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Abstract: This paper is devoted to the foundational problems of
dendrogramic holographic theory (DH-theory). We use the ontic-
epistemic (implicate-explicate order) methodology. The epistemic
counterpart is based on representation of data by dendrograms
constructed with hierarchic clustering algorithms. The ontic Universe is
described as the p-adic tree; it is zero dimensional, totally disconnected,
disordered, and bounded (in p-adic ultrametric). Interrelation classical-
quantum loses its sharpness; generally simple dendrograms are “more
quantum” than complex one. We use the CHSH-inequality as a measure of
quantum(-likeness). We demonstrate that it can be violated by classical
experimental data represented by dendrograms. The seed of this
violation is neither nonlocality nor rejection of realism. This is
nonergodicity of dendrogramic time series. Generally, violation of
ergodicity is one of the basic features of DH-theory. We also consider DH-
theory for Minkovski geometry and monitor the dependence of CHSH-
violation and nonergodicity on geometry as well as a Lorentz
transformation of data.

Introduction

A model for the Universe based on the hierarchic relational
representation of its components was suggested in [1]. The present paper is
devoted to the foundational problems structured within Primas-
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Atmanspacher [2,3] ontic-epistemic and Herz-Boltzmann [4,5] descriptive-
observational structuring of physical theories (see also [6,7,8]), as well as
Bohm'’s [9] implicate-explicate order viewpoint on the Universe. One of the
aims of our study is re-establishing of realism in physics (cf. [10]-[18]).

We also describe representation of experimental data by dendrograms
using hierarchic clustering algorithms. It leads to the p-adic model at the ontic
level. (From this viewpoint, our research is a part of p-adic theoretical
physics, see, e.g., [19]-[28], see section 6.) In [1], we named our theory
dendrogramic holographic theory (DH-theory). In this paper, we shall not
discuss holography (see [1]) but proceed with the same name.

The p-adic tree (p> 1 is a natural number) is the infinite tree with the
homogeneous structure of branching at each node, one incoming and p
outcoming edges. This tree is endowed with natural metric (so-called
ultrametric) and the algebraic structure of a ring (see appendix A).

We recall that an ontic theory is about reality as it is and the epistemic one
is about knowledge collected through observations. The ontic Universe is
unapproachable by observers. Nevertheless, its structure can be
theoretically reconstructed by increasing the size of dendrograms; observer
O generates approximations of the ontic Universe. The limiting mathematical
structure is uniquely determined -- the p-adic tree (or algebraically a ring
denoted as Zp).

One of the main aims of novel mathematical modelling of ontic-epistemic
structuring is better understanding of the classical-quantum
interrelation. We recall that quantum mechanics is an epistemic model, it
is about observations’ outcomes (see Bohr [29,30] and Plotnitsky [31-33
). In DH-theory, “quantumness” is present only at the level of
dendrograms, and the p-adic ontic Universe is classical. The heuristic
criterium of quantum-likeness is very natural: simple dendrograms are
more quantum(-like) than complex dendrograms. As a test of quantum-
likeness, we use the CHSH-inequality, not for the standard observables,
but for new observables reflecting the hierarchic relational structure of
data. It should be highlighted that the original experimental data used in
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this paper is classical. Its quantum-like structure becomes visible through
dendrogramic representation. The seed of the violation of the CHSH-
inequality is neither nonlocality nor rejection of realism. This is
nonergodicity of dendrogramic time series. This is the good place to recall
that a few authors had coupled quantum behaviour with violation of
ergodicity [34-38]. We also consider DH-theory for Minkovski geometry
and monitor the dependence of CHSH-violation and nonergodicity on
geometry as well as a Lorentz transformation of data.

The reader who is not interested in foundations can jump directly to
section 7 devoted to experimental data, correlations, and violation of the
CHSH-inequality for hierarchic observables and its correlation of
nonergodicity of data.

2. Dendrogram representation of the Universe
2.1. Systems as clusters of clicks of detectors

By Bohr the outcomes of measurements are not the objective properties
of systems [29-33]. They quantitively represent interrelation between a
system S and an observer O. An ontic system exists independently of O.
However, it is unapproachable by the observer; in fact, O constructs its
approximate representation by using data.

Consider an observer O constructing representation of surrounding
environment, in the extreme case, of the Universe. In DH-theory, the observer
has the free choice not only to perform or not perform some observation, but
even the free choice for decomposition of collected data into blocks and
treating these blocks as (epistemic) systems’ representation. The
fundamental entities of the epistemic theory are events (cf. [14, 39-43]), not
systems. Systems are determined as clusters of events - say clicks of detectors
(or other detection events). This position is very close to the view of Zeilinger
on quantum mechanics (private discussions of with Akh).
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between pairs

CHSH violation \

illustration 1. Dendrogramic representation of two time series (graphs)
by dendrograms, LHS: d=5, RHS: d= 30.

2.2. Representation of systems by dendrograms

Simple collection of experimental statistical data does not tell observer O
about the genuine hierarchic interrelations between physical processes
under observations. Such hierarchic structure which can be approximately
recovered with the aid of clustering algorithms. This hierarchic clustering
leads to the treelike geometry. In DH-theory, (epistemic) systems are
described by dendrograms, finite trees. Any observer O can reconstruct his
environment and, in the limit, the whole O-Universe by collecting
observational data.
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In DH-thery, decomposition of the O-Universe into subsystems is done
through decomposition of data into blocks. Each block of data is represented
by dendrogram -- this is a system. The data can be subdivided into blocks in
different ways. The O-Universe can be decomposed into systems of different
complexity depending on blocks’ size. We illustrate this process on Fig. 1a by
dividing data into the blocks of the equal size, d=5, LHS, and Fig1 b, d=30.

2.3. P-adic metric for hierarchic relations

The points at the baselevel of any dendrogram D (see Fig.1) represent
the relational characteristics of the system expressed by D. For the simplest
hierarchic algorithms, based on choices of just two alternatives - two
branching at vertexes, the basepoints can be described by vectors with
coordinates 0/1. The natural distance between these characteristics is given
by 2-adic ultrametric r_2: longer the common root of the paths going from
the dendrogram’s root to points a, b — shorter the distance between them
(see appendix A). This metric encodes the hierarchic relations inside the
dendrogramic system and with its surrounding environment. More general
hierarchic clustering algorithms with p-branching at vertexes generate
representation of systems by dendrograms having more complex topology.
(Here p>1 is a natural number determining the tree structure). The branches
(and the corresponding end-points) are encoded by vectors with the
coordinates belonging to the set{0,1,..,p-1}. The corresponding common
root distance is denoted by r._p.

Take two points a, b at the baselevel of dendrogram D representing a
system, the common root distance r_p(a,b) gives the quantification of
closeness of these two system’s characteristics w.r.t. the hierarchic order
relation. The quantity

R_D =max{r_p(ab): a, b belong to D}

(dendrogram’s diameter) determines the degree of hierarchic interrelation
between the elements of the dendrogram-system. If R_D is small the system’s
characteristics are highly relationally connected, if R D is large, the system
is relationally sparse.
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2.4. Epistemic realism, hidden variables

Each dendrogram D can be represented by the vectors with
coordinates belonging to the set {0,1,...,p-1}. These are (hierarchic relational)
hidden variables. Observer can invent relational observables defined as
functions of these hidden variables: A=A(u). This is the realistic model of
observations which is constructed by the observer O through hierarchic
structuring of the experimental data. This approach can be called realism
without reality, as opposite to reality without realism viewpoint on quantum
physics suggested by Plotnitsky [33, 44]. Such hidden variables are
constructed on the basis of experimental data, they are so to say epistemic
variables. But the mathematical model is realistic in the sense of set-
theoretical representation of states - hidden variables and observables -
functions of these variables.

3. From epistemic (explicate) to ontic (implicate): p-adic Universe.

By considering the data blocks of increasing size, in the limit O can
reconstruct the ontic description. The dendrogram based epistemic theory
leads to the p-adic geometry of the ontic Universe. (The role of the model
parameter p will be discussed in section 5.) In the limit, dendrograms of
increasing size generate the infinite p-adic tree endowed with the p-adic
ultrametric. Its infinite branches are points of the ring Z p; in fact, Z p
coincides the unit ball. Thus, w.r.t. the hierarchic p-metric the Universe, is
bounded. Topologically the p-adic universe differs crucially from the
Universe endowed with the Euclidean or Minkowski geometry. The basic
properties of Z_p match very well with the Bohm'’s views on implicate order.
This space is disordered, zero dimensional, and totally disconnected.

4. From ontic (implicate) to epistemic (explicate)

In section 3, the mathematical structure of the ontic Universe was
approached from the special dendrogram representation of experimental
data. Now, we proceed another way around: from the ontic p-adic model to
the epistemic dendrogramic model. Our previous epistemic-to-ontic
pathway (section 3) centralized the role of an observer O. This can make the
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impression that the personal observer perspective plays the crucial role in
DH-theory (cf. with QBism [45]). Now, by starting with p-adic ontic model we
diminish subjective component.

The points of the p-adic tree Z_p represent all possible events which can
happen in the Universe. Thus, as well as the epistemic Universe, the ontic
Universe is represented as a set of events. However, these are not
observational events; they cannot be associated with say the clicks of
detectors. We consider the p-adic points, absolute events. An absolute event
is the endpoint of the infinitely long path of the p-adic tree, mathematically a
sequence

a=al....an ..., with coordinates aj=0,1,..., p-1.

Each finite cutoff of the infinite path a is an element of the explicate order, it
can be interpreted as the characteristic of a physical system. The latter is
determined in a variety of ways depending on the embedding of the finite
path a’=al....an into various dendrograms. We consider the following process
of structuring of the Z_p -universe. Let us select some set of points S of Z_p
(finite or infinite), these points are geometrically presented as paths starting
at the root of the p-adic tree. Thus, S is a subtree of this tree. The common
roots of these paths determine relational closeness of corresponding points
in S. As well as in the epistemic model, these points can be considered as
characteristics of S. Observer is not involved in this consideration. Roughly
speaking the system S exists irrespectively whether somebody looks at it or
not.

Now take the tree of an ontic system S and cut it at some level, say n steps
from the root. Such dendrogram expresses a system S_n belonging to the
explicate level of nature’s description. In principle, there is no need to couple
it to some observer. This construction provides the realist interpretation
even for systems represented by finite dendrograms. The only subjective
element is the place of cutoff (cf. with the problem of boundary between
quantum and classical world’s).
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5. The role of clustering algorithm

Different hierarchic clustering algorithms generate different
dendrograms and observer’s free will also covers algorithm’s choice.
However, in the ontic description this dependence on the algorithm’s choice
is washed out. All algorithms with p-alternatives branching generate
approximations for the same ontic model of the Universe, given by the p-adic
tree. The rings of p-adic numbers Z_p are not isomorphic for different p.
However, their topological and algebraic properties are the same. Similar
problem had been discussed in p-adic theoretical physics [19-28]: What p
does correspond to the physical reality? There were various suggestions,
including such exotic choices as p=127 [26]. The pragmatic solution was to
treat all p-adic models on the equal grounds and consider the p-adic encoding
similarly to representation of real numbers by using different bases.

Of course, there exist clustering algorithms which generate
nonhomogeneous trees, with different branching indexes for different
vertexes. Such dendrogramic models lead to arbitrary trees (arbitrary
ultrametric spaces). One may try to exclude such models by appealing to
relational scale homogeneity of nature. In any event, we keep to p-adic
models. Our original choice of the concrete hierarchic clustering algorithm
[1] was motivated by studies including data-analysis of Murtagh [46-48]. In
the present paper, we played with a few other algorithms, but their outputs
are very similar with slight difference in details. In the following result
section (section 11.3) we have applied seven different linkage clustering
algorithms with no apparent differences in CHSH values outcomes (Figure 5
at section 11.3). We refer the interested reader to the matlab software web-
site for details on those seven linkage clustering algorithms [49].

6. Traditional p-adic theoretical physics”: emphasis of the number-
theoretic structure

We recall that on p-adic trees, it is possible to introduce arithmetic
operations; algebraically these spaces are similar to the real line. However,
topologically p-adic trees differ crucially from the real line. P-adic theoretical
physics (see, e.g., [19-28] and references herein) floured in 1990s stimulated
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by string theory [19, 21,22]. Its main problem which finally led to essential
damping of its development during the recent years was the absence of
coupling with the real experimental data. Roughly speaking there are no
measurement devices generating p-adic outputs. But, as was clearly stated
by Volovich [26], there are neither measurement devices generating
irrational numbers, due to the finite precision of measurements all their
outputs are rational numbers. Volovich claimed that the only physical
numbers are the rational numbers. Since rational numbers are dense both in
real and p-adic fields, he suggested unification of standard and p-adic physics
on the basic of rational numbers. Although he did not use the ontic-epistemic
terminology, we can say that for him mathematically epistemology is based
on rational numbers, beyond this general rational epistemology one can
recover the real and p-adic ontic models. We suggest another epistemology
for p-adic ontology. This is the hierarchic relational epistemology. It differs
crucially from the real-order epistemology of “standard physics”. We can say
Volovich’s approach was number theoretical and our approach is hierarchic
relational.

The DH-framework provides the rigid coupling of theory and
experimental data. We hope that it will lead to the renaissance of p-adic
modelling in physics. (We guess that its main theoretical results can be
adapted to DH-theory.)

7. Dendrogram viewpoint onto classical-quantum interrelation

In our epistemic model, the sharp classical-quantum separation
disappears. The degree of classically is based on system’s complexity - the size
and topological complexity of its dendrogram representation. Quantum
systems are characterized by low complexity of their dendrograms. So,
electrons and atoms can behave quantum in some measurements, because
they have very simple hierarchic structure of interrelation between their
components. In our approach, not only systems described by quantum
mechanics, but even classical physical systems can exhibit quantum(-like)
behavior within hierarchic representation of experimental data.
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How can one measure the degree of “quantumness”? In quantum
physics, one of the most important tests is based on the CHSH inequality and
other Bell type inequalities [50-55]. We select four system’s characteristics
(the end points of dendrograms representing systems) a,a’,b,b’ and calculate
the correlations for pairs (a,b), (a,b’), (a’,b), (a’,b’). Finally, CHSH-combination
of correlations is formed and problem of its exceeding of two is studied via
numerical simulation. For Alice and Bob, there are fixed settings a, a’and b,
b’, respectively. Experimenter calculates the correlations Cab, Cab’, Ca’b,
Ca’b’ and then the CHSH-combination of them:

C=Cab - Cab’+Ca’b+Ca’b’

Inequality |C| >2 means data collected in experimental runs is consistent with
predictions of quantum theory and contradict to local legalism, i.e., it cannot
be described by hidden variables model which is local.

We consider two time series of experimental data. Data is collected in
measurements of one fixed classical physical observable. The outcomes of
this observable carry the information about hierarchic relations between
characteristics of a physical system under measurement. (Data is
decomposed in the systems by the observer.) These relations are not visible
in the straightforward graphic representation of data (see Fig.1). They are
extracted from " real data” with the aid of clustering algorithm.

The standard viewpoint on violation of the Bell type inequalities [50-55]
is that it shows that “Quantum correlations are stronger than classical ones.”

Bprca b Do
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illustration 2. The scheme of the CHSH-test for two fixed settings a and b of
polarization beam splitters.

By trying to explain this difference between quantum and -classical
correelations, Bell and his followers pointed to contradiction between
quantum theory and local realism. The latter is mathematically formalized as
representation of observables by functions of hidden variables; locality
means that say Alice’s functions do not depend on settings selected for Bob’s
functions, i.e., Sa=Sa (u), where u is the hidden variable.

The interpretation of the violation of the Bell inequalities is the subject of hot
foundational debates (see, e.g., [56-60]). A plenty of so called loopholes were
pointed out. Two basics of them, the nonlocality and detection efficiency
loopholes [61, 62], were successfully closed in 2015-experiments [63-66].

8. Therole of nonergodicity

De Broglie [67] was the first who highlighted that the experimentally
obtained probabilities may deviate from ontic probability distribution of
hidden variables. He justified this possibility within his double solution
theory - in terms of the pilot wave. It seems that Krennikov’s works [68-
70] were the first publications in which there was pointed out to the
difference between the frequency experimental probabilities and the
measure-theoretic distributions of hidden variables. Khrennikov
appealed to the von Mises’ frequency probability theory. The latter
straightforwardly implied that the Bell type inequalities can be violated
for local models. However, it seems to be impossible to formalize
mathematically the notion of realism within the von Mises frequency
theory [71]. Finally, in [37] the interplay between frequency and
measure-theoretic probabilities was structured within ergodic theory
and it was shown that the violation of ergodicity is a sufficient condition
for the violation of the Bell type inequalities. However, this was shown in
the purely theoretical framework. In our further considerations, we shall
show that in DH-theory the Bell inequalities are violated because of
nonergodicity of time series of experimental data restructured with
hierarchic clustering algorithms,
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Hence, in DH-theory the Bell type inequalities are not the tool for
rejection of the local realistic description or classical probability model
(Kolmogorov [72], 1933). For our purpose, it is more natural to treat
these inequalities as expressing the degree of quantumness of
experimental statistical data - in the spirit of article [73].

As was mentioned in introduction, a few authors pointed out that
quantum effects can be derived in classical statistical framework by rejecting
the assumption of ergodicity [34-38]. In particular, in [35] it was guessed
that the originally so emphasized the difference between quantum and
classical statistical modeling can be eliminated by rejecting the hypothesis of
ergodicity of data; even the black body radiation can be modelled classically,
but within nonergodic statistical mechanics. In paper [37], nonergodicity was
pointed as one of the sufficient conditions for violation of the Bell type
inequalities, the condition which is equally important as nonlocality and
rejection of realism (the hidden variables description).

DH-theory gives the possibility to introduce hidden variables (of the
special type) beyond any experimental data and consider a class of realistic
observables, those represented as functions of hidden variables. Hence,
straightforwardly it seems that Bell type inequalities cannot be violated
under the assumption of locality. However, we show the violation of the
CHSH inequality for special selection of “settings” determining the
observables. The reason for this is precisely the violation of ergodicity, the
measure-theoretic and frequency averages do not coincide [37].

However, the natural question arises: Why do the hierarchically
determined observables violate the assumption of ergodicity? The answer
for the question is that the hierarchical sub-systems have already encoded in
them the hierarchical structure of the “universal” dendrogram as was
demonstrated in our paper [1].

We shall directly check the hypothesis of ergodicity in section 10 and we
shall show that for wide range of “settings’’ the hierarchic observables are not
ergodic. However, we also found that for some “settings” the observables are
ergodic, but, nevertheless, the CHSH inequality is violated. How can it happen?
This situation was also discussed in paper [37]:

12
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“Consider two stationary ergodic processes X(t) and y(t). Is the vector
process z(t) = (x(t), y(t)) ergodic? The answer is ‘no’. We remark that this
implies that the product x(t)y(t) of two ergodic processes need not be ergodic.
Thus, in principle in quantum theory nonergodicity can be generated by
measurements on compound systems. At the same time measurements of each
system separately generate ergodic stationary processes. In such a case
measurement on compound systems really have the special feature,
nonergodicity.”

And we really found that in the case of the violation of the CHSH inequality
the product of Alice and Bob observables is always nonergodic.

9. Scheme for calculation of dendrogramic correlations

For concreteness, we consider p = 2.

Step 1. From data time-series to dendrogram: hierarchic clustering of
data.

Consider a time series of some data Z1 Z2 .. .Zn...Split it into blocks of the
length d. (On Fig. 1, these are blocks of the length 5). For each block, we
construct (with hierarchic clustering algorithm) dendrogram having d
basepoints. We obtain dendrogram time-series: Dj,....,Ds..., All dendrograms
have k levels, where 2k-1<d < 2k (For Fig. 1 A, d =5, hence k= 3.)

Step 2. From dendrogram time-series to 2-adic time series.

First we remark that each dendrogram D can be represented by vectors
of the form (a0,a1,...ak), where aj = 0,1. Each vector encodes a path on D from
its root to the corresponding endpoint; D is selection of d vectors from 2k
vectors.

From this vector-representations, we move to representations by natural
numbers, which we define as features of the dendrogram, by using the
formula

(doat...ak) = ao+ a12 + @222 + ... + a2k,

Thus, from a series of dendrograms Dj,....,Ds...,we obtain a series of natural
numbers, which are sorted in an ascending order, in each block of length d,
according to the hierarchical structure of each dendrogram Dn,

13
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These natural numbers play the role of polarization in the real CHSH
experiment. Later we shall define new observables depending on such
analogs of polarization. These d-blocks of natural numbers can be treated as
hidden variables. New observables will be functions of these “hierarchic
hidden variables”.

Now, for correlations, we consider two time series Z1 Z2 .. .Zn... and Z1’
Z2'....Zn'..and by applying the procedures of Steps 1,2, we obtain two series
of dendrograms Dj,....Ds.. and D,...,D’....,, and two corresponding series of
natural numbers. They are formed from consecutive blocks of d natural
numbers which are generated through d-decomposition of original time
series:

X=X1X2....Xn, Xn IS composed of blocks with d natural numbers

y=y1y2....yn, Yn is composed of blocks with d natural numbers

Step 3. Defining of observables.
First method

We constructed two time series of dendrogram one for Alice
A=(A1A2A3...An) and one for Bob B=(B1B2B3...Bn).

For Alice we select two pairs of numbers a=[al aZ2] a’=[al’ a2’] the two pairs
aren’t identical. Analogs of two vectors - orientations of polarization beam
splitters or Stern-Gerlach magnets.

For Bob we select two pairs of numbers b=[b1 b2] b’=[b1’ b2’] the two pairs
aren’t identical.

For each Aii€l,2,3..n we randomly decided between pair a or a’
For each Bii€1,2,3..n we randomly decided between pair b or b’
If for Ai we chose pair a we have the following:

If Ai had both of the numbers in a we give Sai=1 else Sai=-1.

Metaphorically we can say that if “polarization” of Ai coincides with a, the
detector with the outputis +1 clicks, if not, the detector with the output is -1
clicks.

We proceed in the same for selection of a’ and b, b’. Then we calculate the
correlations:

14
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Cab=(}Sai*Sbi)/ length(a and b are selected together )
Cab’=(};Sai*Sb’i)/ length(a and b’ are selected together )
Ca’b=(};Sa’i*Sbi)/ length(a’ and b are selected together )
Ca’b’=(};Sa’i*Sb’i)/ length(a’ and b’ are selected together )
C=Cab - Cab’+Ca’b+Ca’b’

Second method

We constructed two time series of dendrogram one for Alice
A=(A1A2A3...An) and one for Bob B=(B1B2B3...Bn).

For Alice we select two pairs of numbers a=[al aZ2] a’=[al’ a2’] the two pairs
aren’t identical.

For Bob we select two pairs of numbers b=[b1 b2] b’=[b1’ b2’] the two pairs
aren’t identical.

For each Aii€1,2,3..n we randomly decided between pair a or a’
If for Ai we chose pair a we have the following

We replace the natural number in Ai that equal al to 1

We replace the natural number in Ai that equal a2 to -1

We replace all other natural numbers in Ai 0. we indicate that pair a was
chosen to Ai .

The same we do for other settings, a’, b, b’-
We find i that a and b were chosen = nab
We find i that a’ and b were chosen = na’b
We find i that a and b’ were chosen = nab’
We find i that a and b’ were chosen = na’b’
We calculate Sab=(Ai=nab) *(Bi=nab)

We calculate Sa’b=(Ai=na’b) *(Bi=na’b)
We calculate Sab’=(Ai=nab’) *(Bi=nab’)
We calculate Sa’b’=(Ai=na’b’) *(Bi=na’b’)

15
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For block j of size d of Sab if there are two values of 1 we assign Xabj=1,one
value of 1 Xabj=1 ,one value of -1 Xabj=-1, all values 0 Xabj=-1.

For blockj of size d of Sab if there are two values of 1 we assign Xa'bj=1,one
value of 1 Xa’bj=1 ,one value of -1 Xa’'bj=-1, all values 0 Xa’bj=-1.

For blockj of size d of Sab if there are two values of 1 we assign Xab’j=1,one
value of 1 Xab’j=1 ,one value of -1 Xab’j=-1, all values 0 Xab’j=-1.

For block j of size d of Sab if there are two values of 1 we assign Xabj=1,one
value of 1 Xa’b’j=1 ,one value of -1 Xa’'b’j=-1, all values 0 Xa’'b’j=-1.

We calculate
Cab=(}Xabj)/length(Xabj)
Cab’=(}Xab’j)/length(Xab’j)
Ca’b=(} Xa’'bj)/length(Xa’bj)
Ca’b’=(}; Xa’b’j)/length(Xa’b’j);
C=Cab-Cab’+Ca’b+Ca’b’

10. Non-Ergodicity check methods

Nonergodicity means that measure-theoretic and frequency averages do not
coincide. We cliam that this is the main reason for violation of the CHSH
inequality. We have operated with the frequency averages

Sab =< Sa,Sb >, but the standard proofs of the Bell type inequalities are done
for measure-theoretic correlation Sapmeasure =<< Sa,Sb >>. In order to check
whethear our data is ergodic we continue with first scheme

10.1 Scheme for determining if Data is Non-Ergodic

We start with one sequence A = (A142...An), where each d-vector 4j =
(ul,u2,..,ud) represents a dendrogram. We fix a=[al a2] and define

Sa = Sa(u), (1)

We continue to calculate Sa as in the first method of step 3 in section 9. We
stress that (1) is the condition of realism, the value of hidden variable u
determines the outcome of the observable Sa. Then

< Sa>= (Z Sa(A))/N 2)

J
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is the frequency average. Now we compute the probability
distribution of hidden variables. Let us fix one d-vector u which is
present in our dendrograms and calculate proportion

number of occurrences of u

number of occurrences of u
p(w) = - (3)

Then
K Sa >»>= Z Sa(u)p(u) (4)

where the sum is w.r.t. all hidden variables u which are present in
our sequence of dendrograms. In the simplest situation, we should
get that

<< Sa >>#< Sa >

and the deviation should be visible, not just very small deviation.
10.2 Scheme for determining if correlations between Data are Non-
Ergodic

However, it can be that at the level of one sequence the ergodicity holds, but
itis violated for correlation (I have a paper about this possibility and it seems
that violation of CHSH can be of this type).

Then, let us proceed without the random choice and calculate for A =
(A1..An),B = (B1...bN) Sa and Sb as in the first method of step 3 in section 9.
Thus our frequency correlation:

< Sa,Sh >= (z Sa(4;)Sh(B;))/N (5)
=

Then we should complete this analysis by the measure-theoretic framework.
We consider all possible pairs of hidden variables, d-vectors, u,v which are

17
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present in the pairs Aj,Bj and find the probability number of occurrences of

uv
p(u’ 17) — number of occ:rrences of uv (6)
And
L Sa,Sh >»>= Z Sa(w)Sb(v)p(u,v) (4)
u

and for non-ergodic correlations we expect that

<< Sa,Sh >>#< Sa,Sb >
11. Results
In what follows we define the two distances metrics,
euclidean: euclidean distance = /(x; — x;)?
were x € spatial data point, i,j € 1,2...n. n = d block size
and minkowski:

minkowski distance = —(t; — t;)* + (x; — x;)*

Were x € spatial data point, i,j € 1,2..n. n = d block size

t € temporall data point, i,jel,2..n. n=dblock size

We analyzed the same data sets by

applying section 9 Scheme (first and second method) for calculation of

dendrogramic correlations for three different “views” of the data sets:

1. we constructed dendrograms with the euclidean distance metric which
will be shown in section 1 of the results.

2. we constructed dendrograms with the minkowski distance metric which
will be shown in section 2 of the results.

3. we Lorentz transformed the data sets and then constructed
dendrograms with the minkowski distance metric

11.1 CHSH vaulations for 2-slit diffraction experiment data
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As an example, we reproduced the Bell violations of correlations from a very
classical double slit diffraction experiment [74] . the original experiment
used a CCD camera with 512x512 detectors chip. The detection pattern in
each frame in the experiment was represented as a binary matrix of 512x512
were 0 values represent no detection of photons in the corresponding
detector while 1 wvalue represented detection of photons in the
corresponding detector . for each frame and its corresponding binary matrix
we found all column positions that had the value 1, multiplied these positions
value and calculated the log10 value of the outcome, this resulted in a unique
number representing each frame detection pattern.

Thus, each frame was encoded with only one unique number Ar and time
number Tt in which féframe 1 2..n. From each number of consecutive frames,
N, the pairwise distances between each of the N Ar was calculated. Pair wise
distances were calculated according to the above three views of the data sets
data three methods: first by applying an euclidean distance metric between
each Arvalues , secondly, by applying minkowski distance metric between
each two vectors [ Tr Af] and thirdly by applying Lorentz transformation on
each vector [ Tr Af] where the reference frame was 0.99 the speed of light
and then each Lorentzian transformed vector [ Tt Af]iorentzian Was compared
to another Lorentzian transformed vector by applying minkowski distance
metric between such vectors.

Dendrogram were constructed by using ward or weighted linkage algorithm.
The result was a series of consecutive denenrograms D1D2...Dn with block
length/edge number in single dendrogram d=4,5..9.

For each such d we splited the dendrogram series into two series of
dendrograms each oflength n/2. One series is the observable Alice measures
And the second series is the observable Bob measures. As in step2 of section
9 we represented each dendrogram edge Dn with a natural number
(feature). These features were sorted in an ascending order according to the
hierarchical structure of the dendrogram. We then carried on to evaluate
CHSH correlations in accordance to step 3 first and second method.

11.2 First method CHSH
In line with first method of step 3 in section 9 we calculated CHSH values for
each combination of features ab=[ [a b] [a b’] [a’ b] [a’ b']]

Where all 3, 2, b and b’ are chosen out of the number of features in the whole
2 dendrogram series. Culumative distribution functions (cdf’s) of CHSH
values of all pair combination are shown in figure 1. Dandrograms were
constructed with block size d=4,5..9 in three different ways corresponding
to the 3 views described above. All views in all block sizes d=4,5..9 showed a
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fraction of the pairs producing CHSH values above 2 resulting in the
violation of CHSH inequality

A euclidean B minkowski
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Figure 1: CHSH values computed according to the first method in
section 9 step 3. (A) Cdf’s of CHSH values with Euclidean view under “ward”
linkage clustering algorithm. Each cdf corresponds to block size d=4,5..9. (B)
Cdf’s of CHSH values with Minkowski view under “ward” linkage clustering
algorithm. Each cdf corresponds to block size d=4,5..9. (C) Cdf's of CHSH
values with LOrentzian view under “ward” linkage clustering algorithm.
Each cdf corresponds to block size d=4,5..9. (D) fraction of CHSH with values
Above 2 in each view, Euclidean,Minkowski and Lorentzian, with block sizes
d=4,5..9.

in order to verify that non ergodicity is the cause for violation of the CHSH
inequality we tested the amount of ergodicity of the dendrogramic data that
CHSH values were calculated from (figure 2). We tested the data for any pair
of features a=[al a2] as described in the Scheme for determining if Data is
Non-Ergodic of section 10.1. the results show that the dendrogramic data
for dendrograms of block size d=5,6..9 the mean ergodicity score (|<Sa>-
<<Sa>>|) show considerable fraction of all possible a=[al a2] pairs with non
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zero value indicating clear Non-Ergodicity. Moreover cross-correlating the
fraction of CHSH values above 2 and the data ergodicity score in each
dendrogram of block size d=5,6..9 for the Eucliden metric view, Minkowski
view and Lorentzian view resulted in correlation coefficients -0.9485,
-0.9772 and -0.0025 respectively
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Figure 2: Ergodicity score values computed according to the Scheme for
determining if Data is Non-Ergodic described in section 10.1. (A) Cdf’s of
Ergodicity score values with Euclidean view under “ward” linkage clustering
algorithm. Each cdf corresponds to block size d=4,5..9. (B) Cdf’s of Ergodicity
score values with Minkowski view under “ward” linkage clustering
algorithm. Each cdf corresponds to block size d=4,5..9. (C) Cdf’s of Ergodicity
score values with Lorentzian view under “ward” linkage clustering
algorithm. Each cdf corresponds to block size d=4,5.9. (D) Mean of
Ergodicity score in each view, Euclidean,Minkowski and Lorentzian, with
block sizes d=4,5..9.

We note that for all views the dendrogram data series with block size d=4
showed the data is ergodic . thus the violation of CHSH inequality for block
size d=4 can be a result of correlation non-ergodicity. We carried on to
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investigate ergodicity in terms of two stationary ergodic series correlations in
the Euclidean view. This ergodic test for correllations is described in the
Scheme for determining if correlations between Data are Non-Ergodic in
section 10.2. The results of this investigation clearly show all d=4,5..9 block size
dendrograms are nonergodic, in terms of correlations, in the Euclidean view
(figure 3).

Empirical CDF
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Figure 3: Ergodicity score values computed according to the Scheme for
determining if correlations between Data are Non-Ergodic described in
section 10.2. Cdf’s of Ergodicity score values with Euclidean view under
“ward” linkage clustering algorithm. Each cdf corresponds to block size
d=4,5..9.

11.3 second method CHSH

In line with second method of step 3 in section 9 we calculated CHSH values
for each combination of features ab=[ [a b] [a b’] [a’ b] [a@’ b’]]

Where all 3, a’, b and b’ are chosen out of the number of features in the whole
2 dendrogram series. Culumative distribution functions (cdf’s) of CHSH
values of all pair combination are shown in figure 4. Dandrograms were
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constructed with block size d=4,5..9 in three different ways corresponding
to the 3 views described above. Again as with the first method All views in
all block sizes d=4,5..9 showed a fraction of the pairs producing CHSH values
above 2 resulting in the violation of CHSH inequality (figure 4). Interestingly
the fraction of CHSH values above 2 in the Euclidean and minkowski views
showed descending fraction values in respect to increasing d value d=4,5..9
in contrast to the first method which showed ascending relation with
increasing d values.
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Figure 4: CHSH values computed according to the second method in
section 9 step 3. (A) Cdf’s of CHSH values with Euclidean view under “ward”
linkage clustering algorithm. Each cdf corresponds to block size d=4,5..9. (B)
Cdf’s of CHSH values with Minkowski view under “ward” linkage clustering
algorithm. Each cdf corresponds to block size d=4,5..9. (C) Cdf's of CHSH
values with LOrentzian view under “ward” linkage clustering algorithm.
Each cdf corresponds to block size d=4,5..9. (D) fraction of CHSH with values
Above 2 in each view, Euclidean,Minkowski and Lorentzian, with block sizes
d=4,5.9.
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Please note that the Euclidean cdf’s raise in correlation to the second ergodic
test described in figure 3.

We further studied the dependance of the three views violation of CHSH
inequlity on the linkage clustering algorithm (figure 5). For that purpose, we
used 7 different algorithms all for d= 5 which showed no change in the
Euclidean and minkowski views as to the fraction of pairs violating CHSH
inequality. The Lorentz view showed a significant change in value in the
“single” algorithm resulting in fraction of pairs value comparable to the
Euclidean and Minkowski views.
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Figure 5: seven linkage clustering algorithms influence on CHSH
inequality violation. fraction of CHSH with values Above 2 in each view,
Euclidean,Minkowski and Lorentzian, with block sizes d=5 and in each of the
7 linkage clustering algorithms.

11.3.1 second method CHSH random data.

We carried on to produce 10 random numbers sequences (comparable in
size of the number of frames in the 2-slit diffraction experiment) in order to
compare the analysis to the diffraction 2-slits experiments correlation
analysis.
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For that purpose for each random number in one of the 10 sequences we
used this scheme:

First we randomly choose a number between 1-7 which will indicate the
amount of random numbers generated from the interval [1 512] (this is in
correspondence to the 2-slit diffraction experiment with 512 detectors.

We multiplied these numbers and calculated the log10 value of the outcome,
this resulted is a unique number representing each “randomly generated
frame detection pattern”. each such frame was accompanied with a time
stamp which indicated the time of generation of the “randomly generated
frame detection pattern”. We carried to analyze, in each of the “views” as
defined in section 10 above , the fraction of ab pairs that violated CHSH
inequality. Mean fraction values of ab pairs, of ten random sequences,
violating the CHSH inequality is shown in figure 6.
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fraction of pairs combinations
with CHSH valuesabove 2
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Figure 6: Mean CHSH values computed from 10 sequances of random
data according to the second method in section 9 step 3.

fraction of CHSH with values Above 2 in each view, Euclidean,Minkowski and
Lorentzian, with block sizes d=4,5..9 and in each with “ward” linkage
clustering algorithm.
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11.4 Lorentz transformed data.

As was clearly indicated by all the above analysis the Lorentz transformed
data result in higher fraction of pairs violating the CHSH inequality under
most of the clustering algorithms ( although the “single” algorithm showed
comparable CHSH fraction values , figure 5). One might wonder why. The
explanation for that phenomena is that most clustering algorithms , except
the “single” algorithm, produce dendrogram series with much smaller phase
space of possible topology of dendrograms. This is clearly seen in figure 7
where we show the amount of features contained in the dendrogram series
of the 10 random data sequences under each of the 3 views. The amount of
features in the Lorentzian view remains small for all d=4,5..9.
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Figure 7: Mean feature number computed from 10 sequances of
dendrogram composed out of random data . Mean feature number of 10
sequences in each view, Euclidean, Minkowski ans Lorentzian and in block
size d=4,5..9.

12. Discussion on the results of numerical data analysis

We emphasize, our basic idea, that quantum-likeness is not the property of
systems but of time series of observations. In the same way as randomness,
quantum-likeness can be established on the basis of tests for data. For the
moment, we considered only one (but very important) test, CHSH-test. Our
main results are that
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a) Violation of the CHSH inequality can be demonstrated by time series
generated by measurements on classical systems.

b). The key-point is hierarchic dendrogramic representation of data. It can
be described by local hidden variable model.

c). CHSH-violation is closely correlated with violation of ergodicity

Generally nonergodicity is the fundamental property of hierarchic
dendrogramic representation of statistical data.

This representation is based on the application of clustering algorithms.
Although different algorithms can generate different dendrogramic series,
from the same experimental data, general properties of representations do
not differ; all algorithms show CHSH-violation and nonergodicity of data or
of correlations . Of course, the degree of violation and nonergodicity vary
with algorithms (see figures 1,2,3,4 and 6).

By taking into account the temporal component of data-series, we generate
two dimensional geometry endowed with Minskovski pseudo-metric. We
apply DH-theory to this geometry. It was found that the basic properties of
Minskovski DH-theory do not differ from its Euclidean version (figures
1,2,3,4 and 6). As the last step of our playing with algorithms, we
performed Lorentz transformation of data and then proceed with
dendrogramic modeling. Again, the Lorentz transformed data showed CHSH
violations and nonergodicity of data (figure 1,2,3,4,5 ) although not with
comparable values to the Euclidean and Minkowski views. We showed that
these CHSH violations can become comparable with the violations under
the Euclidean and Minkowski views under certain clustering algorithms
(figure 5, “single” clustering algorithm). We also show that the high fraction
of pairs showing CHSH violations in the Lorentzian view is a consequence of
the smaller phase space of possible topology of dendrograms under most
clustering algorithms which result in smaller amount of features (figure 7).

The two methods in step 3 of section 9 are different in the treatment of the
hierarchical information of the data and adaptation to the formalization of
the CHSH experiment in terms the hierarchical information. This different
adaptation leads to some what different results where CHSH violations
seem to be with opposite phase with d block size. Although this still needs
to be investigated, we note that both methods show CHSH violations.
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Some more simulations should be considered with d block size of larger
size the nine in order to again verify the transition from quantum to
classical correlations already discussed in previous study [1].

13. Concluding remarks

In this paper DH-theory [1] was structured in the ontic-epistemic
(implicate-explicate order) framework. Experimental data is described by
dendrograms generated by clustering algorithms - epistemic counterpart of
our theory. In the limit dendrograms generate the infinite p-adic tree - the
mathematical model of the ontic Universe.

DH-theory is realistic, not only because the epistemic theory of
observations has the ontic background, but also because even at the
epistemic level it is possible to introduce hidden variables. Ontic realism is
very exotic: The Universe zero-dimensional, totally disconnected and
disordered. This universe is bounded, but w.r.t. the very special distance, p-
adic ultrametric. But maybe it is even more surprising that the local realistic
description can be used event at the epistemic level, with hierarchic hidden
variables and observables which their functions.

DH-theory provides a novel viewpoint on classical-quantum
interrelation. First, we stress that the ontic p-adic world is classical. In the
epistemic dendrogramic world simpler dendrograms have higher degree of
quantum-likeness. For the moment, the latter is characterized with just one
test of quantumness - the CHSH test. Its violation is a consequence of
nonergodicity of empiric data. However, it is crucial that this data is
represented dendrogramically.

Finally, we remark that the size of base-level of a dendrogram can be
considered as system’s dimension. It is interesting that we are able to violate
the CHSH inequality only for d> 3.
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Appendix A: Ultrametric spaces, trees, p-adic numbers
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In some applications the point structure of a set X and the properties of
a metric p may essentially differ from the Euclidean case. We are interested
in metric spaces X where, instead of the standard triangle inequality, the
strong triangle inequality:

p (x,y)s max[p(x z), p(z y)] (1)

is valid. Such a metric is called an ultrametric, and such metric spaces
are called ultrametric spaces. The strong triangle inequality can be stated
geometrically: all triangles are isosceles.

Let us discuss the main properties of ultrametric space X. We set

B(a)={x€X:p(x-a)<r},B~(a)={xeX:p(x-a)sr},r>0a€X

These are balls of the radius r with the center at the point a. Our
standard intuition tells us that B-(a) is a closed ball, but not open, and B- ~
(a) is an open ball, but not closed. However, it is not valid for ultrametric
spaces:

In ultrametric space each ball in X is open and closed at the same time.
Each point of a ball may serve as a centre. A ball may have infinitely many
radii.

Let U and V be two balls in ultrametric space X. Then there are only two
possibilities: (1) balls are ordered by inclusion (i.e., U € Vor V c U); (2) balls
are disjoint.

Thus if two balls have a common point then one has to be a part of
another.

The symbol S.(a) denotes the sphere {x € X: p(x, a) = r} of the radius r >
0 with the center at a. There is also a large deviation from the Euclidean case:
the sphere S-(a) is not a boundary of B:(a) or B, ~ (a).

Consider the following class of ultrametric spaces (X, p). Every point x
has an infinite number of coordinates x = (a,, a, ..., a..). Each coordinate
yields the finite number of values a € {0, .., m - 1}, where p > 1 is a natural
number. We denote the space of sequences (1) by the symbol X =Zp. The
standard ultrametric is introduced on this set in the following way.

Let x = (ao, ay, az, ..., an, ),y = (bo, by, b2, ..., by, ...) EZp. We set

r_p (xy)=1/mk
ifa=b,j=0,1,.. k-1, and ar # b«
(3)

This is a metric and even an ultrametric. To find the distance r_p(x, y)
between two strings of digits x and y, we have to find the first position k at
which the strings have different digits. The space X = Zm coincides with the
unit ball centered in zero, X = B1(0); this space is compact. Geometrically it
can be represented by the tree, see Figure 8 for the 2-adic tree
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representing Zz2. Here one vertex, the root labeled as R, is incident for two
edges and other vertices are incident for three edges. We remark that it is
convenient to consider this tree as the directed graph; for each

vertex [ different from R, one edge comes from the branch starting at R, the
“input edge”, and two edges go out from I, the “output edges”. These two
edges (or vertices at their ends) are labeled by a = 0, 1. In Figure 8 the
order of labeling of the output edges is based on the embedding of the tree
in the plane, upper output edges are labeled by 0 and lower by 1. This leads
to the concrete numerical representation of this tree. However, the rule
used for labeling of edges is not obligatory; for each vertex I, we can assign
0/1 to each of output edges in an arbitrary way and obtain another
numerical representation of this tree.
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Figure 8:.2-adic hierarchic tree.
Appendix B: Clustering algorithms
A linkage algorithm computes the distance between two clusters.

The following notation describes the linkages used by the various methods:

e Clusterris formed from clusters p and q.
e n.is the number of objects in cluster r.
e Xx,istheith objectin clusterr.
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e Single linkage, also called nearest neighbor, uses the smallest distance between
objects in the two clusters.

d(r,s)=min(dist(x,Xg)),i€(i,....n;),JE(L,...,n,)

e Complete linkage, also called farthest neighbor, uses the largest distance
between objects in the two clusters.

d(r,s)=max(dist(X;,Xg)),i€(L,....n,),J€(L,....n5)

e Average linkage uses the average distance between all pairs of objects in any
two clusters.

e Centroid linkage uses the Euclidean distance between the centroids of the two
clusters.

e Median linkage uses the Euclidean distance between weighted centroids of the
two clusters.where "X, and "X, are weighted centroids for the clusters r and s. If
cluster r was created by combining clusters p and g, "X, is defined recursively
as

X=0.5CX,7X,)

e Ward's linkage uses the incremental sum of squares, that is, the increase in the

total within-cluster sum of squares as a result of joining two clusters. The

within-cluster sum of squares is defined as the sum of the squares of the
distances between all objects in the cluster and the centroid of the cluster.

e Weighted average linkage uses a recursive definition for the distance between
two clusters. If cluster r was created by combining clusters p and g, the
distance between r and another cluster s is defined as the average of the
distance between p and s and the distance between g and s.
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