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Abstract: Energy harvesting from wind turbines has been explored by researchers for more than a 

century from conventional turbines up to the latest bladeless turbines. Amongst these bladeless tur-

bines, vortex bladeless wind turbine (VBT) harvests energy from oscillation of a turbine body. Due 

to the novelty of this science and the widespread researches around the world, one of the most 

important issues is to optimize and predict produced power. To enhance the produced output elec-

trical power of VBT, the fluid-solid interactions (FSI) were analyzed to collect a dataset for predict-

ing procedure. Long short-term memory (LSTM) method has been used to predict the produced 

power of VBT from the collected data. The reason of choosing LSTM from various artificial neural 

network methods is that the parameters of VBT study are all time- dependent and the LSTM is one 

of the most accruable algorithms for predicting time series data. In order to find the relationship 

between the parameter and the variables used in this research, a correlation matrix was presented. 

According to the value of 0.3 for the root mean square error (RMSE), a comparative analysis between 

the simulation results and its prediction shows that the LSTM method is very accurate for these 

types of research. Furthermore, the LSTM method has significantly reduced the computation time 

so that the prediction time of desired values has been reduced from an average of 2 and a half hours 

to two minutes. Also, one of the most important achievements of this study is to suggest a mathe-

matical relation of VBT output power which helps to extend it in a different size of VBT with a high 

range of parameter variations. 

Keywords: Computational fluid dynamic; Long short term memory; Vortex bladeless wind turbine; 

Prediction; Correlation matrix. 

 

1. Introduction 

These days, global warming due to the environmental pollution caused by fuels, is 

one of the crucial issues of development countries [1]. Hence, using renewable energy 

devices as an energy converter has become common recently. The prevalent renewable 

energy sources such as wind power, ocean wave power, biomass power and photovoltaic 

power [2]. One of the most accessible sources of the sustainable energy among introduced 

sources is wind power. Several projects have been done in a large-scale to utilize these 

sources all over the world [3]. Although the conventional wind turbines are so costly and 

have a bad environmental effect [4], researchers have been founding a way to design a 

type of turbine which is cheap and economical [5]. This important issue inspired engineers 

to excogitate a vortex bladeless wind turbine (VBT) [6].  

VBT is one of the newest bladeless turbines proposed by researchers, which is the 

beginning of a great revolution in this industry. This type of turbine does not have the 

problems of the previous generation turbines, so to optimize VBT [7], many researchers 

around the world have started experimental and research studies. Antony and Boucher 

[8] have studied the effective parameters on the output power of the bladeless turbine. 

They showed that for higher and lower wind speeds, the turbine vibration parameters are 
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constant. The results of numerical solution of the equations demonstrate that high ampli-

tudes occur only in vibration resonance. Sassi et al. [9] have utilized discrete element 

method with immersed boundary method to solve Navier-Stokes equations. By analyzing 

different vibrational parameters and solving differential equations by Runge-Kutta 

method, they have concluded that the efficiency values are between 20% and 30% in lock-

in range. Gautam et al. [10] performed numerical analyses on the electrical part and the 

production of turbine power without blades using commercial software. They found that 

the design of an electromechanical conversion system was essential to achieve the maxi-

mum electrical output for a given vibration frequency. They concluded that the different 

field settings with respect to the coil are crucial for the use of electrical power. Moradi 

Gharghani et al. [11] have studied the effect of dimensionless Reynolds number on the 

body oscillation. They concluded that there is a unique Reynolds number for which the 

frequency of the vortices is equal to the maximum frequency of the turbine oscillation and 

the maximum power happens . Among these studies, the relationship between the multi-

physic parameters, i.e. wind flow velocity in an oscillation amplitude and frequency, wind 

flow velocity in output power, drag force in an oscillation amplitude and frequency, has 

not yet been clarified, so it is not evident which one is significant in these kinds of simu-

lations.  

Due to the attractiveness of this issue for investors in the field of renewable energy 

around the world [12] and the significant progress of this type of turbine by experts in this 

field, it is necessary to conduct more extensive studies on various aspects of this project, 

to expand these turbines in help around the world. One of the most important areas that 

can be mentioned for the optimization of VBT is to maximize the production power. 

Therefore, in order to use the effective parameters on the output power optimization 

which has not been studied so far, it is necessary to form a new study.  Accordingly, this 

study discussed on how to estimate the power output and mitigate the effective parame-

ters on its efficiency are two essential issues in the VBT improvements. 

Investigation of the effects of fluid and solid parameters in the analysis of the fluid-

solid interactions (FSI) on the output power of VBT can be done by solving the coupled 

equations by computational fluid dynamics (CFD) commercial software. In order to pre-

dict the optimal amount of generated power, it is necessary to use new methods that have 

recently been introduced in the field of predicting the amount of electricity generated by 

energy systems [13], especially wind turbines. In these fields, especially utilizing the out-

put power from wind energy systems several studies were done. Some researchers stud-

ied  an advanced constructed data-driven model for predicting the output power by us-

ing the neural network algorithm [14]. The output power of VBT varies with different 

parameters i.e. wind flow velocity, rod deflection (oscillation amplitude) and exerted drag 

force [15]. Therefore, it is crucial to design a suitable algorithm to develop the prediction 

model. The latest modified method of predicting this type of system is the use of artificial 

intelligence (AI) [16]. One of the most well-known methods is LSTM [17], and many stud-

ies have been performed on this method in optimizing the prediction of output power 

from wind turbines which is produced by wind turbines in different areas with different 

geographical properties. Yang et al. [18] have conducted studies on wind power predic-

tion that used the LSTM method for predicting the desired data. They compared the pre-

dicted power tables with the available data on the actual turbine power output measured 

in the wind farm. Wu et al. [19] have studied the effective parameters in optimizing the 

output power of wind turbines and compared the results with the experimental data avail-

able in the wind farm in China. They concluded that the LSTM method can accurately 

detect values, and that this method is very accurate and fast, and is more efficient at pre-

dicting values than other existing methods. Meka et al. [20] have analyzed the information 

of turbines of a power plant for this research and by drawing diagrams that predict the 

parameters by LSTM method, they concluded that it is one of the best and most efficient 

methods in this field. According to the latest studies in this field, it can be concluded that 

the LSTM method is one of the best methods for VBT analysis, which is one  type of wind 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 June 2021                   



 

 

turbines. The innovation in this research can be justified by the fact that the use of this 

method in wind turbines without blades has not been mentioned in an article.  

To the best of our knowledge, this is the novel study that combined the two-way 

FSI  done by CFD method based on finite element method and its results as a numerical 

data were used in the LSTM algorithm to have a prediction in produced electrical power 

by input variables.The novelties of the recent research are; 

• The multi-physics numerical analysis in the form of the fluid solid interactions is pro-

posed for the first time by analyzing vortex bladeless wind turbines into the compu-

tational fluid dynamic space, which completely demonstrates the fluid parameters of 

the airflow and can perfectly combine with the most applicable algorithm of deep 

neural network. 

• The long short term memory method is reasonably utilized to predict output electri-

cal power for the first time based on the numerical simulations which can predict the 

wind power of a vortex bladeless wind turbine. Also, by suggesting a mathematical 

relation of generated power, much can be done to help the bladeless wind turbine 

industry to predict output power with less time and cost. 

2. Materials and Methods 

The VBT is a flexible cylindrical structure which oscillates in a fluid flow [21]. The 

special type of the VBT  1 meter high was studied in this research [7]. Not only does this 

special design lack any blades for a rotational movement, but it also  has a mast part for 

oscillating in any direction [22,23]. The vortex shedding phenomenon exerts lift force 

which causes the structure oscillation to fluctuate crosswise. Using the effect of vortex 

induced vibration (VIV) phenomenon in an energy harvesting procedure helps to convert 

fluid energies to the output electrical power by aero-generator. The aero-generator system 

contains group of moving magnets on a fixed coil which uses Faraday law of an electro-

magnetic induction [24]. Figure 1 presents the structure of VBT.  

 

 

 

            Figure 1. the schematic view of a VBT 

As shown in Figure 1, the VBT structure has three main parts that are fixed together:  
1. Cylindrical mass made of glass fiber (Part1) [7]. 

2. flexible rod made of reinforced carbon fiber that is fixed to part1 (Part2) [7]. 

3. Special cover that anchors the carbon fiber rod to the foundation (Part3) [7]. 

The purpose of the light weight cylindrical mass that is connected to the flexible rod 

is to harvest energy by converting the mechanical energy to electrical form of energy. 
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2.1 Governing Equations 

The governing equation is based on assumptions that the air-flow is two-dimen-

sional, steady and incompressible with constant properties considered in 20℃ [25]. 

The two-dimensional continuity equation of fluid is shown as Eq.1 [26]. 

    
u

0
x y

 
+ =

 
                                                                 (1) 

Where u and v are the wind velocities in x and y directions. In this research, the z-

direction velocity (w) was neglected because the VBT doesn’t have any vibration in this 

direction. 

The momentum equations in x and y directions are presented as Eq.2 and Eq.3, re-

spectively [26]. 
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2.2 Computational domain and Boundary conditions 

In recent research, the FSI analysis was done by using the transient wind flow as the 

input. Inlet velocity is considered to have two dimensional variables, and the pressure is 

assumed constant in the inlet and outlet. Based on these assumptions, the viscosity of the 

air flow varies with Reynold’s number which ,in turn , is a function of different VBT di-

ameters and wind velocity. Related to the input wind velocity, the maximum Reynolds 

number is 1 ∙ 1 × 105. By considering this maximum value, the flow is assumed to be lam-

inar before having interaction with VBT. When interactions between air flow and VBT 

happen, the vortex shedding street will change the flow regime to turbulent. 

The domain walls are constrained as no-slip boundary condition, but the fluid-struc-

ture interfaces are assumed to be slip wall. The study boundary conditions and dimen-

sionless parameters are presented as in Figure 2. The width and the length of the domain 

are W and H. The upstream distance of the computational domain is designated by W1 

while the downstream distance is designated by W2. 
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Figure 2. The schematic view of dimensionless parameters and boundary conditions 

2.3 Mesh generation and grid independency 

Mesh generation analysis essentially acquired the number of a sufficient mesh for 

purposed study.  

Moreover, three different mesh numbers were generated to simulate a VBT which is 

presented as Table 1. 

            Table 1. The information about mesh generation 

Minimum grid size 

(m) 

Simulation time Number of elements Accuracy of oscillation ampli-

tude 

 

0.01 34M 16S 19921 85% 
 

0.005 2H 34M 7S 55848 93% 
 

0.001 5H 54 M 10S 2244300 94% 
 

 

As presented in Table 1, the number of grids increasesin computational domain in 

order to increase the accuracy of the numerical simulation. The criterion to select a mini-

mum grid size is to have a high accurate answer due to the least simulation time. Three 

different triangular type mesh sizes are utilized as given in Table 1. Based on the least 

simulation time criterion, the 0.05 m grid size with 55848 number of element and about 2 

hours and 34 minutes run time is selected [27]. One of the parameters selected to evaluate 

the accuracy is the oscillation amplitude. Because the accuracy of the selected grid size is 

as high as the minimum one, the 55848 elements were selected because of the low calcu-

lation time and cost. 

2.4 Energy conversion between fluid and structure 

Energy conversion in wind turbines has the general meaning of converting the wind 

mechanical energy to output electrical energy. In VBT systems, the wind mechanical en-

ergy converts to output electrical energy by using the body vibration. Figure 3 depicts the 

schematic of the simplified VBT model which is considered as a simple spring-damper 

model. 

 

          Figure 3. The simplified vibrational system of VBT 

 

Where “m”, “k”, “c” and F are the mass of the vibrational parts of VBT, the structural 

stiffness and the wind force which causes the VBT to vibrate, respectively. The general 

structure vibration equation presented in y-direction is as follow [28]: 
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    ( , , )fluidmy ky cy F x y t+ + =                                                     (4) 

The direction of vibration of the VBT is perpendicular to the direction of the wind. 

The wind flow is presented in x-direction to simplify the equations. Respectively, another 

direction will be analyzed the same. The force exerted by the fluid is determined as follow 

[29]: 

   
2 21 1ˆ ˆ( , , ) ( ) ( , , ) i ( ) ( , , )

2 2
fluid d dF x y t u Dl C x y t Dl C x y t j = +                     (5) 

Hence, the inlet velocity assumed variable with time and the interfaces of the VBT 

are same in different direction because of the symmetric shape of the cylinder where 𝜌 is 

the flow density and is constant, D is the VBT bigger diameter and l is the VBT height. 

Due to symmetrical shape of the cylinder, it can be proven that the VBT interfaces are 

same in all direction. Therefore, the vibration is independent of the wind flow direction. 

𝐶𝑑(𝑥. 𝑦.𝑡) is the drag coefficient as is given by a harmonic equation which presents as Eq.6. 

 ( , , ) ( , )sin( )d dC x y t C x y t = +                                                   (6) 

This equation is considered as a harmonic one , so we have the sine term inside it. 𝜑 

is the phase angle and 𝜔 is angular velocity which is larger than regular frequency f by a 

factor of 2π. 

      2 f =                                                                          (7) 

Where 𝑓 is the flow frequency. By substituting Eq. 6 in Eq. 5, the Eq. 8 is obtained 

[28]. 

 
2 21 1ˆ ˆ( , , ) ( ) ( , )sin( ) i ( ) ( , )sin( )

2 2
fluid d dF x y t u Dl C x y t Dl C x y t j     = + + +      (8) 

 

 

VIV is a phenomenon that occurs with coupling between vortex shedding and struc-

tural vibration. Figure 4 presents the schematic of the VBT, the two-way fluid-solid inter-

actions and the vortex shedding effect [29]. 

 

 

 

 

Figure 4. The schematic of two-way effect of vortex induced vibration 
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The vortex shedding by vibration is a phenomenon that occurs when fluid interact 

with the vibrational structural and is a function of Reynolds number. The coupled two 

equations of the VIV phenomenon describing the effect of wind flow on the VBT struc-

tures and vice versa are as follows [30]: 

                
2 21 1ˆ ˆ( ) ( , )sin( ) i ( ) ( , )sin( )

2 2
d dmy ky cy u Dl C x y t Dl C x y t j     + + = + + +  

     2 2( 1)f fq q q q Ay + − + =                                                   (9) 

Where 𝜔𝑓 is the vorticity angular velocity and q is the strength of the vortices behind 

VBT. Eq.12 shows the strength of the vortices. 

              

0

12
l

c
q

c
=                                                                     (10) 

𝐶𝑙 and 𝐶𝑙0 are the lift coefficient and constant amplitude. 

It should be noticed that the VIV phenomenon depends on some different structural 

and fluid parameters such as the flow velocity to the structure stiffness. Hence, replacing 

the experimental value of some parameters can help to simplify the procedure of these 

coupled equations [31]. 

The system of non-linear and differential coupled equations of solid and fluid was 

solved by the 4th order Runge-Kutta method by commercial software.  

2.5 Energy harvesting 

One of the main parts of this research is numerical analysis of harvesting electrical 

energy from the VBT vibration while wind flows in a domain. To gain this purpose, the 

Faraday law of induction is used in order to help determine the electrical energy harvested 

from the VBT vibration. The mechanical power absorbed by the VBT (Pwind), and the 

produced electrical power (PVBT) are as follows, respectively [32]: 

         VBT windP P=                                                             (11) 

 

         
31
(2 )

2
VBTP u y D l = +                                                  (12) 

2.6 Machine Learning method  

One of the essential goals in AI methods is to design an algorithm for building a 

relationship between input and output data. By utilizing the numerical analysis, the da-

taset was imported to the AI algorithm to then predict the output parameters. 

The selected algorithm for recent study was Long Short-Term Memory (LSTM). 

LSTM is one of the Deep Neural Network (DNN) methods applicable for detecting differ-

ent types of time series data [33]. It fundamentally uses a multilayer neural network to 

learn a time series relationship between the input and output parameters [34]. The data 

which is accumulated from the sensors in experiments and simulations are time -depend-

ent , so LSTM is the best algorithm for predicting output data [35]. Hence, this algorithm 

has a feedback connection unlike other neural networks. In other words, LSTM is practical 

for the applied architecture in long term dependencies. 

The data accumulated from the sensors in experiments and simulations are time de-

pendent , so LSTM is the best algorithm for predicting output data. To store the data in-

formation which is used in the long-term storage in hidden layers, the “cell-states” were 

introduced. As presented in Eq. 15 and 16, 𝑓𝑡 and 𝑖𝑡 introduce the forget and input gates 

for controlling the input and output of each cell-state [36]. 
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             1( .[ . ] )t f t t ff g W h X b−= +
                                            (13) 

             1( .[ . ] )t i t t ii g W h X b−= +
                                             (14) 

 

Where the function 𝑔 introduces a non-linear sigmoid function which is used during 

activating procedure. f and i indexes show the forget and input parameters, 𝑊 and b in-

troduce the weight matrix and bias function, ℎ𝑡−1 shows the output vector of the last time 

step and 𝑋𝑡 presents the input vector of the current time step.  

To gain the input the current state, Eq. 17 presents the relation. 

             1tanh( .[ . ] )t c t t cC W h X b−
 = +                                          (15) 

In this equation, c index shows the current state of each parameters. Eq. 18 obtains 

the current cellstate, which is considered as using both of forget and input gates [36]. 

             
1t t t t tC f C i C−

=  +                                                 (16) 

By using the output gate of each cell-state as shown in Eq. 19, the output of long 

short-term memory is presented as Eq. 20. 

             1( .[ . ] )t o t t oO g W h X b−= +                                             (17) 

o index shows the cell-state output parameters. 

             tanh( )t t th O C=                                                     (18) 

Figure 5 shows the cell-state of the LSTM method in predicting the produced power 

of VBT. 

 

Figure 5. The long short-term memory diagram of a cell-state 

In this figure, different operators are indicated as numbers 1-7. Each number demon-

strates the different state of data which is shown as Table 2. 

        Table 2. The definition of different signs on Figure 8 

Number Definition 

1 Forget some cell content 
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Different training steps based on LSTM neural network are as follows [37]: 

1. The t-1 time data feature is input to the input layer, then the output goes to the main 

cell of time and finally after calculations the output of t-time cell goes into the last cell 

which is called t+1 time cell. 

2. The output data of hidden neuron layer comes from the input, forget and output gates 

of each cell. 

3. The output results are formed by selecting between output LSTM nodes in the last neu-

ron layer. 

4. The error is back -propagated during the updating procedure of weight functions. 

In this research, 5 hidden layers were selected , containing 10 neurons within the first 

layer. The epoch size is 200 and walk-forward validation method were used. The back 

propagation algorithm was utilized for administrated learning technique. Hence, the 

quantity reduction procedure of the input data was done by Mahalanobis distance (MD) 

method to reduce the training and prediction time of the whole network [38]. Then, the 

data collected from numerical analysis would be compared with the predicted data from 

LSTM method. Finally, the residual signal is applied on a detection step of the occurrence 

of faults. 

 

 

 

3. Results and discussion 

In the present research, the numerical solutions were done to collect data for using 

in the LSTM algorithm. The selected dataset contains the data of 200 seconds of VBT sim-

ulation in flow. However, the electrical output power was calculated by utilizing a relation 

of the generator output power. The datasets have fewer data stores than expected in a case 

of the real industrial problems.  

Due to the comparability of this study, it was preferred that the simulation results 

and the LSTM predictions are presents in the same figure for each studied parameter. In 

order to find the relationship between the parameter and the variables used in this re-

search, it was necessary to use a correlation matrix. In this matrix, each row and column 

represents a parameter and each element of the matrix represents a graph that shows the 

relationship between them shown as in Figure6. Testing time, wind flow speed (m/s), drag 

force (N), the VBT vibration amplitude (m) are the parameters analyzed in a correlation 

matrix and expressed in a value between 0 to 1. 

2 compute the forget gate 

3 compute the input gate 

4 compute the new cell content 

5 compute the output gate 

6 output some cell content to the hidden state 

7 write some new cell content 
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Figure 6. The correlation matrix of different parameters. 

As shown in Figure 6, this matrix shows the relation of different quantities with heat-

map visualization. It demonstrates the magnitudes with colors from lighter to darker one. 

The lighter color shows the best relation so it is easy to infer that the prediction procedure 

finds a good relation between time and output power. 

The results of data prediction are presented by graphs. Figure7 shows the scatter plot 

of predicted magnitudes. It should be noticed that the positive magnitudes of wind flow 

speed and drag force have been evaluated by numerical solutions but the AI method has 

predicted both negative and positive values. Also, Fig. 8 shows the linear regression of 

the correlation scatter data. This figure is the same as Figure 8 but the points are connected 

with the best fitting line. 
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Figure 7. The overall figures of different parameter’s correlations. 
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Figure 8. The overall figures of different parameter’s correlations.  

Figure 8 presents a gradient descent of different variables by optimizing the cost 

function. These charts show how the answers are optimized to find the best fit ones. To 

evaluate the effectiveness of the prediction method, the numerical analysis data which is 

collected from the FSI simulation of VBT has been compared with LSTM method results. 

The Mahalanobis distance parameter is a combination of produced electrical power, wind 

flow velocity, amplitude and drag force as an algorithm input dataset. The statistical de-

tails of count, mean, and standard deviation of the generated power are shown in Table 

3. The mean and median magnitude of generated electrical power are 1.2 and 0.38 w which 

are related to the information about VBT [33]. 
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Table 3. Statistical descriptions of numerical solution 

Name Power (kw) 

Count 200 

Mean 1.242593 

Standard Deviation 1.669378 

Minimum 0.00 

25% 0.023927 

Median (50%) 0.382359 

75% 1.934792 

Maximum 6.364972 

Figure 9 describes the output electrical power curve from VBT. It presents that the 

power is the third order function of the input wind flow velocity in the range of 0 to 10 

𝑚/𝑠. Hence, producing the electrical power in this special type of wind turbine starts from 

the low value of velocity. It should be noticed that the accuracy of prediction modeling is 

not only investigated by modeling parameters, but also by the way of input selected var-

iables is an important issue. In other words, another important factor which can impress 

the produced power is an oscillating amplitude. In this figure, the validation was done 

and it shows the good agreement. Furthermore, the respective equation is shown on 

curve. 

 

 

Figure 9. The effect of increasing the wind flow velocity on produced power 

Suggesting a mathematical relation between VBT output power and time is one of 

the novelties of recent research which can be introduced as Equation 21. This equation 

consists of 180 generated data curve fittings during the LSTM analysis. 

 

3 2 0 / 0103 0 / 067 0 /1522 0 / 0803P t t t= − + −                                         (19) 
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Figure 10 presents the effect of changing the amplitude of vibration on output elec-

trical power. It shows that the generated power has the same magnitude for both negative 

and positive values of VBT deflection. 

 

Figure 10. The effect of increasing the produced power on amplitude of vibration 

In this case, Figs. 11 to 13 present the effect of the named parameters on each other. 

 

Figure 11. The effect of increasing the wind flow velocity on amplitude of vibration 

As shown in Figure 11, the amplitude of the vibration which is caused by the rod 

deflection increases by increasing the wind flow velocity. The analysis demonstrated all 

of the parameters change before the lock-in range (10 m/s). As expected by considering 

the other studies [36], the amplitude of vibration increases to gain 0.0023m at a tip of the 

VBT. By having comparative analysis of this figure, the predicted values of vibration am-

plitude are so close to the numerical analysis and it proves that the LSTM method is an 

accurate one in predicting problems. 
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Figure 12. The effect of increasing the produced power on drag force 

 

Figure 13. The effect of increasing the wind flow velocity on drag force 

As demonstrated in Figure 12, power is the second order function of the drag force. 

Also, the effect of the wind flow velocity on the exerted drag force was studied in Figure 

12. These values obtained from LSTM methods ,presented in discussed figures, were com-

pared with the results of the numerical investigations carried out by CFD-FEM method. 
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According to the comparative analyses  

performed for the important parameters in this research, it is possible to understand the  

performance of the artificial intelligence method by using the concept of root mean square 

error (RMSE) [22]. Five comparative relationships are explained here as shown in Table 4. 

      Table 4. The accuracy of LSTM model 

Table 4 proves that there is a good agreement between numerical and artificial intel-

ligence method and it can be concluded that the artificial intelligence method is so accu-

rate and fast. 

5. Conclusions 

In this paper, a novel machine learning prediction model of the VBT power based on 

LSTM has been investigated. The dataset has been collected from a numerical analysis 

which was done by CFD with finite element method in a field of FSI. The best number of 

grids was chosen for purposed simulation and the calculated generated power was vali-

dated with the other study. Hence, different effective parameters which can affect the pro-

duced electrical power of VBT have been investigated. The variation of produced electri-

cal power of VBT was studied with changeable parameters through two different solution 

methods. It has been proved that the vibration amplitude increased with the increasing 

wind flow velocity up to the wind velocity received to 10 m/s which is a lock-in phenom-

enon. This particular point is where the maximum power output produced by  

this type of turbine occurs. For this reason, engineers and researchers in this field are try-

ing to design this type of turbine so that the maximum vibrations of the VBT structure 

occur in this particular interval. In this study, the lock-in range occurs at a speed of 10 

meters per second and the amplitude of the oscillation at this speed is about 0.0025 meters. 

According to these concepts and studies, the power at this particular point is about 5 

watts.  

In this study, two different methods were compared and the main goal of this re-

search is to have a comparative analytical solution for simulating the VBT through pre-

dicting the power. The prediction procedure has been done by using different effective 

parameters based on derived LSTM algorithm. The correlation matrix presents the rela-

tion of different parameters. By utilizing the RMSE value, it has been shown that they 

were in a good agreement with the results of the numerical analysis. For comparative 

analysis between two methods, RSME value of the parameters was calculated and the 

mean value was obtained to be 0.3. This value proves the very high efficiency of this 

method in predicting the desired values. The use of this new, fast and cheap method 

causes the study and industrial work in the field of bladeless wind turbines to be done 

with much higher accuracy than numerical methods. 

This section is not mandatory but may be added if there are patents resulting from 

the work reported in this manuscript. 
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Input Variables RSME Value 

Amplitude in x direction, Power Output 0.18 

Amplitude  in x direction, Wind Speed 0.20 

Drag Force, Power Output 0.43 

Drag Force, Wind Flow Velocity 0.41 

Wind Flow Velocity , Power Output, Drag Force and Amplitude in x 

direction 

0.305 
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