precisely the violation of ergodicity, the 
measure-theoretic and frequency averages do not coincide [37]. 

However, the natural question arises: Why do the hierarchically 
determined observables violate the assumption of ergodicity? The answer 

for the question is that the hierarchical sub-systems have already encoded in 
them the hierarchical structure of the “universal” dendrogram as was 
demonstrated in our paper [1].  

We shall directly check the hypothesis of ergodicity in section 10 and we 

shall show that for wide range of “settings’’ the hierarchic observables are not 

ergodic. However, we also found that for some “settings” the observables are 

ergodic, but, nevertheless, the CHSH inequality is violated. How can it happen?  

This situation was also discussed in paper [37]:  
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“Consider two stationary ergodic processes x(t) and y(t). Is the vector 

process z(t) = (x(t), y(t)) ergodic? The answer is ‘no’. We remark that this 

implies that the product x(t)y(t) of two ergodic processes need not be ergodic. 

Thus, in principle in quantum theory nonergodicity can be generated by 

measurements on compound systems. At the same time measurements of each 

system separately generate ergodic stationary processes. In such a case 

measurement on compound systems really have the special feature, 

nonergodicity.” 

 

And we really found that in the case of the violation of the CHSH inequality 

the product of Alice and Bob observables is always nonergodic. 

 

9. Scheme for calculation of dendrogramic correlations 

For concreteness, we consider p = 2. 

Step 1. From data time-series to dendrogram: hierarchic clustering of 
data. 

Consider a time series of some data Z1 Z2 .. .Zn...Split it into blocks of the 

length d. (On Fig. 1, these are blocks of the length 5). For each block, we 

construct (with hierarchic clustering algorithm) dendrogram having d 

basepoints. We obtain dendrogram time-series: D1,....,Ds..., All dendrograms 
have k levels, where 2k−1 < d ≤ 2k. (For Fig. 1 A, d = 5, hence k = 3.) 

Step 2. From dendrogram time-series to 2-adic time series. 

First we remark that each dendrogram D can be represented by vectors 
of the form (α0,α1,...αk), where αj = 0,1. Each vector encodes a path on D from 

its root to the corresponding endpoint; D is selection of d vectors from 2k 

vectors. 

From this vector-representations, we move to representations by natural 

numbers, which we define as features of the dendrogram, by using the 
formula 

(α0α1...αk) = α0 + α12 + α222 + ... + αk2k. 

Thus, from a series of dendrograms D1,....,Ds...,we obtain a series of natural 

numbers, which are sorted in an ascending order, in each block of length d, 
according to the hierarchical structure of each dendrogram Dn,  
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These natural numbers play the role of polarization in the real CHSH 
experiment. Later we shall define new observables depending on such 

analogs of polarization. These d-blocks of natural numbers can be treated as 
hidden variables. New observables will be functions of these “hierarchic 

hidden variables”. 

Now, for correlations, we consider two time series Z1 Z2 .. .Zn... and Z1’ 
Z2’ … .Zn’... and by applying  the procedures of Steps 1,2, we obtain two series 

of dendrograms  D1,....,Ds... and D’1,....,D’s…., and two corresponding series of 

natural numbers. They are formed from consecutive blocks of d natural 

numbers which are generated through d-decomposition of original time 
series:  

x=x1x2….xn,   xn  is composed of blocks with d natural numbers 

 y=y1y2....yn,   yn  is composed of blocks with d natural numbers  

 

Step 3.  Defining of observables. 

First method 

We constructed two time series of dendrogram one for Alice 

A=(A1A2A3…An) and one for Bob B=(B1B2B3…Bn).   

For Alice we select two pairs of numbers a=[a1 a2] a’=[a1’ a2’]  the two pairs 

aren’t identical. Analogs of two vectors – orientations of polarization beam 
splitters or Stern-Gerlach magnets. 

For Bob we select two pairs of numbers b=[b1 b2] b’=[b1’ b2’]  the two pairs 

aren’t identical.  

For each Ai i∊1,2,3…n  we randomly decided between pair a or a’ 

For each Bi i∊1,2,3…n  we randomly decided between pair b or b’ 

If for Ai we chose pair a we have the following:  

If Ai had both of the numbers in a we give Sai=1 else Sai=-1. 

Metaphorically we can say that if “polarization” of Ai coincides with a, the 

detector with the output is +1 clicks, if not, the detector with the output is -1 
clicks. 

We proceed in the same for selection of a’ and b, b’. Then we calculate the 

correlations: 
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Cab=(∑Sai*Sbi)/ length(a and b are selected together ) 

Cab’=(∑Sai*Sb’i)/ length(a and b’ are selected together ) 

Ca’b=(∑Sa’i*Sbi)/ length(a’ and b are selected together ) 

Ca’b’=(∑Sa’i*Sb’i)/ length(a’ and b’ are selected together ) 

C=Cab - Cab’+Ca’b+Ca’b’ 

 

Second method 

We constructed two time series of dendrogram one for Alice 
A=(A1A2A3…An) and one for Bob B=(B1B2B3…Bn).   

For Alice we select two pairs of numbers a=[a1 a2] a’=[a1’ a2’]  the two pairs 
aren’t identical. 

For Bob we select two pairs of numbers b=[b1 b2] b’=[b1’ b2’]  the two pairs 

aren’t identical.  

For each Ai i∊1,2,3…n  we randomly decided between pair a or a’ 

If for Ai we chose pair a we have the following 

We replace the natural number in Ai that equal a1 to 1  

We replace the natural number in Ai that equal a2 to -1  

We replace all other natural numbers in Ai 0.  we indicate that pair a was 

chosen to Ai . 

The same we do for other settings, a’, b, b’- 

We find i that a and b were chosen = nab 

We find i that a’ and b were chosen = na’b 

We find i that a and b’ were chosen = nab’ 

We find i that a and b’ were chosen = na’b’ 

We calculate Sab=(Ai=nab) *(Bi=nab) 

We calculate Sa’b=(Ai=na’b) *(Bi=na’b) 

We calculate Sab’=(Ai=nab’) *(Bi=nab’) 

We calculate Sa’b’=(Ai=na’b’) *(Bi=na’b’) 
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For block j of size d of  Sab  if  there are two values of  1 we assign Xabj=1,one 
value of 1 Xabj=1 ,one value of  -1  Xabj=-1, all values 0 Xabj=-1. 

For block j of size d of  Sab  if  there are two values of  1 we assign Xa’bj=1,one 

value of 1 Xa’bj=1 ,one value of  -1  Xa’bj=-1, all values 0 Xa’bj=-1. 

For block j of size d of  Sab  if  there are two values of  1 we assign Xab’j=1,one 

value of 1 Xab’j=1 ,one value of  -1  Xab’j=-1, all values 0 Xab’j=-1. 

For block j of size d of  Sab  if  there are two values of  1 we assign Xabj=1,one 

value of 1 Xa’b’j=1 ,one value of  -1  Xa’b’j=-1, all values 0 Xa’b’j=-1. 

We calculate 

Cab=(∑Xabj)/length(Xabj) 

Cab’=(∑Xab’j)/length(Xab’j) 

Ca’b=(∑ Xa’bj)/length(Xa’bj) 

Ca’b’=(∑ Xa’b’j)/length(Xa’b’j); 

C=Cab-Cab’+Ca’b+Ca’b’ 

 

10. Non-Ergodicity check methods 

Nonergodicity means that measure-theoretic and frequency averages do not 

coincide. We cliam that this is the main reason for violation of the CHSH 
inequality. We have operated with the frequency averages  

Sab =< Sa,Sb >, but the standard proofs of the Bell type inequalities are done 
for measure-theoretic correlation Sab,measure =<< Sa,Sb >>. In order to check 
whethear our data is ergodic we continue with first scheme 

10.1 Scheme for determining if Data is Non-Ergodic 

We  start with one sequence A = (A1A2....An), where each d-vector Aj = 

(u1,u2,...,ud) represents a dendrogram. We fix a=[a1 a2] and define 

 Sa = Sa(u), (1) 

We continue to calculate Sa as in the first method of step 3 in section 9. We 

stress that (1) is the condition of realism, the value of hidden variable u 
determines the outcome of the observable Sa. Then 

 

< 𝑆𝑎 >= (∑ 𝑆𝑎(𝐴𝑗))/𝑁

𝑛

𝑗=1

                               (2) 
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is the frequency average. Now we compute the probability 
distribution of hidden variables. Let us fix one d-vector u which is 
present in our dendrograms and calculate proportion  
number of occurrences of u 

 

            𝑝(𝑢) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑢

𝑛
                          (3)                                                  

Then 

≪ 𝑆𝑎 ≫= ∑ 𝑆𝑎(𝑢)𝑝(𝑢)                          (4)

𝑢

 

                       

where the sum is w.r.t. all hidden variables u which are present in 
our sequence of dendrograms. In the simplest situation, we should 

get that 

<< Sa >>≠< Sa > 

and the deviation should be visible, not just very small deviation. 

10.2 Scheme for determining if correlations between Data are Non-
Ergodic 

 

However, it can be that at the level of one sequence the ergodicity holds, but 
it is violated for correlation (I have a paper about this possibility and it seems 
that violation of CHSH can be of this type). 

Then, let us proceed without the random choice and calculate for A = 

(A1...An),B = (B1...bN) Sa and Sb as in the first method of step 3 in section 9.  
Thus our frequency correlation: 

 

< 𝑆𝑎, 𝑆𝑏 >= (∑ 𝑆𝑎(𝐴𝑗)𝑆𝑏(𝐵𝑗))/𝑁

𝑛

𝑗=1

                               (5) 

                                                            

 

Then we should complete this analysis by the measure-theoretic framework. 

We consider all possible pairs of hidden variables, d-vectors, u,v which are 
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present in the pairs Aj,Bj and find the probability number of occurrences of 
u,v  

𝑝(𝑢, 𝑣) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑢,𝑣

𝑛
                                                            (6). 

And 

≪ 𝑆𝑎, 𝑆𝑏 ≫= ∑ 𝑆𝑎(𝑢)𝑆𝑏(𝑣)𝑝(𝑢, 𝑣)                          (4)

𝑢

 

                       

and  for non-ergodic correlations we expect that 

    << Sa,Sb >>≠< Sa,Sb > 

 

11. Results 

In what follows we define the two distances metrics,  

euclidean:  𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥𝑖 − 𝑥𝑗)2  

were 𝑥 ∊ 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡, 𝑖, 𝑗 ∊ 1,2 … 𝑛.  𝑛 = 𝑑 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒   

 

 

 and minkowski:  

𝑚𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = −(𝑡𝑖 − 𝑡𝑗)2 + (𝑥𝑖 − 𝑥𝑗)2 

Were  𝑥 ∊ 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡, 𝑖, 𝑗 ∊ 1,2 … 𝑛.  𝑛 = 𝑑 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒   

𝑡 ∊ 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡, 𝑖, 𝑗 ∊ 1,2 … 𝑛.  𝑛 = 𝑑 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒   

 

We analyzed the same data sets by 

applying  section 9 Scheme (first and second method)  for calculation of 
dendrogramic correlations for three different  “views” of the data sets: 

1. we constructed dendrograms with the euclidean distance metric which 

will be shown in section 1 of the results. 
2.  we constructed dendrograms with the minkowski distance metric which 

will be shown in section 2 of the results. 

3. we Lorentz transformed the data sets  and then constructed 
dendrograms with the minkowski distance metric  

 

 

11.1 CHSH vaulations for 2-slit diffraction experiment data 
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As an example, we reproduced the Bell violations of correlations from a very 
classical double slit diffraction experiment [74] . the original experiment 

used a CCD camera with 512x512 detectors chip. The detection pattern in 
each frame in the experiment was represented as a binary matrix of 512x512 

were 0 values represent no detection of photons in the corresponding 
detector while 1 value represented detection of photons in the 

corresponding detector . for each frame and its corresponding binary matrix 

we found all column positions that had the value 1, multiplied these positions 

value and calculated the log10 value of the outcome, this resulted in a unique 
number representing each frame detection pattern. 

 Thus, each frame was encoded with only one unique number Af  and time 
number Tf  in which f∈frame 1 2..n. From each number of consecutive frames, 

N, the pairwise distances between each of the N Af  was calculated. Pair wise 
distances were calculated according to the above three views of the data sets  

data  three methods:  first by applying an euclidean distance metric between 

each Af values , secondly, by  applying minkowski distance metric between 
each two vectors [ Tf  Af]  and thirdly by applying Lorentz transformation on 

each  vector [ Tf  Af] where the reference frame was 0.99 the speed of light 
and then each Lorentzian transformed vector [ Tf  Af]lorentzian was compared 

to another Lorentzian transformed vector by applying minkowski distance 
metric between such vectors.  

Dendrogram were constructed by using ward or weighted linkage algorithm. 

The result was a series of consecutive denenrograms D1D2...Dn with block 
length/edge number in single dendrogram d=4,5..9. 

For each such d we splited the dendrogram series into two series of 
dendrograms  each of length n/2. One series is the observable Alice measures 

And the second series is the observable Bob measures. As in step2 of section 

9 we represented each dendrogram edge Dn with a natural number 

(feature). These features were sorted in an ascending order according to the 
hierarchical structure of the dendrogram.  We then carried on to evaluate 
CHSH correlations in accordance to step 3 first and second method. 

11.2  First method CHSH   

In line with first method of step 3 in section 9 we calculated CHSH  values for 
each combination of features ab=[ [a b] [a b’] [a’ b] [a’ b’]] 

Where all a, a’, b and b’ are chosen out of the number of features in the whole 
2 dendrogram series.  Culumative distribution functions (cdf’s) of CHSH 

values of all pair combination are shown in figure 1. Dandrograms were 
constructed with block size d=4,5..9 in three different ways corresponding 

to the 3 views described above. All views in all block sizes d=4,5..9 showed a 
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fraction of the pairs producing CHSH values above 2  resulting in the 
violation of CHSH inequality 

 
 

Figure 1: CHSH values computed according to the first method in 

section 9 step 3. (A) Cdf’s of CHSH values with Euclidean view under “ward” 
linkage clustering algorithm. Each cdf corresponds  to block size d=4,5..9. (B) 

Cdf’s of CHSH values with Minkowski view under “ward” linkage clustering 
algorithm. Each cdf corresponds  to block size d=4,5..9. (C) Cdf’s of CHSH 

values with LOrentzian view under “ward” linkage clustering algorithm. 
Each cdf corresponds  to block size d=4,5..9. (D) fraction of CHSH with values  

Above 2 in each view, Euclidean,Minkowski and Lorentzian, with block sizes 
d=4,5..9. 

 

in order to verify that non ergodicity is the cause for violation of the CHSH 
inequality we  tested the amount of  ergodicity  of the dendrogramic data that 

CHSH values were calculated from (figure 2). We tested the data for any pair 
of features a=[a1 a2]  as described in the Scheme for determining if Data is 

Non-Ergodic of  section 10.1.  the results show that the dendrogramic data 
for dendrograms of block size d=5,6..9  the mean ergodicity score (|<Sa>-

<<Sa>>|)  show considerable fraction of all possible a=[a1 a2] pairs  with non 
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zero value indicating clear Non-Ergodicity. Moreover cross-correlating  the 
fraction of CHSH values above 2  and the data ergodicity score in each 

dendrogram of block size d=5,6..9 for the Eucliden metric view, Minkowski 
view and Lorentzian view resulted in correlation coefficients  -0.9485, 

-0.9772 and -0.0025 respectively  

 

 
Figure 2: Ergodicity score values  computed according to the Scheme for 

determining if Data is Non-Ergodic described in section 10.1. (A) Cdf’s of 

Ergodicity score values with Euclidean view under “ward” linkage clustering 
algorithm. Each cdf corresponds  to block size d=4,5..9. (B) Cdf’s of Ergodicity 

score values with Minkowski view under “ward” linkage clustering 
algorithm. Each cdf corresponds  to block size d=4,5..9. (C) Cdf’s of Ergodicity 

score values with Lorentzian view under “ward” linkage clustering 
algorithm. Each cdf corresponds  to block size d=4,5..9. (D) Mean of 

Ergodicity score in each view, Euclidean,Minkowski and Lorentzian, with 
block sizes d=4,5..9. 

 

We note that for all views the dendrogram  data series with block size d=4 
showed the data is ergodic . thus the violation of  CHSH inequality  for block 

size d=4 can be a result  of correlation non-ergodicity. We carried on to 
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investigate ergodicity in terms of two stationary ergodic series correlations in 

the Euclidean view. This ergodic test  for  correllations is described  in the  

Scheme for determining if correlations between Data are Non-Ergodic in 

section 10.2. The results of this investigation clearly show all d=4,5..9 block size 

dendrograms are nonergodic, in terms of correlations, in the Euclidean view 

(figure 3). 

 

 

 

 

 

 
 

Figure 3: Ergodicity score values  computed according to the Scheme for 

determining if correlations between Data are Non-Ergodic described in 
section 10.2.  Cdf’s of Ergodicity score values with Euclidean view under 

“ward” linkage clustering algorithm. Each cdf corresponds to block size 
d=4,5..9. 

 

11.3  second method CHSH   

 

In line with second method of step 3 in section 9 we calculated CHSH  values 
for each combination of features ab=[ [a b] [a b’] [a’ b] [a’ b’]] 

Where all a, a’, b and b’ are chosen out of the number of features in the whole 

2 dendrogram series.  Culumative distribution functions (cdf’s) of CHSH 
values of all pair combination are shown in figure 4. Dandrograms were 
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constructed with block size d=4,5..9 in three different ways corresponding 
to the 3 views described above. Again as with the first method All views in 

all block sizes d=4,5..9 showed a fraction of the pairs producing CHSH values 
above 2  resulting in the violation of CHSH inequality (figure 4). Interestingly 

the fraction of CHSH values above 2 in the Euclidean and minkowski views 
showed descending fraction values in respect to increasing d value d=4,5..9 

in contrast to the first method which showed ascending relation with 
increasing d values. 

 

 
Figure 4: CHSH values computed according to the second method in 
section 9 step 3. (A) Cdf’s of CHSH values with Euclidean view under “ward” 

linkage clustering algorithm. Each cdf corresponds  to block size d=4,5..9. (B) 

Cdf’s of CHSH values with Minkowski view under “ward” linkage clustering 

algorithm. Each cdf corresponds  to block size d=4,5..9. (C) Cdf’s of CHSH 

values with LOrentzian view under “ward” linkage clustering algorithm. 
Each cdf corresponds  to block size d=4,5..9. (D) fraction of CHSH with values  

Above 2 in each view, Euclidean,Minkowski and Lorentzian, with block sizes 
d=4,5..9. 
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Please note that the Euclidean cdf’s raise in correlation to the second ergodic 
test described in figure 3. 

We further studied the dependance of the three views violation of CHSH 

inequlity on the linkage clustering algorithm (figure 5). For that purpose, we 

used 7 different algorithms all for d= 5 which showed no change in the 
Euclidean and minkowski views as to the fraction of pairs violating CHSH 

inequality. The Lorentz view showed a significant change in value in the 
“single” algorithm resulting in fraction of pairs value comparable to the 

Euclidean and Minkowski views. 

 
 

 

Figure 5: seven linkage clustering algorithms influence on CHSH 

inequality violation. fraction of CHSH with values Above 2 in each view, 
Euclidean,Minkowski and Lorentzian, with block sizes d=5 and in each of the 
7 linkage clustering algorithms. 

 

11.3.1 second method CHSH random data. 

We carried on to produce 10 random numbers sequences (comparable in 
size of the number of frames in the 2-slit diffraction experiment) in order to 

compare the analysis to  the diffraction 2-slits experiments correlation 
analysis.  
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For that purpose for each random number in one of the 10 sequences we 
used this scheme: 

First we randomly choose a number between 1-7 which will indicate the 

amount of random numbers generated from the interval [1 512] (this is in 
correspondence to the 2-slit diffraction experiment with 512 detectors. 

We multiplied these numbers  and calculated the log10 value of the outcome, 
this resulted is a unique number representing each “randomly generated 

frame detection pattern”.  each such frame was accompanied with a time 

stamp which indicated the time of generation of the “randomly generated 

frame detection pattern”. We carried to analyze, in each of the “views” as 
defined in section 10 above ,  the fraction of ab pairs that violated CHSH 

inequality. Mean fraction values of ab pairs, of ten random sequences, 
violating the CHSH inequality is shown in figure 6.  

 

 

 
Figure 6: Mean CHSH values computed from 10 sequances of random 
data according to the second method in section 9 step 3. 

fraction of CHSH with values Above 2 in each view, Euclidean,Minkowski and 
Lorentzian, with block sizes d=4,5..9 and in each with “ward” linkage 
clustering algorithm. 
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11.4 Lorentz transformed data. 

 

As was clearly indicated by all the above analysis the Lorentz transformed 

data result in higher fraction of pairs violating the CHSH inequality under 
most of the clustering algorithms ( although the “single” algorithm showed 

comparable CHSH fraction values , figure 5). One might wonder why. The 
explanation for that phenomena is that most clustering algorithms , except 

the “single” algorithm,  produce dendrogram series with much smaller phase 

space of possible topology of dendrograms. This is clearly seen in figure 7 

where we show the amount of features contained in the dendrogram series 
of the 10 random data sequences  under each of the 3 views. The amount of 
features in the Lorentzian view remains small for all d=4,5..9. 

 

 
Figure 7: Mean feature number computed from 10 sequances of 

dendrogram composed out of random data . Mean feature number of 10 

sequences in each view, Euclidean, Minkowski ans Lorentzian and in block 
size  d=4,5..9. 

 

 

12. Discussion on the results of numerical data analysis 

We emphasize, our basic idea, that quantum-likeness is not the property of 
systems but of time series of observations. In the same way as randomness, 
quantum-likeness can be established on the basis of tests for data. For the 
moment, we considered only one (but very important) test, CHSH-test. Our 
main results are that 
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a) Violation of the CHSH inequality can be demonstrated by time series 
generated by measurements on classical systems.  
b). The key-point is hierarchic  dendrogramic representation of data. It can 
be described by local hidden variable model. 
c). CHSH-violation is closely correlated with violation of ergodicity 
 
Generally nonergodicity is the fundamental property of hierarchic 
dendrogramic representation of statistical data. 
 
This representation is based on the application of clustering algorithms. 
Although different algorithms can generate different dendrogramic series, 
from the same experimental data, general properties of representations do 
not differ; all algorithms show  CHSH-violation and nonergodicity of data or 
of correlations . Of course, the degree of violation and nonergodicity vary 
with algorithms (see figures 1,2,3,4 and 6). 
 
By taking into account the temporal component of data-series, we generate 
two dimensional geometry endowed with Minskovski pseudo-metric.  We 
apply DH-theory to this geometry. It was found that the basic properties of 
Minskovski DH-theory do not differ from its Euclidean version (figures 
1,2,3,4 and 6).  As the last step of our playing with algorithms, we 
performed Lorentz transformation of data and then proceed with 
dendrogramic modeling. Again, the Lorentz transformed data showed CHSH 
violations and nonergodicity of data (figure 1,2,3,4,5 ) although not with 
comparable values to the Euclidean and Minkowski views. We showed that 
these CHSH violations can become comparable with the violations under 
the Euclidean and Minkowski views under certain clustering algorithms 
(figure 5, “single” clustering algorithm). We also show that the high fraction 
of pairs showing CHSH violations in the Lorentzian view is a consequence of 
the smaller phase space of possible topology of dendrograms under most 
clustering algorithms which result in smaller amount of features (figure 7). 
 
The two methods in step 3 of section 9 are different in the treatment of the 
hierarchical information of the data and adaptation to the formalization of 
the CHSH experiment in terms the hierarchical information. This different 
adaptation leads to some what different results where CHSH violations 
seem to be with opposite phase with d block size. Although this still needs 
to be investigated, we note that both methods show CHSH violations.  
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Some more simulations should be considered with d block size of larger 
size the nine in order to again verify the transition from quantum to 
classical  correlations already discussed in previous study [1]. 
 

13. Concluding remarks 

In this paper DH-theory [1] was structured in the ontic-epistemic 
(implicate-explicate order) framework. Experimental data is described by 

dendrograms generated by clustering algorithms – epistemic counterpart of 

our theory. In the limit dendrograms generate the infinite p-adic tree – the 

mathematical model of the ontic Universe.     

DH-theory is realistic, not only because the epistemic theory of 
observations has the ontic background, but also because even at the 

epistemic level it is possible to introduce hidden variables. Ontic realism is 
very exotic: The Universe zero-dimensional, totally disconnected and 

disordered. This universe is bounded, but w.r.t. the very special distance, p-
adic ultrametric. But maybe it is even more surprising that the local realistic 

description can be used event at the epistemic level, with hierarchic hidden 

variables and observables which their functions.  

 

DH-theory provides a novel viewpoint on classical-quantum 
interrelation. First, we stress that the ontic p-adic world is classical. In the 

epistemic dendrogramic world simpler dendrograms have higher degree of 

quantum-likeness. For the moment, the latter is characterized with just one 
test of quantumness – the CHSH test. Its violation is a consequence of 

nonergodicity of empiric data. However, it is crucial that this data is 
represented dendrogramically.   

Finally, we remark that the size of base-level of a dendrogram can be 
considered as system’s dimension. It is interesting that we are able to violate 

the CHSH inequality only for d> 3.   
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Appendix A: Ultrametric spaces, trees, p-adic numbers 
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In some applications the point structure of a set X and the properties of 
a metric ρ may essentially differ from the Euclidean case. We are interested 

in metric spaces X where, instead of the standard triangle inequality, the 
strong triangle inequality: 

ρ (x, y)≤ max[ρ(x, z), ρ(z, y)] (1) 

is valid. Such a metric is called an ultrametric, and such metric spaces 
are called ultrametric spaces. The strong triangle inequality can be stated 
geometrically: all triangles are isosceles. 

Let us discuss the main properties of ultrametric space X. We set 
Br(a) = {x ∈ X : ρ(x − a) < r}, Br ~ (a) = {x ∈ X: ρ(x − a) ≤ r}, r > 0, a ∈ X 

These are balls of the radius r with the center at the point a. Our 

standard intuition tells us that Br(a) is a closed ball, but not open, and Br ~ 
(a) is an open ball, but not closed. However, it is not valid for ultrametric 
spaces: 

In ultrametric space each ball in X is open and closed at the same time. 
Each point of a ball may serve as a centre. A ball may have infinitely many 
radii. 

Let U and V be two balls in ultrametric space X. Then there are only two 

possibilities: (1) balls are ordered by inclusion (i.e., U ⊂ V or V ⊂ U); (2) balls 
are disjoint. 

Thus if two balls have a common point then one has to be a part of 
another. 

The symbol Sr(a) denotes the sphere {x ∈ X: ρ(x, a) = r} of the radius r > 

0 with the center at a. There is also a large deviation from the Euclidean case: 
the sphere Sr(a) is not a boundary of Br(a) or Br ~ (a). 

Consider the following class of ultrametric spaces (X, ρ). Every point x 

has an infinite number of coordinates x = (ao, a1, ..., an,...). Each coordinate 

yields the finite number of values a ∈ {0, ..., m − 1}, where p > 1 is a natural 
number. We denote the space of sequences (1) by the symbol X = Zp. The 
standard ultrametric is introduced on this set in the following way. 

Let x = (a0, a1, a2, ..., an, …), y = (b0, b1, b2, ..., bn, …) ∈Zp. We set 

r_p (x, y) = l/mk  
if aj= bj, j = 0, 1, ..., k − 1, and ak ≠ bk 

(3) 

This is a metric and even an ultrametric. To find the distance r_p(x, y) 

between two strings of digits x and y,  we have to find the first position k at 
which the strings have different digits. The space X = Zm coincides with the 

unit ball centered in zero, X = B1(0); this space is compact. Geometrically it 
can be represented by the tree, see  Figure 8  for the 2-adic tree 
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representing Z2. Here one vertex, the root labeled as R, is incident for two 
edges and other vertices are incident for three edges. We remark that it is 

convenient to consider this tree as the directed graph; for each 
vertex I different from R, one edge comes from the branch starting at R, the 

“input edge”, and two edges go out from I, the “output edges”. These two 
edges (or vertices at their ends) are labeled by a = 0, 1. In Figure 8  the 

order of labeling of the output edges is based on the embedding of the tree 

in the plane, upper output edges are labeled by 0 and lower by 1. This leads 

to the concrete numerical representation of this tree. However, the rule 

used for labeling of edges is not obligatory; for each vertex I, we can assign 
0/1 to each of output edges in an arbitrary way and obtain another 
numerical representation of this tree.  

 

 
Figure 8: .2-adic hierarchic tree. 

Appendix B: Clustering algorithms 

A linkage algorithm computes the distance between two clusters. 

The following notation describes the linkages used by the various methods: 

• Cluster r is formed from clusters p and q. 

• nr is the number of objects in cluster r. 

• xri is the ith object in cluster r. 
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• Single linkage, also called nearest neighbor, uses the smallest distance between 
objects in the two clusters. 

d(r,s)=min(dist(xri,xsj)),i∈(i,...,nr),j∈(1,...,ns) 

• Complete linkage, also called farthest neighbor, uses the largest distance 
between objects in the two clusters. 

d(r,s)=max(dist(xri,xsj)),i∈(1,...,nr),j∈(1,...,ns) 

• Average linkage uses the average distance between all pairs of objects in any 
two clusters. 

• Centroid linkage uses the Euclidean distance between the centroids of the two 
clusters. 

• Median linkage uses the Euclidean distance between weighted centroids of the 

two clusters.where ˜xr and ˜xs are weighted centroids for the clusters r and s. If 

cluster r was created by combining clusters p and q, ˜xr is defined recursively 

as 

˜xr=0.5(˜xp+˜xq) 

• Ward's linkage uses the incremental sum of squares, that is, the increase in the 
total within-cluster sum of squares as a result of joining two clusters. The 
within-cluster sum of squares is defined as the sum of the squares of the 
distances between all objects in the cluster and the centroid of the cluster.  

• Weighted average linkage uses a recursive definition for the distance between 
two clusters. If cluster r was created by combining clusters p and q, the 
distance between r and another cluster s is defined as the average of the 
distance between p and s and the distance between q and s. 
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