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Abstract: Creating new business models is crucial for the implementation of 
clean technologies for industrial decarbonization. With incomplete knowledge 
of market processes and uncertain conditions, assessing the prospects of a 
technology-based business model is challenging. This study combines business 
model innovation, system dynamics and exploratory model analysis to identify 
new business opportunities in a context of sociotechnical transition and assess 
their prospects through simulation experiments. This combination of methods 
is applied to the case of a potential business model for Distribution System 
Operators aiming at ensuring stability of the electrical grid by centralizing the 
management of flexible loads in industrial companies. A system dynamics 
model was set up to simulate the diffusion of flexible electrification 
technologies. Through scenario definition and sensitivity analysis, the 
influence of internal and external factors on diffusion was assessed. Results 
highlight the central role of energy costs and customer perception. The chosen 
combination of methods allowed the formulation of concrete recommendation 
for coordinated action, explicitly accounting for the various sources of 
uncertainty. We suggest testing this approach in further business model 
innovation contexts. 
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1. Introduction 
Climate change mitigation requires a transition to a low-carbon 

society, i.e. significant reductions of greenhouse gas (GHG) emissions. 
The decarbonization of the energy sector is decisive to this end [1]. 
Thanks to several effective climate policies and technological progress, 
the share of power generation stemming from renewable sources (such 
as solar and wind) has largely increased in the previous years, and an 
accelerated uptake of related technologies is expected for the future 
(BMWI, 2019). Additionally, major technological changes in the 
industrial sectors are necessary to achieve a low-carbon transition [3]. 
There are several pathways to reduce GHG emissions in the industry, 
such as adopting highly energy efficient technologies, implementing 
carbon capture and storage systems, and the electrification of 
production processes [4]. The strong penetration of renewables 
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provides the necessary carbon neutral energy sources for a clean 
industrial electrification. 

However, the increase of renewables and the electrification of 
industrial processes pose major challenges to the electricity grid. On the 
one side, the variability and unpredictability of renewables may 
compromise grid stability. Therefore, additional control measures and 
flexibilities on the level of the distribution grid are needed to maintain 
the balance between supply and demand [5]. On the other side, the 
electrification of industrial processes increases peak demand, thus 
increasing grid congestion and the need to upgrade grid capacity 
unless alternative measures are developed [6]. An interesting option is 
the use of digital technologies that enable smart solutions to deploy 
novel flexibilities. Smart controlling of electrification technologies 
contributes not only to decarbonization, but could also provide 
flexibility services to the grid, facilitating the integration of renewables 
by absorbing excess energy or decreasing the demand in peak hours. 
Likewise, smart control can mitigate congestion problems by 
reallocating the peak demand [7].  

While many technological solutions exist for electrification, 
flexibility and smart grid control, a crucial step for their successful 
implementation is the formulation of appropriate business models [8], 
[9]. Several scholars have recognized that business models play an 
important role in the transition dynamic, they can help as drivers for 
novel technologies to disrupt the regime and also as coordinators 
between different actors [10], [11]. Nowadays, energy-related 
companies need to continuously monitor for new opportunities to 
reconfigure their business model, to secure market shares, revenues 
and profits [8], [12]. Business model innovation (BMI) supports the 
transformation of traditional business models by identifying new 
opportunities. The process starts by understanding the changing 
environment, recognizing significant trends that can trigger important 
changes, and ends with integrating the innovative business model into 
the company and implementing the business idea [13].  

However there exists high uncertainty regarding the impact of the 
changing business environment on market development and the long-
term value creation of envisioned business models [14]. Thompson and 
Macmillan (2010) [14] state that "high uncertainty contexts give us the 
'luxury' of specifying a priori what will and will not be acceptable" in 
order to save resources and to define appropriate key actions. 
However, in the early exploratory stage of business model 
conceptualization, managers face the uncertainty and unpredictability 
of fast-evolving markets and may have a biased mental model of the 
environment [15]. In addition, business models sometimes require 
coordination among different actors, each with their own interests, 
priorities and mental models. The situation in which decision makers 
are faced with multiple equally plausible futures and system models, 
termed “deep uncertainty”, calls for creative thinking and model-based 
decision support [16]. More generally, there is a research gap on the 
implementation, tools and challenges of business model innovation 
[17], including the conceptualization of the business model and value 
proposition. In the specific context of the energy system, the ongoing 
sociotechnical transition is a highly uncertain and complex 
environment for incumbent companies and new players [25], [38]. 
Several actors, such as energy utilities and Distribution System 
Operators (DSO), need to rapidly reconfigure their business model to 
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adapt to this changing environment, which also entails changes for 
their customers. According to several authors [8], [12], [18], [19], 
companies of the energy sector lack the business model innovation 
knowledge that helps to identify new opportunities within the energy 
transition.  

To overcome these challenges of business model innovation, 
experimentation should be used to frame and understand the 
uncertainty of the business environment [20]. In the face of the high 
costs and limited feasibility of running experiments in the real world, 
simulation offers a low-cost alternative. For example, system dynamics 
(SD) is a methodology to map the interaction of many variables in 
complex systems and explore their behavior through simulation 
models [21]. In the context of business model innovation, SD has been 
shown to facilitate decision makers’ understanding of the impact of 
environmental changes [22]. Indeed, the implementation of new 
business models depends not only on internal factors within the 
company but also on new regulations, uncertainties on the market and 
social acceptance. System dynamics can capture the relationship 
between internal and external factors and reflect realistic situations 
considering different political, economic and social circumstances [23]. 
This way, a clear action plan can be developed that helps coordinate 
the activities of different actors over time. SD has also been used to 
tackle deep uncertainty, using computational experimentation to yield 
insight from simulation models under imperfect system knowledge 
and uncertain future conditions [24].  

Furthermore, as mentioned by Bolton & Hannon (2016) [25] the 
external factors can be a significant determinant of the extent to which 
a business model can play an important role in the transition. They 
argue that business models cannot be a vehicle for sociotechnical 
transformations without major reforms to political, regulatory and 
market structures. Therefore, it is critical to analyze the impact of a 
sociotechnical context on the business model [26] to understand their 
real potential and scaling possibilities [27]. 

This paper addresses the research-practice gaps on business model 
innovation (see above) by presenting a combination of two established 
fields of methods (BMI and SD) and complementing them with a 
prospective transition analysis to provide a holistic assessment of the 
scalability of a novel time-based business model at the energy-industry 
interface. This combined framework aims at helping multiple actors 
develop a qualified and consolidated a-priori understanding of the 
impact of the highly uncertain energy transition environment. The first 
steps consist of a customer and market characterization and the 
definition of a concrete business model. Next, in a participatory 
process, a system dynamics model is developed to simulate the 
diffusion of flexible electrification technologies. To determine which 
factors have the greatest effect on the uncertainty of model outputs, two 
series of computational experiments are conducted: a scenario analysis, 
and a sensitivity analysis with statistical estimation of parameter 
importance. Based on the qualified understanding and the literature, a 
sociotechnical analysis highlights the possible barriers and drivers for 
the potential upscaling of the proposed business model. The aim of this 
approach is to support experimental learning and co-creation of new 
value propositions in a cost-effective way. This methodical framework 
was applied to a time-based business model for a DSO (described in 
section 3.1) aiming at avoiding grid congestion in a future of increased 
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electrification. The main idea is to allow the use of redundant grid 
capacity (which is currently reserved to guarantee security of supply in 
the case of a failure of power lines) for specific loads with a certain 
degree of flexibility. The business model is targeted at industrial 
customers and requires the coordination of various actors: the DSO, 
utility, technology providers and policymakers. The environment also 
depends on uncertain exogenous factors such as future fuel and 
electricity prices, technology costs, as well as energy and climate policy 
and it is embedded in the complex context of the energy transition. We 
use the proposed methodical framework to answer the following 
questions: 

 Which circumstances favor or hinder the success of the time-based 
business model and the diffusion of flexible electrification 
technologies? 

 Which are the main leverage points for the different actors to 
ensure the success of the business model? 

The rest of this paper is structured as follows: Section 2 reviews 
the state of the research in the methodologies combined in this study 
(BMI, SD and sociotechnical transition frameworks), Section 3 presents 
the methods (description of the business model; system dynamics 
model and computational experiments, prospective transition 
framework), Section 4 presents the results, Section 5 discusses the 
implications of the results from a sociotechnical transition perspective 
as well as the methodological aspects of this study, Section 6 
summarizes the method applied and the lessons learned from this first 
application, and formulates recommendations to the different actors. 

2. Literature Review 
We base our case study in the conceptual literature of business 

model development under uncertainty in the current context of 
sustainable transition from a fossil-based to a low-carbon energy 
system. In this section, we briefly review the relevant literature related 
to the applied methods. 

2.1. Business Model Innovation in the Energy Transition 
A business model describes how an enterprise creates value for 

specific customers with a positive financial profit equation. Business 
model innovation (BMI) is the process of creating and capturing new 
value by introducing a change on one or several components of an 
existing business model [28]. According to Frankenberger et al. (2013) 
[13], the BMI process consists of four different phases: initiation, 
ideation, integration and implementation. In the initiation phase, a 
preliminary assessment is performed to understand the changing 
environment and recognize significant trends that can trigger 
important changes. The ideation phase aims at generating new 
business ideas. In the third phase, ideas are transformed into viable 
business models and finally, in the last phase, the innovative business 
model can be implemented [13].  

BMI is an important process in constantly evolving environments, 
where the primary business model gets challenged and thus needs to 
be adapted [29]. In this kind of context with often deep uncertainty, 
BMI is not a matter of anticipating and foreseeing of the future, but 
more a trial-and-error adaptation process, experimenting with variants 
of business model configurations [30]. Therefore, imagination, 
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experimentation and ongoing learning are crucial in the development 
of novel business models [15], [31]. Experimentation with a business 
model is an iterative process that implies elaborating the initial value 
proposition into a viable business strategy, the implementation of the 
strategy, the incorporation of feedback from the environment, and the 
consequent modification of the business model [32]. Several case 
studies show that concurrent experimentation with different business 
models under uncertainty creates a variety of options that facilitate the 
long-term survival of a company [32], [33]. The authors suggest that 
such simultaneous experimentation is a crucial learning strategy to 
cope with uncertainty in a cost-effective manner. Simultaneous 
experimentation involves careful selection of related experiments and 
a combined approach of planning, action and learning.  

2.2. System Dynamics and Exploratory Modeling 
For BMI, conceptual representation (in written, pictorial, 

mathematical or symbolic forms) facilitates the understanding and 
communication of new business model ideas within the organization 
and between actors [34]. Simulation modelling is a valuable tool to 
assess the consequences of changes in business models through 
conceptual representation and simulation of virtual experiments [35]. 
System dynamics (SD) is a methodology combining graphical 
representation and mathematical modeling to understand the behavior 
of complex systems over time [21]. This technique allows to evaluate 
how a business strategy performs over time and what can be done to 
influence this performance [36]. SD models can capture the relationship 
between endogenous and exogenous dynamics, thus permitting the 
evaluation of a business project under different political, economic and 
social circumstances [23]. Therefore, SD models can be used to facilitate 
the experimentation phase of BMI [20] and improve the understanding 
of decision makers [22].  

Often, modelers and decision makers have limited knowledge of 
the processes shaping the business environment. Also, when future 
prospects of a business model are evaluated, it is necessary to make 
assumptions on the evolution of external factors, for which widely 
varying scenarios might be equally plausible. Therefore, multiple 
possible model formulations and multiple possible futures exist, with 
often not enough information to assess their likelihood. This situation 
is referred to as “deep uncertainty” [16], [24]. In this case, models 
should not be treated as predictive tools, but rather as a way to 
explicitly examine modeling uncertainties [37]. Such an explorative 
approach to modeling consists of conducting visual or statistical 
analysis on an ensemble of model runs, where model structure, inputs 
and parameters are varied [37]. The value of such a model-based 
decision making approach lies in the capacity to answer questions such 
as “under which circumstances is a business model promising?” or 
“what is the range of plausible outcomes?” [24]. This explorative 
approach has been used in combination with SD in the context of 
future-oriented technology analysis [24] and sociotechnical 
transformation of energy systems [38]. 

For an exploratory approach, Bankes (1993) [37] argues that 
simple, question-specific models are better suited than more complex 
models that aim at a highly disaggregated and detailed description of 
the system. Also, Ghaffarzadegan et al. (2011) [39] strongly recommend 
the use of small SD models to facilitate experimentation and to carve 
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out critical insights. Ghaffarzadegan et al. (2011) [39] define a small 
model as a model consisting of few critical stocks and a maximum of 
eight feedback loops. As long as the model structure captures the most 
dominant feedback loops and stocks, it can be used to easily identify 
the most important leverage points of the system. More complex 
models, or other modelling techniques such as Agent Based Modelling 
can also be used to simulate the adoption of business models. 
Nevertheless, one of their most important drawbacks is the increase of 
complexity, which makes parameter identification and sensitivity 
analysis difficult [40].  

2.3. Transition Theory and Business Models 
One objective of sociotechnical transition research is to 

understand both the conditions under which a technological niche can 
disrupt the existing sociotechnical regime [41] and the role of the 
surrounding innovation system in this transition [42]. Such transition 
frameworks have proven to be helpful to analyze energy and 
environmental transition problems [26].  

Several researchers recognize that business models play a very 
important role in sociotechnical transitions [11], [43], [44]. For example, 
they are seen as vehicles to disrupt the regime [44]. Alternatively, 
business models can themselves constitute innovations, rather than just 
being vectors for the diffusion of technological innovations. According 
to Bidmon & Knab [11], business model innovations emerge at a higher 
level of structuration of activities, and entail the formation of new 
collaborations between actors. Furthermore, Wüstenhagen et al. [43] 
highlight that business model innovation might help to overcome some 
of the key barriers to the upscaling of sustainable technologies. 

Nevertheless, Bolton & Hannon [25] argue that without major 
reforms to political, regulatory and market, business model innovation 
alone would not be able to induce large system changes. Therefore, it is 
recommended to complement diffusion modeling with sociotechnical 
analysis to better understand the role of the broader context [26].  

Van Waes et al. propose a sociotechnical transition framework to 
assess the upscaling potential of business models [27]. The framework 
distinguishes the business model context and the sociotechnical 
context. The first one explains not only the business model logic but 
also the increasing returns to adoption, i.e., how network externalities 
accelerate the diffusion process. The second addresses the broader 
impact of institutions and the industry structure. The latter describes 
the characteristics of relevant firms, such as its size, experience, and 
local embeddedness. The institutions refer to the regulatory framework 
as well as the norms and beliefs that affect the business model scaling. 
In sum, all these dimensions are critical to assess the barriers and 
drivers for the upscaling of innovative business models.       

3. Materials and Methods  
In this section we develop the methodical framework and present 

illustrative outcomes of distinct methodical steps. Our study applies a 
case study design [45] contributing to a transnational research project, 
with the objective of designing and testing an innovative time-based 
flexibility business model (named the “Power Alliance” (PA) business 
model; see Section 3.1). This business model depends on the diffusion 
of flexible electrification technologies in the industrial sector. The 
proposed theoretical framework is illustrated in Figure 1. First, the 
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barriers and drivers for the electrification of industrial processes were 
identified. Afterwards, explorative interviews with potential customers 
were performed. In a next step several workshops with project partners 
were organized to concretely define the business model. The project 
partners were representatives of an energy company (taking here the 
role of technology and business developer), a Distribution System 
Operator (user of the time-based business model defined here), three 
pilot customers (industrial customers in the service area of the DSO), 
an information technology company (assisting in technology 
development) as well as the interdisciplinary research team. The ten 
project partners are considered as experts of the current and envisioned 
business field.  

Next, a SD model was set up to simulate the diffusion of flexibility 
technologies. To assess the prospects of the proposed business model 
under various socio-economic and regulatory settings, two sorts of 
computational experiments were performed: scenario experiments and 
parametric sensitivity analysis. Finally, the sociotechnical framework 
from van Waes et al. (2018) was adapted to assess the scalability of the 
business model in its context. The feasibility of the business model from 
a regulatory point of view was ensured by seeking feedback from a 
trade association of the energy industry. 

 
Figure 1. Method for the exploration of innovative business models under deep uncertainty. 

3.1. Business Model Innovation  
3.1.1. Socio-technical Drivers and Barriers 

The first step in specifying the business model was to characterize 
the drivers and barriers for the electrification of the industrial sector, 
and the role that business models can play in assisting this process. The 
results of this assessment are summarized in Figure 2. A key driver of 
electrification in all sectors has been the increased power generation 
from renewable energy sources and the fast decrease of their cost [46]. 
The development of energy storage technologies has also greatly 
contributed to increased electrification, as they permit a better 
utilization of intermittent renewable energy sources. For some storage 
technologies, such as batteries or power-to-hydrogen, investment costs 
are projected to substantially decrease as the technology further 
matures [47], [48]. Sector coupling, i.e. the interconnection of electricity, 
heat, industry and mobility, offers various opportunities for 
decarbonization in the industry sector, e.g. by using hydrogen from 
renewable electricity to produce various chemicals [46] or by using 
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battery capacity to provide grid frequency control and reserve capacity 
[49]. 

However, the use of electricity for industrial processes is 
nowadays limited for economic reasons [50]. Electricity is 
comparatively more expensive than natural gas, oil, or coal. The reason 
for this is twofold: first, the wholesale electricity price includes not only 
the energy use but also the grid cost, taxes and levies. Second, fossil fuel 
costs do not reflect their environmental impact, due to rather low CO2 
prices and the lack of an international agreement on a carbon tax [51]. 
As a result, the operational cost of electric technologies is not 
competitive with their equivalent fossil technologies, unless a tax 
reform is implemented [52]. Further barriers are related to the 
perceived utility of electrification, load management and flexibility 
technologies by industrial actors, e.g. concerns about financial and 
regulatory risk [53], lack of information, and lack of interest in 
participating in energy markets (“not-my-business” problem) [54]. 

Even if the potential of electrification in the industry is realized, 
new challenges might appear. Since massive electrification of industrial 
processes could increase peak electricity demand, this development, 
together with the large penetration of intermittent renewables, may 
compromise the stability of the grid and aggravate the grid congestion 
problems [6]. As a result, there will be a need to reinforce grid capacity, 
unless alternative measures are developed. An alternative is the use of 
digital technologies that enable smart solutions to deploy novel 
flexibility technologies.  

To unlock this specific flexibility potential on the level of the 
distribution grid, new business models are required. The literature 
mentions several time-based flexibility business models that can be 
applied with the use of flexible technologies and smart grids. A classic 
example is the participation in the ancillary service market to provide 
frequency control and reserve capacity [49]. Batteries have been used 
for instance to reduce peak demand and profit from daily electricity 
price variations [55], [56]. The integration of renewables is another 
promising business opportunity. In this case, the utility can e.g. offer to 
the customers dynamic prices to incentivize the consumption of energy 
when large amounts of renewables are available, thus reducing 
curtailment [49], [57], [58].  
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Figure 2. Barriers and drivers to the electrification of industrial processes. 

3.1.2. Analyzing customer’s profile 
The next step on the design of a business model was to analyze the 

potential customers. To this aim, semi-structured interviews were 
performed with potential pilot partners. The aim of these interviews 
was to understand central jobs, pains and gains of customers and to 
identify key conditions and motivations to participate in a time-based 
flexibility business model [59]. In total, six interviews in three different 
countries (Germany, Austria and Switzerland) were performed with 
companies from very different economic sectors.  

The interview results underline the importance of managers’ job 
to reduce cost while ensuring the reliable operation of their core 
activity. For this reason, most of the interviewed companies were 
considering to install or already have installed a load management 
system and/ or an energy monitoring system to optimize their own 
demand.  

Nevertheless, when talking about providing flexibility to the local 
network, the main pain points identified were the possible interference 
with their core activity and the needed organizational effort 
(transaction cost). The resulting gains of participating in a time-based 
flexibility business model were linked to the support of an innovative 
and green image and sustainability transition. 

3.1.3. Design of the Power Alliance Business Model 
The PA business model was designed in a series of workshops 

with the project partners based on the customer profile.  
The PA approach proposes a technical and economical scheme to 

avoid grid congestions under increased electrification. The main idea is 
to apply demand side load management only to a specific class of new 
flexible loads, the so-called “conditional loads”, which mainly emerge 
from sector coupling applications such as power-to-heat installations 
and electrolyzers for hydrogen production. These loads exhibit a 
significant price elasticity and are more flexible in terms of usage due 
to a certain storage functionality. Furthermore, these loads are not 
hampering the reliable operation of the companies’ core activity. 
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The PA business model presupposes that the currently redundant 
grid capacity used to provide today’s high level of security of supply - 
the "n-1 security" – can be utilized by conditional loads, thereby 
attaining additional capacity in the existing grid infrastructure. 
Conditional loads are subject to a simple security of supply for a certain 
time span, while keeping the n-1 security for all other loads [60]. 

The PA business model requires coordination between different 
actors: DSOs, utilities, technology providers, policymakers and 
industrial customers. From the perspective of DSOs, the main aspects 
of the business model are summarized on Figure 3 using the canvas 
approach of Osterwalder & Pigneur (2010).  

The main value proposition of the PA business model is a holistic 
flexibility management solution wherein the service provider and DSO 
will carry out most of the relevant activities. This includes the 
installation and maintenance, as well as daily load forecast and 
rescheduling. The main job – reduce energy cost – is addressed by 
lowering the capacity-dependent part of the network tariff for their 
flexible loads and optimizing load management. This tariff component 
is an annual fee of 100€/kW and is reduced to 10% of its value under 
the PA offer (cf. Table 3). For the case of six industrial companies, 
calculations have shown that this offer would greatly impact the 
financial attractivity, or even feasibility, of investments in flexible 
electrification technologies [63]. The DSO should ensure that the PA 
business model have a minimal interference with the core activities of 
the company.  

The target customers are those on the electricity grid level 5 
(medium voltage level; typically industrial customers) who installed or 
are thinking about installing a flexible electrification technology. The 
customers will be directly addressed and informed about the PA offer. 
This direct customer support will also be the main contact channel with 
the customers. 

The key activities for the DSO are to provide consulting services to 
help customers understand the offer and to perform the forecast and 
reschedule of the local load profiles via intelligent algorithms, therefore 
software and hardware providers are the key partners.   

The key resources are the physical infrastructure such as the 
energy management equipment, and human capacity to advice 
customers, install and maintain the equipment and find an optimal 
flexibility solution for their individual needs. 

The main costs are the infrastructure cost and the additional 
personnel cost for consulting services. Conversely, the grid expansion 
cost should be reduced due to the optimal use of existing grid through 
regionally aggregated smart flexibility management. The main revenue 
stream are the connection charges and the network cost and grid use 
charges. 

The actors involved have different incentives to participate in the 
PA scheme. For DSOs, the main incentives are a better plannability and 
control over their grid, as well as more detailed insights into grid flows, 
which allows them to offer attractive products. For grid customers, 
incentives to declare suitable loads as conditional loads comprise a 
significant reduction of grid fees for conditional loads (the "Power 
Alliance Tariff"), and an automated dynamic load management 
solution (the "Regional Load Shaping" solution; see Christen et al., 
2019) [62] that minimizes the customers' energy costs for conditional 
loads according to stock prices whenever regional grid capacity 
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constraints allow it. Policymakers and regulatory authorities are 
interested in testing and supporting technical solutions that promote 
flexibility and help to reach environmental and GHG reduction goals. 
Technology providers are interested in promoting the adoption of the 
flexible electrification technologies, whereas electric utilities are 
interested in offering innovative products to their customers, such as 
more exact energy consumption schedules to optimize the loads and 
energy costs.  

 
Figure 3. Canvas for the Power Alliance business model, from the perspective of the grid operator. 

3.1.4. Exploration phase 
The acceptability of the PA Business model was tested by 

performing an online survey to potential customers (i.e. companies 
from the manufacturing sector). The survey was based on the Choice-
Based Conjoint (CBC) method. In total 500 customers from Germany, 
Austria and Switzerland where contacted, nevertheless, the response 
rate was very low (62 customers completed survey). Therefore, though 
the results of the survey give some insights about the customers wishes, 
they are not representative to support solid conclusions [63].  

For this reason, a system dynamic model was developed to test 
and explore the diffusion of the electrification technologies and the 
adoption of the PA Business model.  

3.1.5. Use Cases for flexible Electrification Technologies 
The Power Alliance business model is highly dependent on the 

diffusion of flexibility technologies such as batteries, Power-to-Heat 
and Power-to-Hydrogen. For this reason, the necessary conditions to 
adopt these technologies are studied in detail using a system dynamic 
model (described in Section 3.2.1.). For this analysis, three common use 
cases were selected to detail the financial advantages of the studied 
technologies as well as potential GHG emission reduction. These use 
cases were selected in workshops with members of an electric utility, a 
DSO and industrial customers. In all use cases it is assumed that the 
self-consumed electricity has no cost. The most important assumptions 
of the three use cases are presented in Table 2 and described below. The 
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market context of the use cases refers to Germany. A more detailed 
breakdown of the costs and revenues for each use case is given in 
Section 1 of the supplement. 

The first use case, Power-to-Heat (PtH), considers the use of an 
electric boiler to generate heat in the paper industry (at a temperature 
requirement of about 120 °C). Electric boilers are a mature technology, 
with estimated investment costs between 100-400 € and an efficiency 
𝜂௉ଶு௘௔௧  between 97% and 99% [47]. The electricity can be obtained 
either from the electricity grid or from an installed photovoltaic system. 
The electric boiler can work together with an existing gas boiler 
(parallel operation) or independently. In parallel operation, the system 
can make use of the price difference between gas and electricity. A heat 
storage (such as a water boiler) is also considered to increase the 
flexibility of the system.  

The second use case, Power-to-Hydrogen (PtH2), assesses the 
usage of an electrolyzer to generate hydrogen as a raw material for the 
chemical industry. It is assumed that the electrolyzer replaces a Steam-
Methane Reforming system that uses natural gas to produce hydrogen, 
releasing carbon monoxide and a relatively small amount of carbon 
dioxide. Due to economies of scale, it is expected that the cost of the 
electrolyzer decreases within the next years from almost 1500 €/kW in 
2016 to 480 €/kW in 2050 [47]. The electrolyzer takes the electricity from 
the grid or from an internal source such as a photovoltaic system.  

The last use case concerns the use of a battery storage to increase 
the self-consumption share of a photovoltaic system. The battery can 
also be used to provide services to the grid as part of the PA business 
model. Furthermore, the battery can take advantage of arbitrage 
opportunities, buying electricity from the grid at cheap prices and 
selling it when the prices are high again. The capital cost of the battery 
is assumed to be 1200 €/kWh in 2016 when the simulation starts and to 
decrease to 290 €/kWh in 2050 [48]. 

Table 1. Use cases assumptions. 

PtH 

Installed capacity 500 kWe  

Investment cost 100 €/kW [47] 

Life time  30 years [47] 

Efficiency  98 % [47] 

Efficiency of the replaced boiler 98% [64] 

PtH2 

Capacity of the water electrolyzer  500 kW  

Investment cost @2016 1500 €/kW [47] 

Investment cost @2050 480 €/kW [47] 

Life time  30 years [47] 

Electricity consumption per kg H2 55 kWh/kg [65] 

Gas needed per Kg H2 for the replaced 

SMR 40 kWh/kg [66] 

Batteries  

Installed capacity 500 kWe  
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Investment cost @2016 1192 €/kWh [48] 

Investment cost @2050 289 €/kWh [48] 

Life time  20 years  

Charging time 1 hour  

3.2. System Dynamics Simulation 
3.2.1. Model Structure 

The SD model simulates the diffusion of flexible electrification 
technologies and the adoption of the PA offer in a local distribution grid 
with 45 industrial customers (Figure 4). The model simulates the 
diffusion of one technology at a time. The core of the model consists of 
three state variables, each of them representing the number of 
customers subscribing to a certain offer. At the beginning of the 
simulation, there is no flexible technology (“Flexloads”) installed, thus 
all customers belong to the stock “Customers without Flexloads”. At 
each time step, a certain fraction of the customers may decide to switch 
to one of the alternative options. One possibility is to install a flexibility 
solution, without subscribing to the load management program of the 
utility. Customers who choose this option are still subject to the 
standard grid tariff (ST). Alternatively, customers may choose to 
participate in the regional load shaping program and benefit from the 
Power Alliance Tariff (PAT). The switch to the PAT may happen either 
directly (customers install a flexibility solution and join the regional 
load management program at the same time), or indirectly by first 
installing a flexibility solution, and in a second step, deciding to join the 
load management program. In each customer stock, a fraction of the 
customers has their own renewable energy source (RES). For the stock 
“Customers without Flexloads”, the fraction of customers with RES is 
updated according to the chosen scenario (see Sect. 3.2.2.), simulating 
the percentage of renewables in the total energy consumption as a 
proxy. 
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Figure 1: Structure of the system dynamics model representing market dynamics at the scale of a 
local distribution grid. Boxes represent stocks, i.e. state variables; double arrows with valves represent 
flows, i.e. changes of the values of stocks; simple arrows represent causal relationships. 

The core loops of the model, shown on Figure 4, share a similar 
structure with the model developed by Kubli (2018) [67] to study the 
diffusion of decentralized photovoltaics. The number of customers 
moving from one option to another at each time step, following the 
flows on Figure 4, depends on the perceived utility of each decision 
option, as well as on the specified adjustment times (AT) for each 
possible switch. The factors influencing perceived utility are described 
below. ATs are time constants accounting for delays in the system. 
Indeed, it is unrealistic to assume that all customers willing to install a 
flexibility solution will do so immediately. Many factors may delay this 
decision for an individual customer, such as financial, time and 
knowhow constraints, or organizational structures and processes. The 
ATs control the rate of change as follows: 

𝑟௜,௦,௧ = 𝑟௣௢௧,௜,௦,௧ 𝐴𝑇௜⁄  (1)

where 𝑖  represents the different type of customers ( 𝑖 ϵ {customers 
without flexloads, customers with flexloads and ST, customers with 
flexloads and ST }), and s distinguishes the customers with and without 
renewables installed (𝑠 ϵ {customers without renewables, customers 
with renewables}), consequently   𝑟௜,௦,௧  is the rate of customers 
changing from option 𝑖଴ to option 𝑖 at time step 𝑡  [Customers/year], 
𝑟௣௢௧,௜,௦,௧ is the number of customers planning to change from option 𝑖଴ 
to option 𝑖  , and 𝐴𝑇௜  the adjustment time [years] corresponding to 
this transition. 

The model considers six decision options, each corresponding to 
one of the flows in Figure 4 (each flow symbolizes two distinct decision 
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options, for customers with and without RES). At each simulation time 
step, the model calculates the attractivity of each decision option, 
expressed as the share of potential customers willing to change. This 
attractivity depends on the perceived utility of each decision option, 
which in this model depends on financial aspects (payback time), social 
aspects (familiarity of flexible technologies and customers’ willingness 
to invest) and a scarcity effect. The share of customers that choose each 
option 𝒇௜ is determined using a logistic function: 

𝑓௜ =
1

1 + 𝑒𝑥𝑝ൣ−𝛽൫𝑢௜,଴ − 𝑢௜൯൧
 (2)

where 𝑢௫ is the dimensionless utility function corresponding to each 
decision option 𝑥,  𝒖𝒊,𝟎 is the perceived utility of the current concept 
and 𝒖𝒊 is the perceived utility of the competing consumption concept. 
𝛽  is an empirical shape parameter. The perceived utility 𝑢௫  of a 
decision option is calculated as follows: 

𝑢௫ = 𝑓௣௔௬௕௔௖௞೟೔೘೐
× 𝑓௖௔௣௜௧௔௟  

                                  × 𝑓௙௔௠௜௟௜௔௥௜௧௬    

                                  × 𝑓௦௖௔௥௖௜௧௬ 
(3)

where all variables are dimensionless. The empirical functions used to 
estimate 𝑓௣௔௬௕௔௖௞_௧௜௠௘ , 𝑓௖௔௣௜௧௔௟  and 𝑓௦௖௔௥௖௜௧௬ are described in Section 2 
of the supplement. 

Familiarity 𝑆௙௔௠ is a state variable of the model and consists of 
two processes: the effect of word-of-mouth as a technology becomes 
more common, and the effect of customer relationship management by 
the utility. Familiarity may take values between zero and one and is 
initially set to 0.25 here. At each time step, 𝑆௙௔௠ is updated as follows: 

𝒅𝑺𝒇𝒂𝒎

𝒅𝒕
= (𝒇𝑾𝑶𝑴 + 𝒇𝑪𝑹𝑴) × ൫𝟏 − 𝑺𝒇𝒂𝒎൯ (4)

where 𝑓ௐைெ  is the effect of word-of-mouth in the current time step, 
and 𝑓஼ோெ  the effect of customer relationship management. The latter is 
assumed to be constant, whereas the effect of word-of-mouth increases 
as the number of customers with installed flexibility technologies 
increases: 

𝒇𝑾𝑶𝑴 =
𝑪𝒇𝒍𝒆𝒙

𝑪𝒕𝒐𝒕𝒂𝒍

× 𝒓𝒄𝒐𝒏𝒕𝒂𝒄𝒕 (5)

where 𝐶௙௟௘௫  is the number of customers with a flexibility solution 
installed, 𝐶௧௢௧௔௟  the total number of customers and 𝑟௖௢௡௧௔௖௧  the 
effective contact rate [-]. This formulation for technology diffusion was 
introduced by Struben and Sterman (2008) [68].  

The annual cash flows in the model are the sums of costs and 
revenues (from the perspective of the customer) related to the installed 
flexibility technologies. For each use case, the breakdown of costs and 
revenues is given in Sect. 3.1.3. and Sect. 1 of the supplement. An 
important factor for the economic viability of flexible technologies are 
future prices for electricity and natural gas (the latter only for the PtH 
and PtH2 cases). These are outside the system boundaries and assumed 
to increase as a function of time: 

𝑷𝒚,𝒙 = 𝑷𝒑𝒓𝒆𝒔𝒆𝒏𝒕,𝒙 × (𝟏 + 𝒃𝒙)(𝒚ି𝟐𝟎𝟏𝟓) (6)

where 𝑃௬,௫  is the price for either gas or electricity (represented here by 
𝑥) in the year 𝑦, 𝑃௣௥௘௦௘௡௧,௫ is the current price for 𝑥, and 𝑏௫  is an 𝑥-
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specific parameter. The current (2016) prices for electricity (energy 
price only) and gas (excluding the carbon tax; see next section) were set 
to 0.04, and 0.03 €/kWh, respectively. The annual price increase for 
electricity, 𝑏௘௟ , is set to a default value of 3%, and the annual price 
increase for natural gas, 𝑏௚௔௦ , is set to 2%. The breakdown of the 
wholesale prices for electricity and natural gas is given in Section 3 of 
the supplement. 

The model was built and executed using the software Vensim DSS, 
version 7.3.5. The simulation period goes from 2015 to 2050, with a 
simulation time step of 0.0625 years. Numerical integration uses the 
explicit Euler method.  

3.2.2. Scenarios 
As the diffusion of the studied flexible technologies largely 

depends on uncertain climate policies, this work considers the 
application of two different climate scenarios. These scenarios are 
based on forecasts for the German energy market [51], [69]. This Section 
gives an overview of the scenarios, and the reasoning behind them is 
further detailed in Section 3 of the supplement. The first scenario, the 
business as usual (BAU) case, assumes that no tax reform or any other 
additional measure is adopted to promote decarbonization. Thus, the 
percentage of renewables in the total energy consumption reaches only 
60% by 2050 and the CO2 emission factor of the German electricity grid 
is approximately 300 gCO2/kWel. Furthermore, as of today in Germany, 
no CO2 price is charged for the use of gas as heating fuel. The 
Renewable Energies Act (EEG) surcharge, levied on electricity 
consumption to finance the development of renewable energy, starts at 
6 €c/kWh and is phased out gradually to reach 0.8 €c/kWh by 2050, 
following the forecast of [70]. 

The second scenario assumes that strong policies measures are 
taken to support decarbonization and sector coupling. As a result, the 
Paris climate goals will be reached by 2050 in Germany, i.e. almost 
100% of the total energy consumption can be met by using renewable 
energies. The CO2 emission factor of the electricity mix is 17 CO2g/kWel. 
To reach these goals, it is assumed that a tax reform is applied, in this 
case a CO2 tax (𝑃஼ை  [€/kW]) is charged to the natural gas and a tax 
reduction for electricity is implemented. Concretely, the EEG surcharge 
is reduced to 0.05 €c/kWh. The aim of this policy is to promote the use 
of green electricity and charge fossil fuels for their CO2 emissions. 
Figure 5 illustrates the evolution of the scenarios over time, whereas 
Error! Reference source not found. summarizes the most important 
assumptions. 
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a) b) 

Figure 5. a) Percentage of renewables in the total energy consumption for the considered 
scenarios b) CO2 emissions factor of the German electricity grid. 

Table 2. General assumptions of the two analyzed policy scenarios. 
  

BAU Scenario Climate Policy 

Scenario 
  

2030 2050 2030 2050 

CO2 electricity mix emission 

factor1 

CO2g/kWel 506 284 411 17 

Percentage of renewables in 

the total energy consumption1 

% 38 66 44 96 

CO2 price on gas2  €/kWh 0 0.01 (45 

€/TonCO2) 

Electricity tax reduction (tax 

reform)2  

€/kWh 0 Up to 0.077 (see 

supplement) 

1[69] 

2[51] 

3.2.3. Sensitivity Analysis 
Many of the parameters used in the simulation models are subject 

to high uncertainty. This uncertainty arises for various reasons: first, 
the simulation period lies mostly in the future, so that it is necessary to 
make assumptions regarding the future evolution of energy prices, 
technology costs and taxes. Second, some parameters act as proxies for 
processes not explicitly represented in the model, such as the 
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adjustment times (Eq. 1). This makes it difficult to constrain these 
parameters, especially in the absence of historical data that enables the 
calibration of the parameters. As some of the process formulations used 
here are widely used in SD, earlier studies give an estimation for the 
values of the corresponding parameters. However, these studies may 
apply to an entirely different context, so that transferring parameter 
values to a new study may be challenging. For example, most of the 
empirical values for the familiarity parameters come from studies on 
vehicles or consumer goods [68]. While these values give a rough 
indication of the possible parameter range, it is unclear how well they 
describe the attitude of industrial customers regarding their electricity 
consumption. 

To assess the uncertainty in model outcomes and to identify the 
most sensitive parameters, a global parametric sensitivity analysis was 
conducted. The aim was to characterize the spread in model results 
under varying parameter values, as well as a measure of importance 
for each parameter. The target output variable is the number of 
customers that have installed a flexibility technology, a PV module and 
subscribe to the PA tariff at the end of the simulation (𝐶௙௨௟௟,ଶ଴ହ଴). In a 
first step, 2000 combinations of parameter values were generated, 
where the value of each parameter was varied within its plausible 
range. The parameters and their range are listed in Error! Reference 
source not found.. These sets were generated with the Latin Hypercube 
Sampling method, a stratified Monte Carlo scheme. 

In a second step, parameter importance was assessed by fitting a 
random forest model [71], with the parameter values as predictors and 
𝐶௙௨௟௟,ଶ଴ଷ଴ as the dependent variable. Such a meta-modeling approach to 
parametric sensitivity analysis provides a ranking of parameter 
importance, and the possibility to evaluate the effect of different 
parameters graphically [72]–[74]. Among the different measures of 
parameter importance provided by the random forest algorithm [71], 
the mean decrease of accuracy was used. This measure describes the 
loss of model performance when the values of one parameter are 
randomly shuffled, i.e. converted to noise. 

Table 3. List of parameters varied in the sensitivity analysis, with their respective ranges and default 
values. For the parameters that appear in the model description in this report, the corresponding 
equations are indicated. For the other parameters, please refer to the description of the business 
models (BM) in Annex 4.3. 

Symbol Meaning Units Minimum 

value 

Maximum 

value 

Default 

value 

Eq. 

Common parameters 

𝑃௚௥௜ௗ,ௌ் Standard 

network tariff 

(ST) 

€/kW 50 100 70 BM 

𝑓௉஺் PAT, as a 

fraction of ST 

Dmnl 0.1 1 0.1 BM 

𝑃௜௡௩,௦௠௔௥௧ Investment cost 

smart control 

€ 100 500 300 BM 
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𝐻௥௨௡௡௜௡௚ Running hours 

per year (P2Heat 

and P2H2 only) 

hours/year 3000 7000 6000 BM 

𝑏௘௟ Annual 

percentual 

electricity price 

increase 

Dmnl 0.02 0.04 0.03 8 

𝑑௉௘௟,௠௜௡ Min electricity 

price difference 

€/kWh 0 0.04 0.04 BM 

𝑑௉௘௟,௠௔௫ Max electricity 

price difference 

€/kWh 0 0.1 0.07 BM 

ATload AT flexible loads years 5 20 15 1 

ATPAT AT smart control years 1 5 2 1 

𝛽 Shape parameter 

for the function 

linking utility to 

preference 

Dmnl 4 8 6 2 

𝑟௖௢௡௧௔௖௧ Contact rate Dmnl 0.1 0.3 0.2 7 

𝑙஼ோெ Effect of 

customer 

relationship 

management by 

utility on 

familiarity 

Dmnl 0.05 0.15 0.1 6,7 

P2Heat parameters 

𝜂௉ଶு௘௔௧ P2Heat 

efficiency 

Dmnl 0.97 0.99 0.97 BM 

𝑏௚௔௦ Annual 

percentual gas 

price increase 

Dmnl 0.02 0.03 0.02 8 

Battery parameters 

𝑃ிூ் Feed-in tariff €/kWh 0.03 0.12 0.08 BM 

𝜂஻௔௧௧ Battery 

efficiency 

Dmnl 0.7 0.9 0.7 BM 

P2H2 parameters 

𝑃ுଶ Hydrogen price €/kg 4 12 8 BM 

𝜂ுଶ Electricity 

consumption per 

kg hydrogen  

kWh/kg 50 60 55 BM 
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A crucial step of a parametric sensitivity analysis is the choice of a 
distribution for each parameter [75]. Here, a uniform distribution was 
chosen for all parameters, with the range set as reported in Error! 
Reference source not found.. Two parameters describe the PA business 
model: the standard network tariff (ST) and the fraction  𝑓௉஺், which 
defines the ratio of PAT and ST. The ranges for the standard grid 
tariff 𝑃௚௥௜ௗ,ௌ் and the investment costs for smart control 𝑃௜௡௩,௦௠௔௥௧ were 
chosen based on scenarios provided by the project partners. The 
bounds for 𝑓௉஺்  were kept wide, ranging from no discount at all 
(𝑓௉஺் = 1 and PAT = ST) to an aggressive strategy where PAT is only 
10% of ST. The parameter 𝑏௘௟ , representing the annual percentual 
change of energy price, was varied so that the resulting prices stayed 
within the bounds of existing forecasts [70], [76], as shown in Figure 6. 
The parameters 𝑑௉௘௟,௠௜௡  and 𝑑௉௘௟,௠௔௫  reflect the volatility of 
electricity prices. The minimum and maximum values were selected 
based on scenarios provided by the project partners. 

 
Figure 6. Future evolution of energy price. The solid line shows the future price calculated with Eq. 
8, using the default parameter value for the annual increase (3% per year). The stippled lines show 
the development with minimum and maximum parameter values. 

Values for parameters such as the adjustment times are typically 
obtained through calibration. As this study is concerned with business 
models that have not yet been implemented, there is no historical data 
available for calibration. Therefore, to define the range for these 
parameters, it is necessary to consider previous studies. For example, 
Kubli (2018) [67] obtained adjustment times between 1 and 4 years for 
the installation of photovoltaic panels by industrial customers. Here, 
the AT for the installation of smart control (ATPAT) was varied between 
1 and 4 years. It was assumed that, as the installation of flexible loads 
represents a much greater investment, the corresponding adjustment 
time (ATload) is much longer (5 to 20 years). Values for the parameter 𝛽 
were also obtained through calibration by Kubli (2018), and ranged 
between 4.7 and 13 for industrial customers. For the two familiarity 
parameters 𝑙ௐைெ  and 𝑙஼ோெ , Struben & Sterman (2008) suggest ranges 
of 0 - 0.3 and 0 - 0.02, respectively. These values are based on previous 
studies on consumer goods and do not necessarily describe the 
situation examined in this study. First, industrial customers probably 
behave differently from private customers and are likely more 
receptive to marketing efforts if the product can help their business. 
Second, due to the small market size, the utility can easily reach all its 
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customers. For these reasons, the range for 𝑙஼ோெ was set substantially 
higher. 

3.2.4. Model Validation 
To acquire confidence in the model, several workshops with 

practitioners were performed. In these workshops, our industrial 
partners, as well as members from federal authorities, verified the 
structure and the most important parameters of the model. We had the 
opportunity to corroborate the existence and importance of the 
different feedback loops for the real-life situation of our case study. 
However, due to the lack of historical data, a detailed validation of the 
model was not possible. Nevertheless, we verify the response of the 
system to extreme conditions and perform sensitivity tests as reported 
in Section 3.2.3. Finally, we also validated the results with practitioners 
and ensured that the behavior projected by the model is likely and 
could be explained. 

4. Results 
4.1. Simulation Results 

For the PtH case, Figure 7 a) and b) show the development of 
installed flexibility capacity in the grid for the two scenarios (BAU and 
climate policy (CP)) and two different assumptions on the percentage 
of electricity consumption stemming from the customers’ own 
renewable generation (𝑓௥௘௡௘௪ , 60% and 80%). To give a sense of the 
importance of these new technologies, installed flexibility capacity is 
expressed here as a percentage of peak demand. The fraction 𝑓௥௘௡௘௪ 
has a greater influence on the diffusion of PtH in the BAU scenario than 
in the CP scenario, since as mentioned before, the model assumes that 
the energy coming from own renewables has no cost. Consequently, 
the profitability of PtH increases with the percentage of own RES. 
Under the CP scenario, as the wholesale price is decreased for 
electricity and increased for natural gas, PtH is more competitive. 
Therefore, the percentage of renewables only has a marginal impact. 
The GHG emissions savings (Figure 7 c) and d)) are expressed as a 
percentage of the total emissions from process heating if all customers 
in the grid used a gas boiler. Clearly, the savings are larger in the CP 
scenario, where the electricity mix has a very low emission factor at the 
end of the simulation period.   
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Figure 7. (Figure 8 a) and b)) shows that the BAU scenario is not favorable to the diffusion of this Table 
2. electricity demand. Consequently, the GHG emission savings (Figure 8 c) and d)) are also small or 
inexistent. As for PtH2, installed capacity is expressed as a percentage of peak demand in the grid, 
and emissions savings as a percentage of the emissions that would occur if none of the customers 
switched from the reference case (steam methane reforming) to PtH2. 
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Figure 2: a) and b) Installed PtH2 capacity, expressed as a fraction of peak demand in the local 
grid, for the BAU Scheme 2. case, expressed as a percentage of emissions in a hypothetical case 

where no customers switches from steam methane reforming to PtH2. 

For batteries (Figure 9), the diffusion takes place slightly faster 
under the BAU scenario at the beginning of the simulation. This is 
because in this scenario, the price of the electricity coming from the grid 
is higher and thus the self-consumption business model is more 
profitable. With time, the penetration of renewables in the CP scenario 
is very strong and thus the associated installed battery capacity is larger 
than the BAU scenario. As the use case for batteries does not entail the 
substitution of another technology and is therefore not based on a 
comparison with a reference case, GHG emission savings could not be 
calculated. 
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Figure 9. Installed battery capacity, expressed as a fraction of peak demand in the local grid, for the 
BAU scenario and the CP scenario. 

4.2. Sensitivity Analysis 
As shown in Figure 10, the speed and extent of the diffusion of 

flexibility technologies and the PAT offer differ greatly depending on 
technology, scenario and parameter values. For PtH, under the BAU 
scenario, many simulations lead to zero customers until the end of the 
simulation, while some simulations reach a number of 19 customers 
(out of 45 potential customers in the simulated market). Under the CP 
scenario, there are fewer simulations with zero customers, and the 
simulations with the greatest number of customers reach a number of 
28. In some simulations, the onset of customer growth occurs quite late. 
For PtH2, there is barely any customer growth in the BAU case, and 
only in a few simulations in the CP case. But even under this scenario, 
there is hardly any growth in the first 10 simulation years. For batteries, 
the spread between simulations is again rather large, with a substantial 
number of simulations with zero customers under both scenarios, and 
final numbers of up to 19 and 22 customers under the BAU and CP 
scenarios, respectively. 
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Figure 10. Evolution of the number of customers having installed flexibility and subscribed to PAT in 
the 2000 sensitivity runs. The line to the right of each plot shows the kernel density estimate for the 
number of customers at the end of the simulation period (2050). 

The random forest algorithm calculates an estimation of the 
percentage of variance of the dependent variable explained by the 
model (see Liaw and Wiener, 2002). For the meta-models used in the 
sensitivity analysis, these scores are reported in Error! Reference 
source not found.. In most cases, the meta-models explain a large 
percentage of the variance of the dynamic model outputs, meaning that 
they appropriately capture the influence of parameter values on the 
output. However, in the case of PtH2 under the BAU scenario, this score 
is very low, since the number of customers at the end of the simulations 
is zero in nearly all simulations. For this reason, the sensitivity analysis 
was not carried out for this case. 

Table 4. Percentage of the variance of model outputs explained by the random forest meta-models. 

 BAU CPS 
PtH 94.82 % 86.55 % 

PtH2 6.07 % 69.18 % 
Batteries 84.39 % 84.17 % 
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For the presentation of parameter sensitivity scores on Figure 11, 
parameters were divided into two categories: “hard” parameters, 
representing technological and economic factors, and “soft” 
parameters, related to decision-making. This distinction is only 
represented graphically and had no influence on the meta-modeling 
process.  

For PtH under the BAU scenario, the most important parameter is 
𝑓௥௘௡௘௪, the percentage of electricity consumption that can be covered by 
self-consumption of electricity produced on site from renewable 
sources. The next two parameters belong to the “soft” category and 
describe the delay in adoption of flexible technologies (𝐴𝑇௟௢௔ௗ,௥௘௦) and 
the influence of direct marketing by the utility (𝑙஼ோெ). The grid tariff 
reduction factor under the PA offer (𝑓௉஺்) and the annual energy price 
increase (𝑏௘௟) are also somewhat important, while the other parameters 
have little to no influence on model results. Under the CPS scenario, 
while 𝑓௥௘௡௘௪ is still important, 𝐴𝑇௟௢௔ௗ,௥௘௦ becomes the most influential 
parameter. The CO2 tax 𝑃஼ை , which is set to zero in the BAU scenario, 
is also quite influential under CPS. For PtH2, the three most influential 
parameters belong to the “hard” category, i.e. 𝑓௥௘௡௘௪ , 𝑃஼ை  and the 
number of running hours 𝐻௥௨௡௡௜௡௚ . For the “soft” parameters, 
𝐴𝑇௟௢௔ௗ,௥௘௦ is of intermediate importance and 𝑙஼ோெ  has little influence. 
In the case of batteries, there is little difference in parameter importance 
ranking between the two scenarios. Under both scenarios, the most 
influential parameter is 𝑓௉஺் , followed by the maximum energy price 
difference 𝑑௉௘௟,௠௔௫ . Next are the two “soft” parameters 𝐴𝑇௟௢௔ௗ,௥௘௦ and 
𝑙஼ோெ. Lastly, the feed-in tariff 𝑃ிூ் and standard grid tariff 𝑃௚௥௜ௗ,ௌ் are 
of intermediate importance, while the remaining parameters have little 
influence. 
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Figure 11. Parameter importance scores obtained in the sensitivity analysis. The score shown is the 
“Mean decrease in accuracy” indicator of the random forest meta-models. The higher the score, the 
more influence a parameter has on model outputs. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 June 2021                   doi:10.20944/preprints202106.0294.v1

https://doi.org/10.20944/preprints202106.0294.v1


 28 of 38 

5. Discussion 
5.1. Prospective transition analysis  

In this section a transition analysis is presented, based on 
outcomes of the whole project (i.e., literature review, expert interviews 
and simulation results). The analysis focuses on the three areas 
identified by van Waes et al. [27] as particularly important for the 
upscaling of business model innovations under transitions: institutions, 
industry structure and the dynamics of increasing returns. 

5.1.1. Institutions  
The simulations highlighted the decisive role of institutional 

aspects: under current regulatory conditions where electricity is 
strongly charged with taxes and levies, the diffusion of Power-to-Heat 
and Power-to-Hydrogen is very slow. This is consistent with previous 
findings [50], [65], [77]. Here, authorities have a high-leverage point to 
influence the adoption of flexible electrification technologies through a 
CO2-oriented tax reform. Furthermore, the sensitivity analysis showed 
that one of the most influential parameters for the adoption of these 
technologies is the percentage of electricity consumption that can be 
covered by own RES. This suggests that the promotion of electrification 
technologies should go hand in hand with the support of local 
renewables. An additional measure would be to facilitate the use of 
local surplus renewables by reducing its cost and thus avoiding 
curtailment [78]. The relatively low sensitivity of model results to the 
annual energy price increase suggests that these measures would be 
effective regardless of the future energy price evolution. 

There are important differences between technologies regarding 
the influence of environmental factors. For batteries, the simulated 
diffusion is almost independent of climate policy. Indeed, the use case 
selected here – increase of self-consumption combined with arbitrage – 
is already profitable under the current regulatory framework. Also, the 
diffusion of batteries is less sensitive to the fraction of own RES. On the 
other hand, energy price volatility and the level of a feed-in tariff are 
rather important determinants for the self-consumption savings, and 
thus for the profitability of the studied use case. The battery case also 
differs from the two other technologies through the importance of the 
per-capacity grid tariff and the reduction associated with the PA offer. 
These differences show that if a customer can choose between different 
flexibility technologies, their choice may depend on the specific energy 
technology for their plant (e.g. the capacity to generate electricity from 
own sources) and their assumption regarding the future economic and 
regulatory environment. 

5.1.2. Industry structure 
Industry structure refers to the characteristics of the firms offering 

the business model, which in this case is the DSO. Due to the 
monopolistic nature of the DSOs, these entities are subjected to strict 
regulations to ensure non-discriminatory access to the grid for 
customers and producers [79]. Nevertheless, with the large penetration 
of renewables and flexibilities at the distribution level, DSOs are called 
to redefine their role by facilitating the integration of decentralized 
renewables using flexibility resources to avoid the increase of grid cost 
[80]. These new tasks will require major changes in the regulation to 
incentivize DSOs to actively facilitate the energy transition while 
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maintaining their neutrality and transparency [80], [81]. Concretely, 
applying the PA model as an alternative to physical grid expansion 
entails a shift from investments to operational costs, which bears 
financial disadvantages for DSOs under current regulatory conditions, 
due to the mechanisms of grid financing [63,81]. The current regulatory 
framework reflects the role of DSOs in a centralized energy system and 
does not account for their new role, giving them little latitude to offer 
sustainable solutions [81]. The scalability of time-based business 
models such as the one proposed here will largely depend on the 
evolution of the legal and regulatory framework applied to DSOs.  

5.1.3. Increasing returns 
With respect to increasing returns to adoption, there are two 

aspects worth mentioning. The first point refers to the increasing 
returns to adoption of the electrification technology, which is simulated 
in the model using the familiarity effect, a network externality by which 
the adoption of a technology increases when the customer gets more 
exposed to it. As explained in section 3.2.1 in the simulation, the 
familiarity effect is determined by word of mouth and the customer 
relationships. The simulations showed that the customer relationship 
is a very important parameter for the adoption of Power-to-Heat and 
batteries. 

The second aspect refers to the adoption of the PA business model: 
both customers and DSO may possibly benefit from the increasing 
returns to adoption of the PA offer. The more customers adopting, the 
better the forecasts and controllability of the local loads, which in turn 
may reduce the need for grid reinforcement. This could translate in the 
long term to a lower grid cost to the customers. However, due to the 
novelty of the system studied and the complexity of implementation, 
this effect cannot be quantified at present. Although these benefits are 
important for society, they might not be tangible for both actors, 
hampering the scalability of this business model. This is mainly due to 
the already mentioned strict regulations for the DSO, which at the 
moment do not incentivize the use of flexibility to improve the 
efficiency of the grid [81], [82]. 

5.2. Methodical Approach 
This paper developed a methodical framework consisting of the 

tailored integration of forecasting methods for business model 
innovation as a cost-efficient approach for experimentation under high 
uncertainty. Uncertainty in this case stems from two main sources: the 
potential for vastly different but equally plausible future economic and 
regulatory conditions, and a lack of empirical data for model building 
and parameterization. In this study, system dynamics, exploratory 
modeling and a sociotechnical transition framework were used for the 
design and analysis of a novel business model in the uncertain 
environment of the energy transition. First, we used the principles of 
BMI to identify and define new business opportunities for a DSO in the 
changing energy environment. After performing several customer 
interviews and workshops with project partners, the characteristics of 
the new business model were defined. The business model canvas 
(Figure 3) proved to be a useful tool to facilitate the discussion among 
the participants. For the experimentation phase, a SD model was set up 
to evaluate future market development and the prospects of the 
proposed business model under various future economic and 
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regulatory settings. The model building process consists of mapping 
and operationalizing causal relationships between environmental 
factors, economic viability of flexibility technologies and customers’ 
willingness to invest in them. This process yielded insight into market 
dynamics, as information was elicited from different actor groups. As 
the proposed business model was based on technologies that are 
currently rarely implemented and not well known by the target 
customers, there was only a limited empirical basis to build a model of 
the system and select values for parameters. Instead, the simulation 
model was constructed using well-known concepts from the literature 
on technological change, such as familiarity and scarcity effects. Under 
these conditions, a careful assessment of the uncertainties (see below) 
and limitations (see Sect. 5.3.) of the model was necessary.  

Making the various sources of uncertainty explicit and quantifying 
their effect through computational experiments is a way to gain insight 
from a simulation model under high uncertainty [24]. In this study, 
sensitivity analysis had two functions: estimating the uncertainty of 
model outputs arising from uncertain parameter values and identifying 
potential levers of action and sources of uncertainty for the 
implementation of the business model considered. Both types of 
uncertainty contributed to the large spread of model results shown on 
Figure 10. The former function is especially important when no 
historical data is available for model calibration, as in this case. The 
parameters categorized as “soft” on Figure 11 refer to factors that are 
difficult to quantify in reality. They serve as proxy to integrate various 
economic, societal and human factors in the model structure. Two 
“soft” parameters were highly influential: the adjustment time strongly 
influences the adoption of flexible technologies and customer 
relationship management has a great effect on familiarity. As discussed 
in Section 3.2.3, a range of values was obtained from previous studies, 
where similar process formulations were used, but as these studies 
were carried out in different context, their values could not be directly 
transferred. Hence, the range for these parameters had to be kept broad, 
contributing to the spread of model results. Two other intrinsically 
uncertain parameters are the annual increase of energy price and 
maximum energy price difference, which is a measure of energy price 
volatility. The choice of a value for these parameters reflects an 
assumption on the future development of the power market. 

While the sensitivity analysis assesses the uncertainty of model 
outputs due to parametric uncertainty, it does not account for other 
sources of uncertainty, due e.g. to uncertainty in time-varying inputs 
(e.g. technology prices) and in the model formulation itself [83], [84]. 
For a simulation study to be useful, it is crucial to address these sources 
of uncertainty [85]. In this study, this was done by involving actors in 
the model development process and eliciting parameter ranges and 
input values as well as causalities from experts. Also, the selected 
method allows the estimation of parameter importance at one point in 
time only (in this case, at the end of the simulation). Other methods for 
parameter importance assessment, e.g. calculating the correlation 
coefficient between parameter values and outputs, allow an 
examination of how parameter importance changes throughout the 
simulation [86]. On the other hand, the advantage of the random forest 
method applied here is that non-linear relationships between 
parameters and outputs, as well as interactions between parameters, 
are usually well captured by the statistical model. 
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Finally, the diffusion analysis was complemented using the 
sociotechnical framework developed by [27] the increasing returns and 
industrial structure were thoughtfully described and the simulation 
results gave insight about the most important institutional aspects 
necessary to scale up the PA business model.  

While this paper focuses on a specific case in the energy sector, we 
expect that the method presented here can be transferred to other 
business contexts or sustainability transitions. Indeed, system 
dynamics was shown to be a valuable tool to conceptualize the process 
through which firms reconfigure their business models in the context 
of sustainability transitions [87], [88]. With its focus on (deep) 
uncertainty, the method applied here can complement these 
approaches to address the research gap on implementation and 
challenges of new business models (see e.g. Geissdoerfer et al., 2018) 
[17].  

5.3. Limitations of this Study 
The simulation model was developed with the aim of 

understanding the drivers and barriers to the success of the proposed 
business model and assessing the influence of uncertain parameters 
and future conditions. Model structure was deliberately kept simple to 
facilitate participatory modeling and computational experiments, 
following the recommendations of Bankes (1993) [37] and 
Ghaffarzadegan et al. (2011) [39]. Tractability and ease of handling 
come at the expense of completeness and precision. Therefore, the 
model cannot be expected to produce realistic forecasts of market 
dynamics under technological change, and the results from this study 
should not be understood as such. For example, the assumption that all 
customers are identical and can choose only one flexibility technology 
is clearly unrealistic. Rather, the simulation model forms the basis for 
computational experiments, where the outcome is the identification of 
drivers, barriers, leverage points and main sources of uncertainty. For 
the same reason, the two scenarios defined in this study are not meant 
to be complete and fully consistent, but to provide plausible boundary 
conditions for the cost structure for energy use in industrial companies 
under two possible future regulatory environments. 

The use cases studied here only represent a small subset of the 
possible use cases for flexibility technologies. They were selected based 
on the specific needs of the industrial partners who participated in the 
workshops. For example, flexible loads may participate in balancing 
energy markets to generate revenue, or the hydrogen obtained via 
electrolysis may be used as an energy carrier. Also, for each use case, 
the technical specifications (e.g. installed capacity) were treated as a 
given. With different use cases and specifications, the study might have 
reached different conclusions regarding the diffusion of different 
technologies. In addition, the proposed methodical framework needs 
to be tested and probably advanced in other business model 
innovations settings under high uncertainty in order to prove its value 
for practical application. 

6. Conclusions 
This paper presents a tailored methodical framework to assess the 

prospects of innovative business models under high uncertainty, 
applied to a case study in the energy sector. Business model innovation 
methods were used to identify new opportunities for a grid operator in 
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the context of sociotechnical transition to a low-carbon system; system 
dynamics and exploratory modeling approaches were used to assess 
under which conditions the proposed business model is promising and 
a sociotechnical transition framework was used to assess the scalability 
of the business model. . The proposed business model aims at reducing 
the need for grid expansion as the penetration of intermittent energy 
sources increases, by centralizing the management of some industrial 
appliances that have a certain degree of flexibility. In return, customers 
who choose to participate get a preferential grid tariff. A system 
dynamic model was built to simulate the diffusion of three flexible 
electrification technologies, upon which the success of the proposed 
business model depends. Analyzing the model with varying parameter 
values and boundary conditions yielded insights into the sensitivity of 
modeled diffusion to various economic, regulatory and soft factors, i.e. 
to the socio-technical categories of increasing returns, institutions and 
industry structure. These insights were used as inputs for the 
sociotechnical analysis to identify the barriers and drivers for the 
scalability. 

From the institutional point of view, this study highlighted the role 
of energy costs as one of the main barriers for the adoption of flexible 
electrification technologies, as wholesale electricity prices are not cost-
competitive with fossil fuels under current regulatory conditions. 
Policymakers have two important leverage points to overcome this 
barrier: implementing a tax reform on energy carriers by including an 
appropriate price for GHG emissions and increasing the use of 
renewable generation facilities at local scale through measures to 
reduce curtailment. Also, this study highlighted the importance of 
customers’ perception of the benefits and risks of new technologies, as 
a lack of information or a negative perception can greatly slow down 
the diffusion of these technologies even if they are profitable. Therefore, 
it is crucial for DSOs to know customers’ concerns regarding 
electrification technologies and load management and ensure that they 
are addressed by the offered products: for distribution system 
operators, an important insight is that under a more stringent climate 
policy, the diffusion of electrification technologies will likely be faster. 
This means that new electric loads will be attached to the grid. To 
reduce grid expansion costs, DSOs should be prepared to offer new 
incentives to promote flexibility services, such as the grid cost 
reduction in the proposed business model. Finally, utility companies 
and technology developers should start offering new complementary 
business model to ensure the profitability of flexible electrification 
technologies and to reduce their dependency on external factors. 
Nevertheless, it is also important to recognize that the ability of DSOs 
to offer innovative business models largely depends on the definition 
of their new role and thus the change in their regulatory framework 
(see below). 

The purpose of combining business model innovation, system 
dynamics and exploratory modeling is to understand under which 
circumstances a proposed business model is promising, to identify 
what coordinated action should be taken to create favorable conditions 
for a business model, and to find out where more information and 
knowledge are most urgently needed. A strength of this method is that 
it enables business model experimentation at low cost, explicitly 
accounting for uncertainty regarding market dynamics and future 
economic and regulatory conditions. Also, complementing this 
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approach with a sociotechnical perspective enables the identification of 
the necessary contextual changes that enable innovative business 
models to make large changes in the system and thus trigger the 
transition. To ensure the diffusion of flexible electrification 
technologies, such changes are a carbon-oriented tax reform, increased 
support of decentral renewable power generation and optimization of 
local renewable power use. Furthermore, the specific solution studied 
here is dependent on regulatory changes allowing the use of currently 
reserved redundant grid capacity for flexible loads and incentivizing 
DSOs to offer flexibility solutions. 

Where there is little empirical basis for model building, insights 
from previous studies and theory on technological change can be 
leveraged to represent processes in a plausible way. We suggest 
applying this approach in further business model innovation contexts 
and to improve the interplay between business model innovation, 
system dynamics and sociotechnical research. 

Supplementary Materials: Sections S1: Definition of use cases for flexible electrification technologies; S2: Utility 
functions in the system dynamic model; S3: Scenario definition.  
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