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Abstract: Creating new business models is crucial for the implementation of
clean technologies for industrial decarbonization. With incomplete knowledge
of market processes and uncertain conditions, assessing the prospects of a
technology-based business model is challenging. This study combines business
model innovation, system dynamics and exploratory model analysis to identify
new business opportunities in a context of sociotechnical transition and assess
their prospects through simulation experiments. This combination of methods
is applied to the case of a potential business model for Distribution System
Operators aiming at ensuring stability of the electrical grid by centralizing the
management of flexible loads in industrial companies. A system dynamics
model was set up to simulate the diffusion of flexible electrification
technologies. Through scenario definition and sensitivity analysis, the
influence of internal and external factors on diffusion was assessed. Results
highlight the central role of energy costs and customer perception. The chosen
combination of methods allowed the formulation of concrete recommendation
for coordinated action, explicitly accounting for the various sources of
uncertainty. We suggest testing this approach in further business model

innovation contexts.
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1. Introduction

Climate change mitigation requires a transition to a low-carbon
society, i.e. significant reductions of greenhouse gas (GHG) emissions.
The decarbonization of the energy sector is decisive to this end [1].
Thanks to several effective climate policies and technological progress,
the share of power generation stemming from renewable sources (such
as solar and wind) has largely increased in the previous years, and an
accelerated uptake of related technologies is expected for the future
(BMWI, 2019). Additionally, major technological changes in the
industrial sectors are necessary to achieve a low-carbon transition [3].
There are several pathways to reduce GHG emissions in the industry,
such as adopting highly energy efficient technologies, implementing
carbon capture and storage systems, and the electrification of
production processes [4]. The strong penetration of renewables
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provides the necessary carbon neutral energy sources for a clean
industrial electrification.

However, the increase of renewables and the electrification of
industrial processes pose major challenges to the electricity grid. On the
one side, the variability and unpredictability of renewables may
compromise grid stability. Therefore, additional control measures and
flexibilities on the level of the distribution grid are needed to maintain
the balance between supply and demand [5]. On the other side, the
electrification of industrial processes increases peak demand, thus
increasing grid congestion and the need to upgrade grid capacity
unless alternative measures are developed [6]. An interesting option is
the use of digital technologies that enable smart solutions to deploy
novel flexibilities. Smart controlling of electrification technologies
contributes not only to decarbonization, but could also provide
flexibility services to the grid, facilitating the integration of renewables
by absorbing excess energy or decreasing the demand in peak hours.
Likewise, smart control can mitigate congestion problems by
reallocating the peak demand [7].

While many technological solutions exist for electrification,
flexibility and smart grid control, a crucial step for their successful
implementation is the formulation of appropriate business models [8],
[9]. Several scholars have recognized that business models play an
important role in the transition dynamic, they can help as drivers for
novel technologies to disrupt the regime and also as coordinators
between different actors [10], [11]. Nowadays, energy-related
companies need to continuously monitor for new opportunities to
reconfigure their business model, to secure market shares, revenues
and profits [8], [12]. Business model innovation (BMI) supports the
transformation of traditional business models by identifying new
opportunities. The process starts by understanding the changing
environment, recognizing significant trends that can trigger important
changes, and ends with integrating the innovative business model into
the company and implementing the business idea [13].

However there exists high uncertainty regarding the impact of the
changing business environment on market development and the long-
term value creation of envisioned business models [14]. Thompson and
Macmillan (2010) [14] state that "high uncertainty contexts give us the
'Tuxury' of specifying a priori what will and will not be acceptable” in
order to save resources and to define appropriate key actions.
However, in the early exploratory stage of business model
conceptualization, managers face the uncertainty and unpredictability
of fast-evolving markets and may have a biased mental model of the
environment [15]. In addition, business models sometimes require
coordination among different actors, each with their own interests,
priorities and mental models. The situation in which decision makers
are faced with multiple equally plausible futures and system models,
termed “deep uncertainty”, calls for creative thinking and model-based
decision support [16]. More generally, there is a research gap on the
implementation, tools and challenges of business model innovation
[17], including the conceptualization of the business model and value
proposition. In the specific context of the energy system, the ongoing
sociotechnical transition is a highly uncertain and complex
environment for incumbent companies and new players [25], [38].
Several actors, such as energy utilities and Distribution System
Operators (DSO), need to rapidly reconfigure their business model to
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adapt to this changing environment, which also entails changes for
their customers. According to several authors [8], [12], [18], [19],
companies of the energy sector lack the business model innovation
knowledge that helps to identify new opportunities within the energy
transition.

To overcome these challenges of business model innovation,
experimentation should be used to frame and understand the
uncertainty of the business environment [20]. In the face of the high
costs and limited feasibility of running experiments in the real world,
simulation offers a low-cost alternative. For example, system dynamics
(SD) is a methodology to map the interaction of many variables in
complex systems and explore their behavior through simulation
models [21]. In the context of business model innovation, SD has been
shown to facilitate decision makers’ understanding of the impact of
environmental changes [22]. Indeed, the implementation of new
business models depends not only on internal factors within the
company but also on new regulations, uncertainties on the market and
social acceptance. System dynamics can capture the relationship
between internal and external factors and reflect realistic situations
considering different political, economic and social circumstances [23].
This way, a clear action plan can be developed that helps coordinate
the activities of different actors over time. SD has also been used to
tackle deep uncertainty, using computational experimentation to yield
insight from simulation models under imperfect system knowledge
and uncertain future conditions [24].

Furthermore, as mentioned by Bolton & Hannon (2016) [25] the
external factors can be a significant determinant of the extent to which
a business model can play an important role in the transition. They
argue that business models cannot be a vehicle for sociotechnical
transformations without major reforms to political, regulatory and
market structures. Therefore, it is critical to analyze the impact of a
sociotechnical context on the business model [26] to understand their
real potential and scaling possibilities [27].

This paper addresses the research-practice gaps on business model
innovation (see above) by presenting a combination of two established
fields of methods (BMI and SD) and complementing them with a
prospective transition analysis to provide a holistic assessment of the
scalability of a novel time-based business model at the energy-industry
interface. This combined framework aims at helping multiple actors
develop a qualified and consolidated a-priori understanding of the
impact of the highly uncertain energy transition environment. The first
steps consist of a customer and market characterization and the
definition of a concrete business model. Next, in a participatory
process, a system dynamics model is developed to simulate the
diffusion of flexible electrification technologies. To determine which
factors have the greatest effect on the uncertainty of model outputs, two
series of computational experiments are conducted: a scenario analysis,
and a sensitivity analysis with statistical estimation of parameter
importance. Based on the qualified understanding and the literature, a
sociotechnical analysis highlights the possible barriers and drivers for
the potential upscaling of the proposed business model. The aim of this
approach is to support experimental learning and co-creation of new
value propositions in a cost-effective way. This methodical framework
was applied to a time-based business model for a DSO (described in
section 3.1) aiming at avoiding grid congestion in a future of increased
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electrification. The main idea is to allow the use of redundant grid
capacity (which is currently reserved to guarantee security of supply in
the case of a failure of power lines) for specific loads with a certain
degree of flexibility. The business model is targeted at industrial
customers and requires the coordination of various actors: the DSO,
utility, technology providers and policymakers. The environment also
depends on uncertain exogenous factors such as future fuel and
electricity prices, technology costs, as well as energy and climate policy
and it is embedded in the complex context of the energy transition. We
use the proposed methodical framework to answer the following
questions:

e  Which circumstances favor or hinder the success of the time-based
business model and the diffusion of flexible -electrification
technologies?

e  Which are the main leverage points for the different actors to
ensure the success of the business model?

The rest of this paper is structured as follows: Section 2 reviews
the state of the research in the methodologies combined in this study
(BMI, SD and sociotechnical transition frameworks), Section 3 presents
the methods (description of the business model; system dynamics
model and computational experiments, prospective transition
framework), Section 4 presents the results, Section 5 discusses the
implications of the results from a sociotechnical transition perspective
as well as the methodological aspects of this study, Section 6
summarizes the method applied and the lessons learned from this first
application, and formulates recommendations to the different actors.

2. Literature Review

We base our case study in the conceptual literature of business
model development under uncertainty in the current context of
sustainable transition from a fossil-based to a low-carbon energy
system. In this section, we briefly review the relevant literature related
to the applied methods.

2.1. Business Model Innovation in the Energy Transition

A business model describes how an enterprise creates value for
specific customers with a positive financial profit equation. Business
model innovation (BMI) is the process of creating and capturing new
value by introducing a change on one or several components of an
existing business model [28]. According to Frankenberger et al. (2013)
[13], the BMI process consists of four different phases: initiation,
ideation, integration and implementation. In the initiation phase, a
preliminary assessment is performed to understand the changing
environment and recognize significant trends that can trigger
important changes. The ideation phase aims at generating new
business ideas. In the third phase, ideas are transformed into viable
business models and finally, in the last phase, the innovative business
model can be implemented [13].

BMI is an important process in constantly evolving environments,
where the primary business model gets challenged and thus needs to
be adapted [29]. In this kind of context with often deep uncertainty,
BMI is not a matter of anticipating and foreseeing of the future, but
more a trial-and-error adaptation process, experimenting with variants
of business model configurations [30]. Therefore, imagination,
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experimentation and ongoing learning are crucial in the development
of novel business models [15], [31]. Experimentation with a business
model is an iterative process that implies elaborating the initial value
proposition into a viable business strategy, the implementation of the
strategy, the incorporation of feedback from the environment, and the
consequent modification of the business model [32]. Several case
studies show that concurrent experimentation with different business
models under uncertainty creates a variety of options that facilitate the
long-term survival of a company [32], [33]. The authors suggest that
such simultaneous experimentation is a crucial learning strategy to
cope with uncertainty in a cost-effective manner. Simultaneous
experimentation involves careful selection of related experiments and
a combined approach of planning, action and learning.

2.2. System Dynamics and Exploratory Modeling

For BMI, conceptual representation (in written, pictorial,
mathematical or symbolic forms) facilitates the understanding and
communication of new business model ideas within the organization
and between actors [34]. Simulation modelling is a valuable tool to
assess the consequences of changes in business models through
conceptual representation and simulation of virtual experiments [35].
System dynamics (SD) is a methodology combining graphical
representation and mathematical modeling to understand the behavior
of complex systems over time [21]. This technique allows to evaluate
how a business strategy performs over time and what can be done to
influence this performance [36]. SD models can capture the relationship
between endogenous and exogenous dynamics, thus permitting the
evaluation of a business project under different political, economic and
social circumstances [23]. Therefore, SD models can be used to facilitate
the experimentation phase of BMI [20] and improve the understanding
of decision makers [22].

Often, modelers and decision makers have limited knowledge of
the processes shaping the business environment. Also, when future
prospects of a business model are evaluated, it is necessary to make
assumptions on the evolution of external factors, for which widely
varying scenarios might be equally plausible. Therefore, multiple
possible model formulations and multiple possible futures exist, with
often not enough information to assess their likelihood. This situation
is referred to as “deep uncertainty” [16], [24]. In this case, models
should not be treated as predictive tools, but rather as a way to
explicitly examine modeling uncertainties [37]. Such an explorative
approach to modeling consists of conducting visual or statistical
analysis on an ensemble of model runs, where model structure, inputs
and parameters are varied [37]. The value of such a model-based
decision making approach lies in the capacity to answer questions such
as “under which circumstances is a business model promising?” or
“what is the range of plausible outcomes?” [24]. This explorative
approach has been used in combination with SD in the context of
future-oriented technology analysis [24] and sociotechnical
transformation of energy systems [38].

For an exploratory approach, Bankes (1993) [37] argues that
simple, question-specific models are better suited than more complex
models that aim at a highly disaggregated and detailed description of
the system. Also, Ghaffarzadegan et al. (2011) [39] strongly recommend
the use of small SD models to facilitate experimentation and to carve
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out critical insights. Ghaffarzadegan et al. (2011) [39] define a small
model as a model consisting of few critical stocks and a maximum of
eight feedback loops. As long as the model structure captures the most
dominant feedback loops and stocks, it can be used to easily identify
the most important leverage points of the system. More complex
models, or other modelling techniques such as Agent Based Modelling
can also be used to simulate the adoption of business models.
Nevertheless, one of their most important drawbacks is the increase of
complexity, which makes parameter identification and sensitivity
analysis difficult [40].

2.3. Transition Theory and Business Models

One objective of sociotechnical transition research is to
understand both the conditions under which a technological niche can
disrupt the existing sociotechnical regime [41] and the role of the
surrounding innovation system in this transition [42]. Such transition
frameworks have proven to be helpful to analyze energy and
environmental transition problems [26].

Several researchers recognize that business models play a very
important role in sociotechnical transitions [11], [43], [44]. For example,
they are seen as vehicles to disrupt the regime [44]. Alternatively,
business models can themselves constitute innovations, rather than just
being vectors for the diffusion of technological innovations. According
to Bidmon & Knab [11], business model innovations emerge at a higher
level of structuration of activities, and entail the formation of new
collaborations between actors. Furthermore, Wiistenhagen et al. [43]
highlight that business model innovation might help to overcome some
of the key barriers to the upscaling of sustainable technologies.

Nevertheless, Bolton & Hannon [25] argue that without major
reforms to political, regulatory and market, business model innovation
alone would not be able to induce large system changes. Therefore, it is
recommended to complement diffusion modeling with sociotechnical
analysis to better understand the role of the broader context [26].

Van Waes et al. propose a sociotechnical transition framework to
assess the upscaling potential of business models [27]. The framework
distinguishes the business model context and the sociotechnical
context. The first one explains not only the business model logic but
also the increasing returns to adoption, i.e., how network externalities
accelerate the diffusion process. The second addresses the broader
impact of institutions and the industry structure. The latter describes
the characteristics of relevant firms, such as its size, experience, and
local embeddedness. The institutions refer to the regulatory framework
as well as the norms and beliefs that affect the business model scaling.
In sum, all these dimensions are critical to assess the barriers and
drivers for the upscaling of innovative business models.

3. Materials and Methods

In this section we develop the methodical framework and present
illustrative outcomes of distinct methodical steps. Our study applies a
case study design [45] contributing to a transnational research project,
with the objective of designing and testing an innovative time-based
flexibility business model (named the “Power Alliance” (PA) business
model; see Section 3.1). This business model depends on the diffusion
of flexible electrification technologies in the industrial sector. The
proposed theoretical framework is illustrated in Figure 1. First, the
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barriers and drivers for the electrification of industrial processes were
identified. Afterwards, explorative interviews with potential customers
were performed. In a next step several workshops with project partners
were organized to concretely define the business model. The project
partners were representatives of an energy company (taking here the
role of technology and business developer), a Distribution System
Operator (user of the time-based business model defined here), three
pilot customers (industrial customers in the service area of the DSO),
an information technology company (assisting in technology
development) as well as the interdisciplinary research team. The ten
project partners are considered as experts of the current and envisioned
business field.

Next, a SD model was set up to simulate the diffusion of flexibility
technologies. To assess the prospects of the proposed business model
under various socio-economic and regulatory settings, two sorts of
computational experiments were performed: scenario experiments and
parametric sensitivity analysis. Finally, the sociotechnical framework
from van Waes et al. (2018) was adapted to assess the scalability of the
business model in its context. The feasibility of the business model from
a regulatory point of view was ensured by seeking feedback from a
trade association of the energy industry.

Business Model Framework Socio-Technical Context
] T
Identification of barriers and E 1
Initial Phase drivers and analysis of the ' o p— H
: ' B Identification of necessary '
customer profile H = cr | i
i E E Institutions changes in the regulatory !
H 5 2z framework 1
: | =
Business Model Specification of time-based E o g 1
Definition business model i %ﬂ E :
RS :
1 (o 8 :
! S E Industry structure Analysis of the role of the DSO 1
. - Participatory Modelling and ' < &= ¥
Experlmentatlon Exploratory model analysis i a i
'
I '
H i
= el e o e e e S i i O e
l:l Business Model Innovation l:l System Dynamics [ ] sacio-Technical Framework

Figure 1. Method for the exploration of innovative business models under deep uncertainty.

3.1. Business Model Innovation
3.1.1. Socio-technical Drivers and Barriers

The first step in specifying the business model was to characterize
the drivers and barriers for the electrification of the industrial sector,
and the role that business models can play in assisting this process. The
results of this assessment are summarized in Figure 2. A key driver of
electrification in all sectors has been the increased power generation
from renewable energy sources and the fast decrease of their cost [46].
The development of energy storage technologies has also greatly
contributed to increased electrification, as they permit a better
utilization of intermittent renewable energy sources. For some storage
technologies, such as batteries or power-to-hydrogen, investment costs
are projected to substantially decrease as the technology further
matures [47], [48]. Sector coupling, i.e. the interconnection of electricity,
heat, industry and mobility, offers various opportunities for
decarbonization in the industry sector, e.g. by using hydrogen from
renewable electricity to produce various chemicals [46] or by using
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battery capacity to provide grid frequency control and reserve capacity
[49].

However, the use of electricity for industrial processes is
nowadays limited for economic reasons [50]. Electricity is
comparatively more expensive than natural gas, oil, or coal. The reason
for this is twofold: first, the wholesale electricity price includes not only
the energy use but also the grid cost, taxes and levies. Second, fossil fuel
costs do not reflect their environmental impact, due to rather low CO:
prices and the lack of an international agreement on a carbon tax [51].
As a result, the operational cost of electric technologies is not
competitive with their equivalent fossil technologies, unless a tax
reform is implemented [52]. Further barriers are related to the
perceived utility of electrification, load management and flexibility
technologies by industrial actors, e.g. concerns about financial and
regulatory risk [53], lack of information, and lack of interest in
participating in energy markets (“not-my-business” problem) [54].

Even if the potential of electrification in the industry is realized,
new challenges might appear. Since massive electrification of industrial
processes could increase peak electricity demand, this development,
together with the large penetration of intermittent renewables, may
compromise the stability of the grid and aggravate the grid congestion
problems [6]. As a result, there will be a need to reinforce grid capacity,
unless alternative measures are developed. An alternative is the use of
digital technologies that enable smart solutions to deploy novel
flexibility technologies.

To unlock this specific flexibility potential on the level of the
distribution grid, new business models are required. The literature
mentions several time-based flexibility business models that can be
applied with the use of flexible technologies and smart grids. A classic
example is the participation in the ancillary service market to provide
frequency control and reserve capacity [49]. Batteries have been used
for instance to reduce peak demand and profit from daily electricity
price variations [55], [56]. The integration of renewables is another
promising business opportunity. In this case, the utility can e.g. offer to
the customers dynamic prices to incentivize the consumption of energy
when large amounts of renewables are available, thus reducing
curtailment [49], [57], [58].
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Figure 2. Barriers and drivers to the electrification of industrial processes.

3.1.2. Analyzing customer’s profile

The next step on the design of a business model was to analyze the
potential customers. To this aim, semi-structured interviews were
performed with potential pilot partners. The aim of these interviews
was to understand central jobs, pains and gains of customers and to
identify key conditions and motivations to participate in a time-based
flexibility business model [59]. In total, six interviews in three different
countries (Germany, Austria and Switzerland) were performed with
companies from very different economic sectors.

The interview results underline the importance of managers’ job
to reduce cost while ensuring the reliable operation of their core
activity. For this reason, most of the interviewed companies were
considering to install or already have installed a load management
system and/ or an energy monitoring system to optimize their own
demand.

Nevertheless, when talking about providing flexibility to the local
network, the main pain points identified were the possible interference
with their core activity and the needed organizational effort
(transaction cost). The resulting gains of participating in a time-based
flexibility business model were linked to the support of an innovative
and green image and sustainability transition.

3.1.3. Design of the Power Alliance Business Model

The PA business model was designed in a series of workshops
with the project partners based on the customer profile.

The PA approach proposes a technical and economical scheme to
avoid grid congestions under increased electrification. The main idea is
to apply demand side load management only to a specific class of new
flexible loads, the so-called “conditional loads”, which mainly emerge
from sector coupling applications such as power-to-heat installations
and electrolyzers for hydrogen production. These loads exhibit a
significant price elasticity and are more flexible in terms of usage due
to a certain storage functionality. Furthermore, these loads are not
hampering the reliable operation of the companies’ core activity.
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The PA business model presupposes that the currently redundant
grid capacity used to provide today’s high level of security of supply -
the "n-1 security" — can be utilized by conditional loads, thereby
attaining additional capacity in the existing grid infrastructure.
Conditional loads are subject to a simple security of supply for a certain
time span, while keeping the n-1 security for all other loads [60].

The PA business model requires coordination between different
actors: DSOs, utilities, technology providers, policymakers and
industrial customers. From the perspective of DSOs, the main aspects
of the business model are summarized on Figure 3 using the canvas
approach of Osterwalder & Pigneur (2010).

The main value proposition of the PA business model is a holistic
flexibility management solution wherein the service provider and DSO
will carry out most of the relevant activities. This includes the
installation and maintenance, as well as daily load forecast and
rescheduling. The main job — reduce energy cost — is addressed by
lowering the capacity-dependent part of the network tariff for their
flexible loads and optimizing load management. This tariff component
is an annual fee of 100€/kW and is reduced to 10% of its value under
the PA offer (cf. Table 3). For the case of six industrial companies,
calculations have shown that this offer would greatly impact the
financial attractivity, or even feasibility, of investments in flexible
electrification technologies [63]. The DSO should ensure that the PA
business model have a minimal interference with the core activities of
the company.

The target customers are those on the electricity grid level 5
(medium voltage level; typically industrial customers) who installed or
are thinking about installing a flexible electrification technology. The
customers will be directly addressed and informed about the PA offer.
This direct customer support will also be the main contact channel with
the customers.

The key activities for the DSO are to provide consulting services to
help customers understand the offer and to perform the forecast and
reschedule of the local load profiles via intelligent algorithms, therefore
software and hardware providers are the key partners.

The key resources are the physical infrastructure such as the
energy management equipment, and human capacity to advice
customers, install and maintain the equipment and find an optimal
flexibility solution for their individual needs.

The main costs are the infrastructure cost and the additional
personnel cost for consulting services. Conversely, the grid expansion
cost should be reduced due to the optimal use of existing grid through
regionally aggregated smart flexibility management. The main revenue
stream are the connection charges and the network cost and grid use
charges.

The actors involved have different incentives to participate in the
PA scheme. For DSOs, the main incentives are a better plannability and
control over their grid, as well as more detailed insights into grid flows,
which allows them to offer attractive products. For grid customers,
incentives to declare suitable loads as conditional loads comprise a
significant reduction of grid fees for conditional loads (the "Power
Alliance Tariff"), and an automated dynamic load management
solution (the "Regional Load Shaping" solution; see Christen et al.,
2019) [62] that minimizes the customers' energy costs for conditional
loads according to stock prices whenever regional grid capacity
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constraints allow it. Policymakers and regulatory authorities are
interested in testing and supporting technical solutions that promote
flexibility and help to reach environmental and GHG reduction goals.
Technology providers are interested in promoting the adoption of the
flexible electrification technologies, whereas electric utilities are
interested in offering innovative products to their customers, such as
more exact energy consumption schedules to optimize the loads and
energy costs.

Key Partners | Key activites Value proposition | Customer Customer Segments
* Consulting services relationships Grid customers in the
* Software- Holistic flexibility « Direct customer network level 5
supplier * Process Management | management support
solution to reduce
* Hardware- |+ Marketing energy cost * Automated service
supplier ;
RE Key resources (via web)
« Energy ¢ Infrastructure
traders (energy management Channels
equipment, software, * Use of existing
servers) channels
*  Know-how * Personal Contact
Cost structure Revenue streams
Network costs * Connection charges
* Copper * Network cost contribution / kW
* ICT * Grid usage charge / kWh (PAT and ST)
Additional personnel cost for consulting

Figure 3. Canvas for the Power Alliance business model, from the perspective of the grid operator.

3.1.4. Exploration phase

The acceptability of the PA Business model was tested by
performing an online survey to potential customers (i.e. companies
from the manufacturing sector). The survey was based on the Choice-
Based Conjoint (CBC) method. In total 500 customers from Germany,
Austria and Switzerland where contacted, nevertheless, the response
rate was very low (62 customers completed survey). Therefore, though
the results of the survey give some insights about the customers wishes,
they are not representative to support solid conclusions [63].

For this reason, a system dynamic model was developed to test
and explore the diffusion of the electrification technologies and the
adoption of the PA Business model.

3.1.5. Use Cases for flexible Electrification Technologies

The Power Alliance business model is highly dependent on the
diffusion of flexibility technologies such as batteries, Power-to-Heat
and Power-to-Hydrogen. For this reason, the necessary conditions to
adopt these technologies are studied in detail using a system dynamic
model (described in Section 3.2.1.). For this analysis, three common use
cases were selected to detail the financial advantages of the studied
technologies as well as potential GHG emission reduction. These use
cases were selected in workshops with members of an electric utility, a
DSO and industrial customers. In all use cases it is assumed that the
self-consumed electricity has no cost. The most important assumptions
of the three use cases are presented in Table 2 and described below. The
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market context of the use cases refers to Germany. A more detailed
breakdown of the costs and revenues for each use case is given in
Section 1 of the supplement.

The first use case, Power-to-Heat (PtH), considers the use of an
electric boiler to generate heat in the paper industry (at a temperature
requirement of about 120 °C). Electric boilers are a mature technology,
with estimated investment costs between 100-400 € and an efficiency
Np2rear Detween 97% and 99% [47]. The electricity can be obtained
either from the electricity grid or from an installed photovoltaic system.
The electric boiler can work together with an existing gas boiler
(parallel operation) or independently. In parallel operation, the system
can make use of the price difference between gas and electricity. A heat
storage (such as a water boiler) is also considered to increase the
flexibility of the system.

The second use case, Power-to-Hydrogen (PtH:), assesses the
usage of an electrolyzer to generate hydrogen as a raw material for the
chemical industry. It is assumed that the electrolyzer replaces a Steam-
Methane Reforming system that uses natural gas to produce hydrogen,
releasing carbon monoxide and a relatively small amount of carbon
dioxide. Due to economies of scale, it is expected that the cost of the
electrolyzer decreases within the next years from almost 1500 €/kW in
2016 to 480 €/kW in 2050 [47]. The electrolyzer takes the electricity from
the grid or from an internal source such as a photovoltaic system.

The last use case concerns the use of a battery storage to increase
the self-consumption share of a photovoltaic system. The battery can
also be used to provide services to the grid as part of the PA business
model. Furthermore, the battery can take advantage of arbitrage
opportunities, buying electricity from the grid at cheap prices and
selling it when the prices are high again. The capital cost of the battery
is assumed to be 1200 €/kWh in 2016 when the simulation starts and to
decrease to 290 €/kWh in 2050 [48].

Table 1. Use cases assumptions.

PtH

Installed capacity 500 kWe

Investment cost 100 €/kW [47]
Life time 30 years [47]
Efficiency 98 % [47]
Efficiency of the replaced boiler 98% [64]
PtH>

Capacity of the water electrolyzer 500 kW

Investment cost @2016 1500 €/kW [47]
Investment cost @2050 480 €/kW [47]
Life time 30 years [47]
Electricity consumption per kg H2 55 kWh/kg [65]
Gas needed per Kg H2 for the replaced

SMR 40 kWh/kg [66]
Batteries

Installed capacity 500 kWe ‘
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Investment cost @2016 1192 €/kWh [48]
Investment cost @2050 289 €/kWh [48]
Life time 20 years
Charging time 1 hour

3.2. System Dynamics Simulation
3.2.1. Model Structure

The SD model simulates the diffusion of flexible electrification
technologies and the adoption of the PA offer in a local distribution grid
with 45 industrial customers (Figure 4). The model simulates the
diffusion of one technology at a time. The core of the model consists of
three state variables, each of them representing the number of
customers subscribing to a certain offer. At the beginning of the
simulation, there is no flexible technology (“Flexloads”) installed, thus
all customers belong to the stock “Customers without Flexloads”. At
each time step, a certain fraction of the customers may decide to switch
to one of the alternative options. One possibility is to install a flexibility
solution, without subscribing to the load management program of the
utility. Customers who choose this option are still subject to the
standard grid tariff (ST). Alternatively, customers may choose to
participate in the regional load shaping program and benefit from the
Power Alliance Tariff (PAT). The switch to the PAT may happen either
directly (customers install a flexibility solution and join the regional
load management program at the same time), or indirectly by first
installing a flexibility solution, and in a second step, deciding to join the
load management program. In each customer stock, a fraction of the
customers has their own renewable energy source (RES). For the stock
“Customers without Flexloads”, the fraction of customers with RES is
updated according to the chosen scenario (see Sect. 3.2.2.), simulating
the percentage of renewables in the total energy consumption as a

proxy.
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Figure 1: Structure of the system dynamics model representing market dynamics at the scale of a
local distribution grid. Boxes represent stocks, i.e. state variables; double arrows with valves represent
flows, i.e. changes of the values of stocks; simple arrows represent causal relationships.

The core loops of the model, shown on Figure 4, share a similar
structure with the model developed by Kubli (2018) [67] to study the
diffusion of decentralized photovoltaics. The number of customers
moving from one option to another at each time step, following the
flows on Figure 4, depends on the perceived utility of each decision
option, as well as on the specified adjustment times (AT) for each
possible switch. The factors influencing perceived utility are described
below. ATs are time constants accounting for delays in the system.
Indeed, it is unrealistic to assume that all customers willing to install a
flexibility solution will do so immediately. Many factors may delay this
decision for an individual customer, such as financial, time and
knowhow constraints, or organizational structures and processes. The
ATs control the rate of change as follows:

Tist = rpot,i,s,t/ATi 1)

where i represents the different type of customers (i € {customers
without flexloads, customers with flexloads and ST, customers with
flexloads and ST }), and s distinguishes the customers with and without
renewables installed (s € {customers without renewables, customers
with renewables}), consequently st is the rate of customers
changing from option i, to option i attimestept [Customers/year],
Tpotist 1S the number of customers planning to change from option i,
to option i , and AT; the adjustment time [years] corresponding to
this transition.

The model considers six decision options, each corresponding to
one of the flows in Figure 4 (each flow symbolizes two distinct decision
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options, for customers with and without RES). At each simulation time
step, the model calculates the attractivity of each decision option,
expressed as the share of potential customers willing to change. This
attractivity depends on the perceived utility of each decision option,
which in this model depends on financial aspects (payback time), social
aspects (familiarity of flexible technologies and customers’ willingness
to invest) and a scarcity effect. The share of customers that choose each
option f; is determined using a logistic function:

1
1+ exp[—B(uio — ;)]

where u, is the dimensionless utility function corresponding to each
decision option x, u;q is the perceived utility of the current concept
and u; is the perceived utility of the competing consumption concept.
fB is an empirical shape parameter. The perceived utility u, of a
decision option is calculated as follows:

fi 2)

Uy = fpaybacktime X fcapital
X ffamiliarity (3)
X fscarcity

where all variables are dimensionless. The empirical functions used to
estimate fiaypack_times feapitar @Nd focarciry are described in Section 2
of the supplement.

Familiarity Sfq, is a state variable of the model and consists of
two processes: the effect of word-of-mouth as a technology becomes
more common, and the effect of customer relationship management by
the utility. Familiarity may take values between zero and one and is
initially set to 0.25 here. At each time step, S;4,, is updated as follows:

dS¢am
dft = (fwom + fcrm) X (1 - Sfam) 4)

where fy oy is the effect of word-of-mouth in the current time step,
and fcry the effect of customer relationship management. The latter is
assumed to be constant, whereas the effect of word-of-mouth increases
as the number of customers with installed flexibility technologies
increases:

Cflex

fWOM = X Tcontact (5)

Ctu tal

where (., is the number of customers with a flexibility solution
installed, Cioq; the total number of customers and 7,,,tqcc the
effective contact rate [-]. This formulation for technology diffusion was
introduced by Struben and Sterman (2008) [68].

The annual cash flows in the model are the sums of costs and
revenues (from the perspective of the customer) related to the installed
flexibility technologies. For each use case, the breakdown of costs and
revenues is given in Sect. 3.1.3. and Sect. 1 of the supplement. An
important factor for the economic viability of flexible technologies are
future prices for electricity and natural gas (the latter only for the PtH
and PtH2 cases). These are outside the system boundaries and assumed
to increase as a function of time:

Py = PPTESent,x x (1+ bx)(y—2015) o

y.x

where P, is the price for either gas or electricity (represented here by
x) in the year y, Ppresentr is the current price for x, and b, is an x-
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specific parameter. The current (2016) prices for electricity (energy
price only) and gas (excluding the carbon tax; see next section) were set
to 0.04, and 0.03 €/kWh, respectively. The annual price increase for
electricity, b, is set to a default value of 3%, and the annual price
increase for natural gas, by, is set to 2%. The breakdown of the
wholesale prices for electricity and natural gas is given in Section 3 of
the supplement.

The model was built and executed using the software Vensim DSS,
version 7.3.5. The simulation period goes from 2015 to 2050, with a
simulation time step of 0.0625 years. Numerical integration uses the
explicit Euler method.

3.2.2. Scenarios

As the diffusion of the studied flexible technologies largely
depends on uncertain climate policies, this work considers the
application of two different climate scenarios. These scenarios are
based on forecasts for the German energy market [51], [69]. This Section
gives an overview of the scenarios, and the reasoning behind them is
further detailed in Section 3 of the supplement. The first scenario, the
business as usual (BAU) case, assumes that no tax reform or any other
additional measure is adopted to promote decarbonization. Thus, the
percentage of renewables in the total energy consumption reaches only
60% by 2050 and the CO: emission factor of the German electricity grid
is approximately 300 gCO2/kW.. Furthermore, as of today in Germany,
no CO2 price is charged for the use of gas as heating fuel. The
Renewable Energies Act (EEG) surcharge, levied on electricity
consumption to finance the development of renewable energy, starts at
6 €c/kWh and is phased out gradually to reach 0.8 €c/kWh by 2050,
following the forecast of [70].

The second scenario assumes that strong policies measures are
taken to support decarbonization and sector coupling. As a result, the
Paris climate goals will be reached by 2050 in Germany, i.e. almost
100% of the total energy consumption can be met by using renewable
energies. The CO:z emission factor of the electricity mix is 17 CO2g/kWel.
To reach these goals, it is assumed that a tax reform is applied, in this
case a COz tax (P;p [€/kW]) is charged to the natural gas and a tax
reduction for electricity is implemented. Concretely, the EEG surcharge
is reduced to 0.05 €c/kWh. The aim of this policy is to promote the use
of green electricity and charge fossil fuels for their CO: emissions.
Figure 5 illustrates the evolution of the scenarios over time, whereas
Error! Reference source not found. summarizes the most important
assumptions.
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Figure 5. a) Percentage of renewables in the total energy consumption for the considered
scenarios b) CO2 emissions factor of the German electricity grid.
Table 2. General assumptions of the two analyzed policy scenarios.
BAU Scenario Climate  Policy

Scenario

2030 2050 2030 2050

CO; electricity mix emission | CO2g/kWe | 506 284 411 17

factor!

Percentage of renewables in | % 38 66 44 96

the total energy consumption'

COz price on gas? €/kWh 0 0.01 (45
€/TonCOy)

Electricity tax reduction (tax | €/kWh 0 Up to 0.077 (see

reform)? supplement)

'[69]

’[51]

3.2.3. Sensitivity Analysis

Many of the parameters used in the simulation models are subject
to high uncertainty. This uncertainty arises for various reasons: first,
the simulation period lies mostly in the future, so that it is necessary to
make assumptions regarding the future evolution of energy prices,
technology costs and taxes. Second, some parameters act as proxies for
processes not explicitly represented in the model, such as the
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adjustment times (Eq. 1). This makes it difficult to constrain these
parameters, especially in the absence of historical data that enables the
calibration of the parameters. As some of the process formulations used
here are widely used in SD, earlier studies give an estimation for the
values of the corresponding parameters. However, these studies may
apply to an entirely different context, so that transferring parameter
values to a new study may be challenging. For example, most of the
empirical values for the familiarity parameters come from studies on
vehicles or consumer goods [68]. While these values give a rough
indication of the possible parameter range, it is unclear how well they
describe the attitude of industrial customers regarding their electricity
consumption.

To assess the uncertainty in model outcomes and to identify the
most sensitive parameters, a global parametric sensitivity analysis was
conducted. The aim was to characterize the spread in model results
under varying parameter values, as well as a measure of importance
for each parameter. The target output variable is the number of
customers that have installed a flexibility technology, a PV module and
subscribe to the PA tariff at the end of the simulation (Cpyy2050)- In a
first step, 2000 combinations of parameter values were generated,
where the value of each parameter was varied within its plausible
range. The parameters and their range are listed in Error! Reference
source not found.. These sets were generated with the Latin Hypercube
Sampling method, a stratified Monte Carlo scheme.

In a second step, parameter importance was assessed by fitting a
random forest model [71], with the parameter values as predictors and
Crui2030 as the dependent variable. Such a meta-modeling approach to
parametric sensitivity analysis provides a ranking of parameter
importance, and the possibility to evaluate the effect of different
parameters graphically [72]-[74]. Among the different measures of
parameter importance provided by the random forest algorithm [71],
the mean decrease of accuracy was used. This measure describes the
loss of model performance when the values of one parameter are
randomly shuffled, i.e. converted to noise.

Table 3. List of parameters varied in the sensitivity analysis, with their respective ranges and default
values. For the parameters that appear in the model description in this report, the corresponding
equations are indicated. For the other parameters, please refer to the description of the business
models (BM) in Annex 4.3.

Symbol | Meaning Units Minimum | Maximum | Default | Eq.
value value value

Common parameters

Pyriasr | Standard €/kW 50 100 70 BM
network  tariff
(ST)

frar PAT, as a | Dmnl 0.1 1 0.1 BM
fraction of ST

Piny smart | Investment cost | € 100 500 300 BM
smart control
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H running

Running  hours
per year (P2Heat
and P2H2 only)

hours/year

3000

7000

6000

BM

bel

Annual
percentual
electricity price
increase

Dmnl

0.02

0.04

0.03

dPel,min

Min
price difference

electricity

€/kWh

0.04

0.04

BM

dPel,max

Max
price difference

electricity

€/kWh

0.1

0.07

BM

ATload

AT flexible loads

years

20

15

ATpat

AT smart control

years

Shape parameter
for the function
linking utility to
preference

Dmnl

Tcontact

Contact rate

Dmnl

0.1

0.3

0.2

lCRM

Effect of
customer
relationship
management by
utility on
familiarity

Dmnl

0.05

0.15

0.1

P2Heat parameters

Np2Heat

P2Heat
efficiency

Dmnl

0.97

0.99

0.97

BM

bgas

Annual
percentual  gas
price increase

Dmnl

0.02

0.03

0.02

Battery parameters

PFIT

Feed-in tariff

€/kWh

0.03

0.12

0.08

BM

NBatt

Battery
efficiency

Dmnl

0.7

0.9

0.7

BM

P2H?2 parameters

PHZ

Hydrogen price

€/kg

12

BM

Nu2

Electricity
consumption per
kg hydrogen

kWh/kg

50

60

55

BM



https://doi.org/10.20944/preprints202106.0294.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2021 d0i:10.20944/preprints202106.0294.v1

Energy price [€c/kWh]

20 of 38

A crucial step of a parametric sensitivity analysis is the choice of a
distribution for each parameter [75]. Here, a uniform distribution was
chosen for all parameters, with the range set as reported in Error!
Reference source not found.. Two parameters describe the PA business
model: the standard network tariff (ST) and the fraction fp,r, which
defines the ratio of PAT and ST. The ranges for the standard grid
tariff Py,;q 57 and the investment costs for smart control Py, smare Were
chosen based on scenarios provided by the project partners. The
bounds for fp,r were kept wide, ranging from no discount at all
(fpar =1 and PAT = ST) to an aggressive strategy where PAT is only
10% of ST. The parameter b,;, representing the annual percentual
change of energy price, was varied so that the resulting prices stayed
within the bounds of existing forecasts [70], [76], as shown in Figure 6.
The parameters dpemin and dpepmer reflect the volatility of
electricity prices. The minimum and maximum values were selected
based on scenarios provided by the project partners.

14 —{ ® Prognos/EWI/GWS (2014)
A Bomberg et al. (2018), BAU
12 —| v Bomberg et al. (2018), PD
10 —
g -
6 —
4 —
I I I I [ I I [
2015 2020 2025 2030 2035 2040 2045 2050

Figure 6. Future evolution of energy price. The solid line shows the future price calculated with Eq.
8, using the default parameter value for the annual increase (3% per year). The stippled lines show
the development with minimum and maximum parameter values.

Values for parameters such as the adjustment times are typically
obtained through calibration. As this study is concerned with business
models that have not yet been implemented, there is no historical data
available for calibration. Therefore, to define the range for these
parameters, it is necessary to consider previous studies. For example,
Kubli (2018) [67] obtained adjustment times between 1 and 4 years for
the installation of photovoltaic panels by industrial customers. Here,
the AT for the installation of smart control (ATrat) was varied between
1 and 4 years. It was assumed that, as the installation of flexible loads
represents a much greater investment, the corresponding adjustment
time (AThad) is much longer (5 to 20 years). Values for the parameter S
were also obtained through calibration by Kubli (2018), and ranged
between 4.7 and 13 for industrial customers. For the two familiarity
parameters ly oy and lcgy, Struben & Sterman (2008) suggest ranges
of 0-0.3 and 0 - 0.02, respectively. These values are based on previous
studies on consumer goods and do not necessarily describe the
situation examined in this study. First, industrial customers probably
behave differently from private customers and are likely more
receptive to marketing efforts if the product can help their business.
Second, due to the small market size, the utility can easily reach all its
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customers. For these reasons, the range for lcz) was set substantially
higher.

3.2.4. Model Validation

To acquire confidence in the model, several workshops with
practitioners were performed. In these workshops, our industrial
partners, as well as members from federal authorities, verified the
structure and the most important parameters of the model. We had the
opportunity to corroborate the existence and importance of the
different feedback loops for the real-life situation of our case study.
However, due to the lack of historical data, a detailed validation of the
model was not possible. Nevertheless, we verify the response of the
system to extreme conditions and perform sensitivity tests as reported
in Section 3.2.3. Finally, we also validated the results with practitioners
and ensured that the behavior projected by the model is likely and
could be explained.

4. Results
4.1. Simulation Results

For the PtH case, Figure 7 a) and b) show the development of
installed flexibility capacity in the grid for the two scenarios (BAU and
climate policy (CP)) and two different assumptions on the percentage
of electricity consumption stemming from the customers’ own
renewable generation (frenew, 60% and 80%). To give a sense of the
importance of these new technologies, installed flexibility capacity is
expressed here as a percentage of peak demand. The fraction frenew
has a greater influence on the diffusion of PtH in the BAU scenario than
in the CP scenario, since as mentioned before, the model assumes that
the energy coming from own renewables has no cost. Consequently,
the profitability of PtH increases with the percentage of own RES.
Under the CP scenario, as the wholesale price is decreased for
electricity and increased for natural gas, PtH is more competitive.
Therefore, the percentage of renewables only has a marginal impact.
The GHG emissions savings (Figure 7 ¢) and d)) are expressed as a
percentage of the total emissions from process heating if all customers
in the grid used a gas boiler. Clearly, the savings are larger in the CP
scenario, where the electricity mix has a very low emission factor at the
end of the simulation period.
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Figure 7. (Figure 8 a) and b)) shows that the BAU scenario is not favorable to the diffusion of this Table
2. electricity demand. Consequently, the GHG emission savings (Figure 8 c) and d)) are also small or
inexistent. As for PtH>, installed capacity is expressed as a percentage of peak demand in the grid,
and emissions savings as a percentage of the emissions that would occur if none of the customers
switched from the reference case (steam methane reforming) to PtHo.
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Figure 2: a) and b) Installed PtH: capacity, expressed as a fraction of peak demand in the local
grid, for the BAU Scheme 2. case, expressed as a percentage of emissions in a hypothetical case
where no customers switches from steam methane reforming to PtHz.

For batteries (Figure 9), the diffusion takes place slightly faster
under the BAU scenario at the beginning of the simulation. This is
because in this scenario, the price of the electricity coming from the grid
is higher and thus the self-consumption business model is more
profitable. With time, the penetration of renewables in the CP scenario
is very strong and thus the associated installed battery capacity is larger
than the BAU scenario. As the use case for batteries does not entail the
substitution of another technology and is therefore not based on a
comparison with a reference case, GHG emission savings could not be

calculated.
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Figure 9. Installed battery capacity, expressed as a fraction of peak demand in the local grid, for the
BAU scenario and the CP scenario.

4.2. Sensitivity Analysis

As shown in Figure 10, the speed and extent of the diffusion of
flexibility technologies and the PAT offer differ greatly depending on
technology, scenario and parameter values. For PtH, under the BAU
scenario, many simulations lead to zero customers until the end of the
simulation, while some simulations reach a number of 19 customers
(out of 45 potential customers in the simulated market). Under the CP
scenario, there are fewer simulations with zero customers, and the
simulations with the greatest number of customers reach a number of
28. In some simulations, the onset of customer growth occurs quite late.
For PtHy, there is barely any customer growth in the BAU case, and
only in a few simulations in the CP case. But even under this scenario,
there is hardly any growth in the first 10 simulation years. For batteries,
the spread between simulations is again rather large, with a substantial
number of simulations with zero customers under both scenarios, and
final numbers of up to 19 and 22 customers under the BAU and CP
scenarios, respectively.
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Figure 10. Evolution of the number of customers having installed flexibility and subscribed to PAT in
the 2000 sensitivity runs. The line to the right of each plot shows the kernel density estimate for the
number of customers at the end of the simulation period (2050).

The random forest algorithm calculates an estimation of the
percentage of variance of the dependent variable explained by the
model (see Liaw and Wiener, 2002). For the meta-models used in the
sensitivity analysis, these scores are reported in Error! Reference
source not found.. In most cases, the meta-models explain a large
percentage of the variance of the dynamic model outputs, meaning that
they appropriately capture the influence of parameter values on the
output. However, in the case of PtH: under the BAU scenario, this score
is very low, since the number of customers at the end of the simulations
is zero in nearly all simulations. For this reason, the sensitivity analysis
was not carried out for this case.

Table 4. Percentage of the variance of model outputs explained by the random forest meta-models.

BAU CPS
PtH 94.82 % 86.55 %
PtH2 6.07 % 69.18 %

Batteries 84.39 % 84.17 %
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For the presentation of parameter sensitivity scores on Figure 11,
parameters were divided into two categories: “hard” parameters,
representing technological and economic factors, and “soft”
parameters, related to decision-making. This distinction is only
represented graphically and had no influence on the meta-modeling
process.

For PtH under the BAU scenario, the most important parameter is
frenew, the percentage of electricity consumption that can be covered by
self-consumption of electricity produced on site from renewable
sources. The next two parameters belong to the “soft” category and
describe the delay in adoption of flexible technologies (AT},qq4 res) and
the influence of direct marketing by the utility (Icgy). The grid tariff
reduction factor under the PA offer (fp,r) and the annual energy price
increase (b,;) are also somewhat important, while the other parameters
have little to no influence on model results. Under the CPS scenario,
while freney is still important, ATjpq4es becomes the most influential
parameter. The COz tax P¢, , which is set to zero in the BAU scenario,
is also quite influential under CPS. For PtHz, the three most influential
parameters belong to the “hard” category, i.e. frenew, Pco and the
number of running hours Hyypning - For the “soft” parameters,
ATjpaares is of intermediate importance and Icgy has little influence.
In the case of batteries, there is little difference in parameter importance
ranking between the two scenarios. Under both scenarios, the most
influential parameter is fp,r, followed by the maximum energy price
difference dpy;mqay- Next are the two “soft” parameters ATjpqqres and
lcrm- Lastly, the feed-in tariff Pr;r and standard grid tariff Pg,qr are
of intermediate importance, while the remaining parameters have little
influence.
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Figure 11. Parameter importance scores obtained in the sensitivity analysis. The score shown is the
“Mean decrease in accuracy” indicator of the random forest meta-models. The higher the score, the
more influence a parameter has on model outputs.


https://doi.org/10.20944/preprints202106.0294.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2021 d0i:10.20944/preprints202106.0294.v1

28 of 38

5. Discussion
5.1. Prospective transition analysis

In this section a transition analysis is presented, based on
outcomes of the whole project (i.e., literature review, expert interviews
and simulation results). The analysis focuses on the three areas
identified by van Waes et al. [27] as particularly important for the
upscaling of business model innovations under transitions: institutions,
industry structure and the dynamics of increasing returns.

5.1.1. Institutions

The simulations highlighted the decisive role of institutional
aspects: under current regulatory conditions where electricity is
strongly charged with taxes and levies, the diffusion of Power-to-Heat
and Power-to-Hydrogen is very slow. This is consistent with previous
findings [50], [65], [77]. Here, authorities have a high-leverage point to
influence the adoption of flexible electrification technologies through a
CO2-oriented tax reform. Furthermore, the sensitivity analysis showed
that one of the most influential parameters for the adoption of these
technologies is the percentage of electricity consumption that can be
covered by own RES. This suggests that the promotion of electrification
technologies should go hand in hand with the support of local
renewables. An additional measure would be to facilitate the use of
local surplus renewables by reducing its cost and thus avoiding
curtailment [78]. The relatively low sensitivity of model results to the
annual energy price increase suggests that these measures would be
effective regardless of the future energy price evolution.

There are important differences between technologies regarding
the influence of environmental factors. For batteries, the simulated
diffusion is almost independent of climate policy. Indeed, the use case
selected here — increase of self-consumption combined with arbitrage —
is already profitable under the current regulatory framework. Also, the
diffusion of batteries is less sensitive to the fraction of own RES. On the
other hand, energy price volatility and the level of a feed-in tariff are
rather important determinants for the self-consumption savings, and
thus for the profitability of the studied use case. The battery case also
differs from the two other technologies through the importance of the
per-capacity grid tariff and the reduction associated with the PA offer.
These differences show that if a customer can choose between different
flexibility technologies, their choice may depend on the specific energy
technology for their plant (e.g. the capacity to generate electricity from
own sources) and their assumption regarding the future economic and
regulatory environment.

5.1.2. Industry structure

Industry structure refers to the characteristics of the firms offering
the business model, which in this case is the DSO. Due to the
monopolistic nature of the DSOs, these entities are subjected to strict
regulations to ensure non-discriminatory access to the grid for
customers and producers [79]. Nevertheless, with the large penetration
of renewables and flexibilities at the distribution level, DSOs are called
to redefine their role by facilitating the integration of decentralized
renewables using flexibility resources to avoid the increase of grid cost
[80]. These new tasks will require major changes in the regulation to
incentivize DSOs to actively facilitate the energy transition while
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maintaining their neutrality and transparency [80], [81]. Concretely,
applying the PA model as an alternative to physical grid expansion
entails a shift from investments to operational costs, which bears
financial disadvantages for DSOs under current regulatory conditions,
due to the mechanisms of grid financing [63,81]. The current regulatory
framework reflects the role of DSOs in a centralized energy system and
does not account for their new role, giving them little latitude to offer
sustainable solutions [81]. The scalability of time-based business
models such as the one proposed here will largely depend on the
evolution of the legal and regulatory framework applied to DSOs.

5.1.3. Increasing returns

With respect to increasing returns to adoption, there are two
aspects worth mentioning. The first point refers to the increasing
returns to adoption of the electrification technology, which is simulated
in the model using the familiarity effect, a network externality by which
the adoption of a technology increases when the customer gets more
exposed to it. As explained in section 3.2.1 in the simulation, the
familiarity effect is determined by word of mouth and the customer
relationships. The simulations showed that the customer relationship
is a very important parameter for the adoption of Power-to-Heat and
batteries.

The second aspect refers to the adoption of the PA business model:
both customers and DSO may possibly benefit from the increasing
returns to adoption of the PA offer. The more customers adopting, the
better the forecasts and controllability of the local loads, which in turn
may reduce the need for grid reinforcement. This could translate in the
long term to a lower grid cost to the customers. However, due to the
novelty of the system studied and the complexity of implementation,
this effect cannot be quantified at present. Although these benefits are
important for society, they might not be tangible for both actors,
hampering the scalability of this business model. This is mainly due to
the already mentioned strict regulations for the DSO, which at the
moment do not incentivize the use of flexibility to improve the
efficiency of the grid [81], [82].

5.2. Methodical Approach

This paper developed a methodical framework consisting of the
tailored integration of forecasting methods for business model
innovation as a cost-efficient approach for experimentation under high
uncertainty. Uncertainty in this case stems from two main sources: the
potential for vastly different but equally plausible future economic and
regulatory conditions, and a lack of empirical data for model building
and parameterization. In this study, system dynamics, exploratory
modeling and a sociotechnical transition framework were used for the
design and analysis of a novel business model in the uncertain
environment of the energy transition. First, we used the principles of
BMI to identify and define new business opportunities for a DSO in the
changing energy environment. After performing several customer
interviews and workshops with project partners, the characteristics of
the new business model were defined. The business model canvas
(Figure 3) proved to be a useful tool to facilitate the discussion among
the participants. For the experimentation phase, a SD model was set up
to evaluate future market development and the prospects of the
proposed business model under various future economic and
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regulatory settings. The model building process consists of mapping
and operationalizing causal relationships between environmental
factors, economic viability of flexibility technologies and customers’
willingness to invest in them. This process yielded insight into market
dynamics, as information was elicited from different actor groups. As
the proposed business model was based on technologies that are
currently rarely implemented and not well known by the target
customers, there was only a limited empirical basis to build a model of
the system and select values for parameters. Instead, the simulation
model was constructed using well-known concepts from the literature
on technological change, such as familiarity and scarcity effects. Under
these conditions, a careful assessment of the uncertainties (see below)
and limitations (see Sect. 5.3.) of the model was necessary.

Making the various sources of uncertainty explicit and quantifying
their effect through computational experiments is a way to gain insight
from a simulation model under high uncertainty [24]. In this study,
sensitivity analysis had two functions: estimating the uncertainty of
model outputs arising from uncertain parameter values and identifying
potential levers of action and sources of uncertainty for the
implementation of the business model considered. Both types of
uncertainty contributed to the large spread of model results shown on
Figure 10. The former function is especially important when no
historical data is available for model calibration, as in this case. The
parameters categorized as “soft” on Figure 11 refer to factors that are
difficult to quantify in reality. They serve as proxy to integrate various
economic, societal and human factors in the model structure. Two
“soft” parameters were highly influential: the adjustment time strongly
influences the adoption of flexible technologies and customer
relationship management has a great effect on familiarity. As discussed
in Section 3.2.3, a range of values was obtained from previous studies,
where similar process formulations were used, but as these studies
were carried out in different context, their values could not be directly
transferred. Hence, the range for these parameters had to be kept broad,
contributing to the spread of model results. Two other intrinsically
uncertain parameters are the annual increase of energy price and
maximum energy price difference, which is a measure of energy price
volatility. The choice of a value for these parameters reflects an
assumption on the future development of the power market.

While the sensitivity analysis assesses the uncertainty of model
outputs due to parametric uncertainty, it does not account for other
sources of uncertainty, due e.g. to uncertainty in time-varying inputs
(e.g. technology prices) and in the model formulation itself [83], [84].
For a simulation study to be useful, it is crucial to address these sources
of uncertainty [85]. In this study, this was done by involving actors in
the model development process and eliciting parameter ranges and
input values as well as causalities from experts. Also, the selected
method allows the estimation of parameter importance at one point in
time only (in this case, at the end of the simulation). Other methods for
parameter importance assessment, e.g. calculating the correlation
coefficient between parameter values and outputs, allow an
examination of how parameter importance changes throughout the
simulation [86]. On the other hand, the advantage of the random forest
method applied here is that non-linear relationships between
parameters and outputs, as well as interactions between parameters,
are usually well captured by the statistical model.
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Finally, the diffusion analysis was complemented using the
sociotechnical framework developed by [27] the increasing returns and
industrial structure were thoughtfully described and the simulation
results gave insight about the most important institutional aspects
necessary to scale up the PA business model.

While this paper focuses on a specific case in the energy sector, we
expect that the method presented here can be transferred to other
business contexts or sustainability transitions. Indeed, system
dynamics was shown to be a valuable tool to conceptualize the process
through which firms reconfigure their business models in the context
of sustainability transitions [87], [88]. With its focus on (deep)
uncertainty, the method applied here can complement these
approaches to address the research gap on implementation and
challenges of new business models (see e.g. Geissdoerfer et al., 2018)
[17].

5.3. Limitations of this Study

The simulation model was developed with the aim of
understanding the drivers and barriers to the success of the proposed
business model and assessing the influence of uncertain parameters
and future conditions. Model structure was deliberately kept simple to
facilitate participatory modeling and computational experiments,
following the recommendations of Bankes (1993) [37] and
Ghaffarzadegan et al. (2011) [39]. Tractability and ease of handling
come at the expense of completeness and precision. Therefore, the
model cannot be expected to produce realistic forecasts of market
dynamics under technological change, and the results from this study
should not be understood as such. For example, the assumption that all
customers are identical and can choose only one flexibility technology
is clearly unrealistic. Rather, the simulation model forms the basis for
computational experiments, where the outcome is the identification of
drivers, barriers, leverage points and main sources of uncertainty. For
the same reason, the two scenarios defined in this study are not meant
to be complete and fully consistent, but to provide plausible boundary
conditions for the cost structure for energy use in industrial companies
under two possible future regulatory environments.

The use cases studied here only represent a small subset of the
possible use cases for flexibility technologies. They were selected based
on the specific needs of the industrial partners who participated in the
workshops. For example, flexible loads may participate in balancing
energy markets to generate revenue, or the hydrogen obtained via
electrolysis may be used as an energy carrier. Also, for each use case,
the technical specifications (e.g. installed capacity) were treated as a
given. With different use cases and specifications, the study might have
reached different conclusions regarding the diffusion of different
technologies. In addition, the proposed methodical framework needs
to be tested and probably advanced in other business model
innovations settings under high uncertainty in order to prove its value
for practical application.

6. Conclusions

This paper presents a tailored methodical framework to assess the
prospects of innovative business models under high uncertainty,
applied to a case study in the energy sector. Business model innovation
methods were used to identify new opportunities for a grid operator in
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the context of sociotechnical transition to a low-carbon system; system
dynamics and exploratory modeling approaches were used to assess
under which conditions the proposed business model is promising and
a sociotechnical transition framework was used to assess the scalability
of the business model. . The proposed business model aims at reducing
the need for grid expansion as the penetration of intermittent energy
sources increases, by centralizing the management of some industrial
appliances that have a certain degree of flexibility. In return, customers
who choose to participate get a preferential grid tariff. A system
dynamic model was built to simulate the diffusion of three flexible
electrification technologies, upon which the success of the proposed
business model depends. Analyzing the model with varying parameter
values and boundary conditions yielded insights into the sensitivity of
modeled diffusion to various economic, regulatory and soft factors, i.e.
to the socio-technical categories of increasing returns, institutions and
industry structure. These insights were used as inputs for the
sociotechnical analysis to identify the barriers and drivers for the
scalability.

From the institutional point of view, this study highlighted the role
of energy costs as one of the main barriers for the adoption of flexible
electrification technologies, as wholesale electricity prices are not cost-
competitive with fossil fuels under current regulatory conditions.
Policymakers have two important leverage points to overcome this
barrier: implementing a tax reform on energy carriers by including an
appropriate price for GHG emissions and increasing the use of
renewable generation facilities at local scale through measures to
reduce curtailment. Also, this study highlighted the importance of
customers’ perception of the benefits and risks of new technologies, as
a lack of information or a negative perception can greatly slow down
the diffusion of these technologies even if they are profitable. Therefore,
it is crucial for DSOs to know customers’ concerns regarding
electrification technologies and load management and ensure that they
are addressed by the offered products: for distribution system
operators, an important insight is that under a more stringent climate
policy, the diffusion of electrification technologies will likely be faster.
This means that new electric loads will be attached to the grid. To
reduce grid expansion costs, DSOs should be prepared to offer new
incentives to promote flexibility services, such as the grid cost
reduction in the proposed business model. Finally, utility companies
and technology developers should start offering new complementary
business model to ensure the profitability of flexible electrification
technologies and to reduce their dependency on external factors.
Nevertheless, it is also important to recognize that the ability of DSOs
to offer innovative business models largely depends on the definition
of their new role and thus the change in their regulatory framework
(see below).

The purpose of combining business model innovation, system
dynamics and exploratory modeling is to understand under which
circumstances a proposed business model is promising, to identify
what coordinated action should be taken to create favorable conditions
for a business model, and to find out where more information and
knowledge are most urgently needed. A strength of this method is that
it enables business model experimentation at low cost, explicitly
accounting for uncertainty regarding market dynamics and future
economic and regulatory conditions. Also, complementing this
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approach with a sociotechnical perspective enables the identification of
the necessary contextual changes that enable innovative business
models to make large changes in the system and thus trigger the
transition. To ensure the diffusion of flexible electrification
technologies, such changes are a carbon-oriented tax reform, increased
support of decentral renewable power generation and optimization of
local renewable power use. Furthermore, the specific solution studied
here is dependent on regulatory changes allowing the use of currently
reserved redundant grid capacity for flexible loads and incentivizing
DSOs to offer flexibility solutions.

Where there is little empirical basis for model building, insights
from previous studies and theory on technological change can be
leveraged to represent processes in a plausible way. We suggest
applying this approach in further business model innovation contexts
and to improve the interplay between business model innovation,
system dynamics and sociotechnical research.

Supplementary Materials: Sections S1: Definition of use cases for flexible electrification technologies; S2: Utility
functions in the system dynamic model; S3: Scenario definition.
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