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Abstract: In this paper, we propose a new methodology for crack monitoring in concrete structures. 

This approach is based on a n this paper, we propose a new methodology for monitoring cracks in 

concrete structures. This approach is based on a multi-resolution analysis of a sample or a specimen 

of the studied material subjected to several types of solicitation. The image obtained by ultrasonic 

investigation and processing by a dedicated wavelet will be analyzed according to several scales in 

order to detect internal cracks and crack initiation. The ultimate goal of this work is to propose an 

automatic crack type identification scheme based on convolutional neural networks (CNN). In this 

context, crack propagation can be monitored without access to the concrete surface and the goal is 

to detect cracks before they are visible on the concrete surface.  The key idea allowing such a per-

formance is the combination of two major data analysis tools which are wavelets and Deep Learn-

ing. This original procedure allows to reach a high accuracy close to 0.90. In this work, we have also 

implemented another approach for automatic detection of external cracks by deep learning from 

publicly available datasets. 
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1. Introduction 

To say that concrete is the most widely used man-made material in the world is a no-

brainer. Nevertheless, the search for simple, effective and inexpensive techniques to opti-

mize the performance of concrete and to control its mechanical behavior is the real chal-

lenge we must meet. In the interests of safety and economy, methods for predicting the 

performance of concrete structures over the long term (e.g. decades) are in great demand, 

especially in developing countries. Mechanical overload is one of the most frequently 

cited reasons for damage to concrete. However, other equally devastating factors will be 

mentioned in this work. Micro-cracks (see, for example, Figure 1 a)) can be caused by ex-

cessive mechanical stress, even if this stress is confined to a restricted area. If such stress-

overload continues, cracks will continue to form and/or expand, which could lead to ex-

cessive damage or even mechanical collapse of the structure. For this reason, crack moni-

toring is crucial to ensure long-term viability. In current engineering practice, this moni-

toring is performed by regularly measuring the crack openings at the surface using optical 

measurements or extensometers. Based on these observations, it is now known that inter-

nal damage can lead to leakage or corrosion on large walls, even when only limited cracks 

are visible on the surface. It is therefore essential to be able to assess and monitor cracks 
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in reinforced concrete constructions at an early stage, especially in special constructions 

where durability and containment can be significant issues.  

Concrete is a mixture of four main materials: Portland cement, coarse aggregate, fine 

aggregate and water, and for industrial use, mineral and chemicals admixtures are added 

to accelerate or delay its grip to improve its performance [1, 2]. The quantities of these 

elements are regulated for a quality required by the destination of the structure’s con-

struction, such as long span bridges (see Figure 1 b)), special underground structures (see 

Figure 1 c)), nuclear power plants (see Figure 2). An excess or defect in the required quan-

tity of one of the constituent elements, inappropriate vibration of the initial mixed ele-

ments causes defects such as segregation or premature cracks due to shrinkage of the con-

crete and the presence of air bubbles causes discontinuities in the material (see Figure 1). 

   

a)  b) c) 

Figure 1. Examples of cracks in concrete: a) Typical micro-cracking; b) Conventional inspection of 

bridge cracks; c) Cracks along a slab in a mall. 

 

Figure 2. Nuclear power plant: reactor meltdown. 

These defects affect the strength of concrete and its durability [3]. Exposed to aggres-

sive environments or temperature variations, visible and non-visible defects appear, its 

quality and resistance decrease. Under compressive stress, this material behaves well, un-

like tensile stresses. In a concrete specimen subjected to compressive stress, the constraints 

are concentrated on rigid elements with an appreciable modulus of elasticity. Since this 

material is heterogeneous, an external load creates a complex state within it and a concen-

tration of stresses around air voids [4]. 

There is a wide variety of methods for evaluating materials or components and non-

destructive methods are an important category with multiple applications. The field of 

non-destructive evaluation (NDE) or non-destructive testing (NDT) [5] involves the iden-

tification and characterization of damage to the surface and interior of materials without 

cutting or other alteration of the material. In other words, NDT refers to the process of 

evaluating and inspecting materials or components for characterization [6, 7] or searching 

for defects and flaws in relation to certain standards without altering the original attrib-

utes or damaging the test object. NDT techniques provide a cost effective means of testing 

a sample for individual investigation or can be applied to the entire material for verifica-

tion in a production quality control system. Thus, NDT is the set of methods that can char-

acterize the state of integrity of structures or materials without degrading them (without 
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altering their function in use). The development of NDT methods began around 1960-1970 

to meet the demands of sectors such as nuclear energy, aeronautics and space. NDT grad-

ually widened its field of application, moving from the strict field of detection, recognition 

and dimensioning of localized defects to the evaluation of the intrinsic characteristics of 

materials. The notion of defect (or fault) is defined according to the use that will be made 

of the product (satisfaction of the final customer). NDT methods can be applied to the 

same elements and structures several times and at different times. These methods are suit-

able whereby such methods are suitable for diagnostic testing of building structures, both 

during their construction and during their many years of service.  

Detection of cracks is an important task in monitoring the structural health of con-

crete structures. If cracks develop and continue to propagate, they reduce the effective 

load bearing surface area and can over time cause failure of the structure.  

For this reason, non-destructive testing of concrete now has two main objectives: to 

detect micro-cracks at an early stage and to monitor stresses in the structures [8, 9].  

The main objective of this work is to propose a new approach for the detection of 

structural cracks in concrete using an ultrasonic non-destructive testing system to scan the 

concrete and an original methodology based on multi-resolution analysis and deep learn-

ing. 

The remainder of this paper is organized as follows:   

Section 2 is devoted to the foundations of our approach:  

- it presents and recalls NDT methods and techniques as well as the experimental set-

up used,  

- it introduces the main properties of the wavelet transform and the corresponding 

multiresolution analysis,  

- it recalls the foundations of neural networks and CNN-based Deep Learning and 

proposes the adopted architecture to build a classifier for detecting internal cracks from 

the obtained spatial-scale images. 

Section 5 focuses on the implementation aspect and the analysis of the results.  

Finally, Section 6 concludes this study. 

2. Materials and Methods 

2.1. NDT Methods 

The most commonly used NDT methods and techniques [10] are optical NDT [11], 

ultrasonic NDT [12], acoustic emission testing [13], radiographic NDT [14,15,16], eddy-

current testing [17], electromagnetic NDT [18], laser systems [19], sclerometric [20] and 

thermographic [21] methods for evaluating the durability of concrete structures by contact 

and non-contact. Figure3 shows the main NDT techniques for concrete structures. 

NDT methods are the most desirable and developed methods of concrete diagnosis. 

A distinction can be made between the stroke method, electrical methods, visual evalua-

tion and acoustic methods. The latter are also called wave methods, based mainly on the 

analysis of the propagation of ultrasonic waves [22, 23]. Acoustic methods can be divided 

into passive methods, in which the source of the waves is only a construction with chang-

ing load (the acoustic emission method), and active methods of sending and receiving 

ultrasonic waves. Currently, active methods are not as well developed and tested, so they 

can be widely used in the field and in most cases require access to two (opposite) sides of 

the test element or knowledge of its exact dimensions. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 June 2021                   doi:10.20944/preprints202106.0194.v1

https://www.mdpi.com/2079-9292/8/1/88/htm#sec5-electronics-08-00088
https://doi.org/10.20944/preprints202106.0194.v1


 

 

 

Figure 3. NDT methods and techniques for concrete structures. 

Figures 4 and 5 show the devices used experimentally to determine the presence or 

absence of cracks in concrete subjected to compression. The ultrasound device used is a 

Pundit L200 from the company Proceq. The press used is a 3R monobloc compression 

press with a capacity of 2000 kN to 3000 kN adapted to specific tests on concrete specimens 

of cylindrical shape. The test specimen is of standardized dimension, cylindrical in diam-

eter 16 cm and height 32 cm. Its weight is 15 kg. The test specimen is over 90 days old. The 

charging speed is 0.05 Mpa / second. The signal transit time varies from 32.3 to 71.4 mi-

croseconds when the compressive force varies from 0 to 470 kN. 

 

Figure 4. Experimental set-up: ultrasonic non-destructive testing (NDT) 
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Figure 5. Ultrasonic NDT during compression of a concrete specimen. 

The originality of our work lies in the fact that we use, on the one hand, the ultra-

sound-based NDT method to identify possible cracks and, on the other hand, this method 

is combined with a multi-resolution analysis based on wavelets to finely analyze cracks 

and their size at different scales, especially at the beginning of the concrete cracking pro-

cess. The final objective is to automatically classify these cracks by deep learning and to 

follow their evolution. 

2.2. Multiresolution Analysis Based on Wavelets 

The concept of multiresolution analysis [24] provides a framework for the decompo-

sition (and reconstruction) of a signal in the form of a series of approximations of decreas-

ing scale, completed by a series of details. To illustrate this idea, let us take the case of an 

image constructed from a succession of approximations; the details enhance this image. 

Thus, coarse vision becomes finer and more precise. 

Researchers, engineers and practitioners in various technical fields such as multime-

dia [25], telecommunications [26-28], medicine and biology [7, 29, 30], crack tracking and 

fracture detection [8, 9, 31, 32, 33], fluid mechanics [34], thermodynamics [35], astrophys-

ics [36], finance [37, 38], etc., are daily confronted with increasingly challenging techno-

logical problems at multiple scales of analysis, in terms of classification, segmentation, 

detection (of contours or parameters of interest), noise reduction or even elimination [39], 

compression for transmission or storage, synthesis or reconstruction, etc. 

The concept of multiresolution analysis (MRA) is an effective tool that is universally 

applicable to the above-mentioned fields. This tool, sometimes described as miraculous, 

produces an immediate and easily interpretable and exploitable result. However, for spe-

cific applications that require the extraction of targeted information, it is amply clear that 

advanced methods will have to be developed and "merged" that exploit existing tech-

niques or optimize analyses (e.g. in compression) by taking into account edges or contours, 

using 2nd and 3rd generation wavelets such as ridgelets [40], curvelets [41], contourlets 

[42], bandelets [43], etc. Indeed, these anisotropic wavelets are automatically oriented and 

expanded by unifying the geometry of a potential edge or contour. This conceptualization 

of multi-resolution analysis is comparable to that of a camera that gets closer to a subject 

or uses a zoom to distinguish its details, and moves away to capture larger structures - 

the famous concept of the mathematical microscope. 

Figure 4 summarizes the principle of multi-resolution analysis (here for three levels 

of resolution) based on wavelets. The signal S is first decomposed at the 1st resolution 

level into an approximation A1 and a detail D1, then at the 2nd resolution level, approxi-

mation A1 is decomposed into an approximation A2 and a detail D2, and finally at the 3rd 

resolution level, approximation A12 is in turn decomposed into an approximation A3 and 

a detail D3. 
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Figure 4. Decomposition of an S signal on three levels. A and D represent respectively the approxi-

mation and the detail of the signal. 

The signal thus analyzed can be written as follows: 

𝑆 = 𝐴3 + 𝐷3 + 𝐷2 + 𝐷1 (1) 

Let ψ(t) denote a reference pattern called the mother wavelet. It is generally requested 

that ψ(t) has jointly highly concentrated time and frequency supports.  

ψ(t) satisfies the following equation: 

∫ 𝑡𝑝

ℝ

𝜓(𝑡)𝑑𝑡 = 0, ∀ 0 ≤ 𝑝 < 𝑛 (2) 

where n controls the number of oscillations of ψ(t). 

This relation means that ψ(t) is orthogonal to polynomial components of degree less 

than n. 

The wavelet transform 𝑊𝑋(𝑢, 𝑠) of a signal X at time u and scale s is defined by (3). 

𝑊𝑋(𝑢, 𝑠) = ∫ 𝑋(𝑡)

ℝ

𝜓∗ (
𝑡 − 𝑢

𝑠
) 𝑑𝑡 (3) 

where 𝜓∗denotes the complex conjugate of 𝜓. 

Looking at expressions (2) and (3), it is clear that 𝑊𝑋(𝑢, 𝑠) will be insensitive to the 

most regular behaviors of the signal assimilated to a polynomial of degree less than 𝑛 

(the number of vanishing moments of ψ). Conversely, 𝑊𝑋(𝑢, 𝑠) takes into account the ir-

regular behavior of polynomial tendencies. This important property plays a key role in 

the detection of signal singularities, especially in the detection and tracking of cracks. 

The discrete wavelet transform (DWT) is given by (4). 

𝑑𝑋(𝑗, 𝑘) = 𝑊𝑋(𝑢 = 2−𝑗𝑘, 𝑠 = 2−𝑗)   (𝑗, 𝑘) ∈ ℤ × ℤ    (4) 

Clearly, to reduce or eliminate the redundancy, the family {𝜓𝑗,𝑘}
(𝑗,𝑘)∈𝑍2  must consti-

tute an orthonormal basis of 𝕃2(ℝ), where 𝕃2(ℝ)denotes the vector space of measurable, 

square-integrable one-dimensional functions. 

This property of the wavelet makes it possible to obtain a fast wavelet transform. 

The fast wavelet transformation is calculated by a cascade of low-pass filtering by ℎ 

and high-pass filtering by 𝑔 followed by a downsampling (or decimation) by a factor of 

2 (see Figure 5). 

 In Figure 5, 𝑎𝑗 (or 𝑎𝑋(𝑗, 𝑘), where 𝑘 represents time) and 𝑑𝑗 (or 𝑑𝑋(𝑗, 𝑘), where 𝑘 

represents time) are called respectively approximation coefficients and wavelet coeffi-

cients (or details) of the signal at level 𝑗. Moreover, the symbol  represents the dec-

imation by a factor of 2, in other words, the conservation of one in two samples. 
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Figure 5. Fast wavelet transform or multiresolution analysis. 

The impulse response of the mirror low-pass filter is ℎ̅(𝑘) = ℎ(−𝑘) and that of the 

mirror high-pass filter is �̅�(𝑘) = 𝑔(−𝑘). These two impulse responses [10] are linked by 

𝑔(𝑘) = (−1)𝑘ℎ(1 − 𝑘) whose coefficients are obtained directly from the chosen wavelet 

ψ. 

In Figure 6, it should be noted that the original signal has 1,000 samples while the 

detail (and approximation) signals have been decimated by a factor of 2 at each level of 

resolution. Hence, after 3 levels of resolution, from a signal of 1,000 samples, one arrives 

at the approximation A3 and the detail D3 which each have only 125 samples. 

 

Figure 6. Signal decomposition on three levels of resolution using MATLAB. 

In this study, the scalogram of the investigative ultrasound signal will be used to determine and 

analyze cracks in concrete. We can define the scalogram of the signal 𝑥(𝑡)  by 

𝑆𝑋(𝑗, 𝑘) = |𝑑𝑋(𝑗, 𝑘)|2   ∀ (𝑗, 𝑘) ∈ ℤ × ℤ                                                                  (5)  

Figure 7 shows the scalogram of a signal representing the initialization of a crack materialized by 

intense energy. This fracture also propagates, even if in a weaker way, to other scales which can 

cause in the long term to a rupture. 
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Figure 7. Scalogram of a signal representing the initialization of a crack 

 

2.3. From neurons to CNN and Deep Learning: Basic concepts 

2.3.1. Neuronal Networks 

Neural networks is one of the most popular machine learning algorithms at present. 

It has been decisively proven over time that neural networks outperform other algorithms 

in accuracy and speed. With various variants like CNN (convolutional neural networks), 

neural networks are becoming for data scientists or machine learning practitioners what 

linear regression was one for statisticians. It is thus imperative to have a fundamental 

understanding of what a neural network is, how it is made up and what is its reach and 

limitations.  

Neural networks are modeled as collections of neurons that are connected in an acy-

clic graph. In other words, the outputs of some neurons can become inputs to other neu-

rons. For classic neural networks, the most common type of layer is the fully connected 

layer where all inputs from one layer are connected to each activation unit of the next 

layer. In most common machine learning models, the last layers are fully connected layers 

that compile the data extracted by the previous layers to form the final output. In Fig. 5, 

two example neural network topologies that use a stack of fully-connected layer. 

 

 
 

Figure 8. Neural networks 

 

The two metrics that people commonly use to measure the size of neural networks 

are the number of neurons, or more commonly the number of parameters. Working with 

the two example networks in Figure 8: 

The first network (left) has 4 + 2 = 6 neurons (not counting the inputs), [3 × 4 + 4 × 2] = 20 

weights and 4 + 2 = 6 biases, for a total of 26 learnable parameters. 

The second network (right) has 4 + 4 + 1 = 9 neurons, 3 × 4 + 4 × 4 + 4 × 1 = 12 + 16 + 4 = 

32 weights and 4 + 4 + 1 = 9 biases, for a total of 41 learnable parameters. 
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Traditional neural networks use a fully-connected architecture, as illustrated in   

Figure 8 (left), where every neuron in one layer connects to all the neurons in the next 

layer. A fully connected architecture is inefficient when it comes to processing image data 

as in our case. For an average image with hundreds of pixels and three channels red, green 

and blue (RGB), a traditional neural network will generate millions of parameters, which 

can lead to overfitting. The model would be very computationally intensive and it may be 

difficult to interpret results, debug and tune the model to improve its performance. 

Modern convolutional networks contain on orders of 100 million parameters and are 

typically made up of around 10 to 20 layers (hence deep learning). However, as we will 

see, the number of effective connections is significantly higher due to parameter sharing. 

 

2.3.2. CNN and Deep Learning 

Deep learning is the new state-of-the-art for artificial intelligence. Deep learning ar-

chitecture is composed of an input layer, hidden layers, and an output layer. The word 

deep means there are more than two fully connected layers. Convolutional networks are 

a specialized type of neural networks that use convolution in place of general matrix mul-

tiplication in at least one of their layers.  

Convolutional Neural Network (CNN) is one of the main categories to do images 

recognition, images classifications [44-47], crack damage detection [48]. The name Convo-

lutional Neural Network indicates that the network uses a mathematical operation called 

convolution which performs a filtering of the original image by a filter or a kernel in order 

to extract features. 

There are six main operations in the CNN architecture shown in Figure 9: 

 

Figure 9. CNN architecture (four layers) for crack and non-crack concrete classification. 

The numbers below layers indicate the output data size of each convolution or 

fully-connected layer. 

 

1. CONV: Convolution. The convolution layer is the core building block of the CNN. It carries 

the main portion of the network’s computational load. This layer performs a dot product be-

tween two matrices, where one matrix is the set of learnable parameters otherwise known as 

a kernel, and the other matrix is the restricted portion of the receptive field. The kernel is 

spatially smaller than an image but is more in-depth. This means that, if the image is com-

posed of three (RGB) channels, the kernel height and width will be spatially small, but the 

depth extends up to all three channels. 

 

2. BN: Batch normalization is a technique to standardize the inputs to a network, applied to 

ether the activations of a prior layer or inputs directly. Batch normalization accelerates train-

ing, in some cases by halving the epochs or better, and provides some regularization, reducing 

generalization error. 

 

3. RELU: Rectified Linear Unit. Since convolution is a linear operation and images are far from 

linear, non-linearity layers are often placed directly after the convolutional layer to introduce 

non-linearity to the activation map. There are several types of non-linear operations, the ReLU 

has become very popular in the last few years. It computes the function 𝑦 = max (0, 𝑥) (see 

Figure 10). In other words, the activation is simply threshold at zero. 
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                            Figure 10. Rectified Linear Unit (RELU) 

4. Pool: Pooling or Sub Sampling. The pooling layer replaces the output of the network at certain 

locations by deriving a summary statistic of the nearby outputs. This helps in reducing the 

spatial size of the representation, which decreases the required amount of computation and 

weights. The pooling operation is processed on every slice of the representation individually. 

There are several pooling functions such as the average of the rectangular neighborhood, L2 

norm of the rectangular neighborhood, and a weighted average based on the distance from 

the central pixel. However, the most popular process is max pooling, which reports the max-

imum output from the neighborhood. 

5. FC: Fully Connected Layer. Neurons in this layer have full connectivity with all neurons in 

the preceding and succeeding layer as seen in regular FCNN. This is why it can be computed 

as usual by a matrix multiplication followed by a bias effect. The FC layer helps to map the 

representation between the input and the output. 

6. Dropout is a regularization technique for neural network models where randomly selected 

neurons are ignored during training. This means that their contribution to the activation of 

downstream neurons is temporally removed on the forward pass and any weight updates are 

not applied to the neuron on the backward pass. As a neural network learns, neuron weights 

settle into their context within the network. Weights of neurons are tuned for specific features 

providing some specialization. Neighboring neurons become to rely on this specialization, 

which if taken too far can result in a fragile model too specialized to the training data. This 

reliant on context for a neuron during training is referred to complex co-adaptations. You can 

imagine that if neurons are randomly dropped out of the network during training, that other 

neurons will have to step in and handle the representation required to make predictions for 

the missing neurons. This is believed to result in multiple independent internal representa-

tions being learned by the network. The effect is that the network becomes less sensitive to 

the specific weights of neurons. This in turn results in a network that is capable of better gen-

eralization and is less likely to overfit the training data. 

 

7. Softmax is implemented via a neural network layer just before the result layer. The Softmax 

layer must have the same number of nodes as the result layer. In probability theory, the output 

of the softmax function can be used to represent a categorical distribution - that is, a probabil-

ity distribution over 𝐾 different possible outcomes representing the possible classes in clas-

sification. In our application, we have 2 possible cases: For example 𝑝1  =  0.95 for crack and 

𝑝2  =  0.05 for non-crack. 

 

Figure 9 shows a CNN architecture adapted to our problem of monitoring concrete 

structures. This consists of 4 CONV layers, 4 BN layers, 4 ELU layers and 4 Pool layers, 

followed by a FC, RELU and Dropout layers. Finally, an FC layer decides, via Softmax 

activation, the final classification of the image into crack or non-crack. 

 

3. Results and Discussion 
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3.1. Metrics and Data 

In this paragraph, we will define the metrics used to evaluate the performance of our 

Deep Learning approach, and explain that there are two methodologies to adopt depend-

ing on the nature of the concrete crack: internal or external.  

To achieve our goal of classifying cracked/non-cracked concrete images, it is neces-

sary to use evaluation measures to assess the performance of our approach. Accuracy is 

the ratio of the number of correctly predicted cracked and uncracked images to the total 

number of input images. Accuracy is the most intuitive one and is defined as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                                                       (6) 

 

where where 𝑇𝑃 (True Positive) and 𝑇𝑁 (True Negative) mean images with crack and 

without crack, which are correctly classified. 𝐹𝑃 (False Positive) and 𝐹𝑁 (False Nega-

tive)  mean images with crack and without crack which are wrongly classified. 

 

Precision aka confidence or true positive accuracy (positive prediction value) can be 

understood as the number of correctly predicted crack images divided by the number of 

crack images predicted by the classifier. Precision can be interpreted as an indicator of 

robustness. It is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                       (7) 

 

Recall aka sensitivity or true positive rate is the percentage of the number of correctly 

predicted crack images to the total number of crack images.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                       (8) 

 

𝐹𝛽 score is a weighted harmonic average comprehensively reflecting the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

and 𝑅𝑒𝑐𝑎𝑙𝑙. It is defined as: 
 

 𝐹𝛽 = (1 + 𝛽2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                       (9) 

 

where 𝛽 is a coefficient to trade off precision and recall. 𝛽 is set to be 1 here to give 

the precision rate and recall rate the same weight. In this context, 𝐹1 score is the harmonic 

mean of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 and it is defined as: 

 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 2

𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                      (10) 

 

In this work, we will use two sources of images of concrete cracks:  

1. The first source is derived from ultrasonic non-destructive testing images of inter-

nal cracks analyzed by wavelets. The multiresolution images are then classified into 

cracks/no cracks by deep learning.  

The procedure for these images is described in Section 2. This is our main contribu-

tion here. 

2. The second source of images comes from SDNET2018 dataset. 

SDNET2018 is anannotated image dataset fort raining,validation, and benchmarking 

of artificial intelligence based crack detection algorithms for concrete. SDNET2018 con-

tains over 56,000 images of cracked and non-cracked concrete bridge decks, walls, and 

pavements (see Figure 11). The dataset includes cracks as narrow as 0.06 mm and as wide 

as 25mm. The dataset also includes images with a variety of obstructions, including shad-

ows, surface roughness, scaling, edges,  holes, and background debris (see Figure 12). 
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SDNET2018 will be useful for the continued development of concrete crack detection al-

gorithms based on deep convolutional neural networks. 

 

 
Figure 11. Noncrack and crack images form SDNET2018 dataset 
 

 

 
Figure 12. SDNET2018 images include (a) fine cracks, (b) coarse cracks, (c) shadows, (d) stains, 

(e) rough surface finishes, (f) inclusion sand voids, (g) edges, (h) joint sand surface scaling, and (i) 

background obstructions.  
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3.2. Implementation aspect and results analysis  

For both data sources, i.e., experimentally obtained NDT and wavelet-transformed 

images, and images from SDNET2018 dataset [49], we selected 1000 images with cracks 

and 1000 images without cracks. The size of each image is 256×256 pixels RGB. 

For the SDNET2018 dataset, these are images of concrete bridges and it was possible 

to introduce various changes, such as changes in lighting conditions and crack character-

istics as well as crack surface texture in order to further test the generalizability of the 

model and make a more comprehensive evaluation of the model. 

All experiments are run on TensorBook equipped with a Super GPU 2080. It is 

equipped with Lambda Stack which is a software tool to manage installations of Tensor-

Flow, Keras, PyTorch, Caffe, Caffe 2, Theano, CUDA and cuDNN. Its specifications are :  

Display: 16.1″ FHD (1920×1080) display, matte finish. 

Storage: 1TB NVME SSD  

RAM: 64 GB (2666 MHz) 

Processor: Intel i7-8750H (6 cores, 16x PCI-e lanes) 

Graphics: NVIDIA 2080 (8GB) 

Operating System: Ubuntu 18.04 (Bionic) with Lambda Stack and Windows 10 Pro 

also available 

In this high performance laptop all TensorFlow Keras Pytorch Caffe Theano etc. 

frameworks specially designed for deep learning are pre-installed. It is optimized for per-

forming TensorFlow training tasks with its powerful Pascal GTX. 

In order to have a comparative evaluation of the performance of the deep learning 

architecture to adopt, we used both the version of AlexNet [50] represented in figure 9 

and an architecture of the ResNet type [51] . ResNet, short for Residual Networks, is a 

classical neural network used as the backbone for many computer vision tasks. This model 

was the winner of the ImageNet competition in 2015. The fundamental advance of ResNet 

is that it successfully trains extremely deep neural networks with over 150 layers. Before 

ResNet, training extremely deep neural networks was difficult due to the problem of ev-

anescent gradients. AlexNet, the winner of ImageNet 2012 and the model that apparently 

kicked off deep learning, had only 8 convolutional layers, the VGG network had 19, In-

ception or GoogleNet had 22 and ResNet 152 had 152. In our work, we will code a ResNet-

50 which is a reduced version of ResNet 152 and is frequently used as a starting point for 

transfer learning.  

ResNet is a powerful backbone model that is used very frequently in many computer 

vision tasks. Its originality is to use skip connection to add the output from an earlier layer 

to a later layer. This helps it mitigate the vanishing gradient problem.  

In this study, we used Keras to load their pre-trained ResNet 50 (see Figure 13). 

 
 

Figure 13. ResNet 50 Model 

 

ResNet-50 model consists of 5 stages each with a convolution and identity block. Each 

convolution block has 3 convolution layers and each identity block also has 3 convolution 

layers. The ResNet-50 has over 23 million trainable parameters. 

Classical Adam optimization of stochastic gradient descent is used for training [52]. 

Table 1 shows the results from the NDT procedure based on multiresolution analysis 

to detect internal cracks in a concrete structure.  
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Table 2 shows the results from SDNET2018 dataset. 

In both tables, two deep learning architectures are compared in terms of Accuracy, 

Precision, Recall and F1 score. 

 

Table 1. NDT-Multiresolution Analysis: Comparison of two model’s crack detection results. 

Model Accuracy Precision Recall 𝐹1 

AlexNet 0.8855 0.8921 0.8840 0.8881 

ResNet50 0.9068 0.9178 0.9091 0.9099 

 
 

Table 2. SDNET2018: Comparison of two model’s crack detection results. 

Model Accuracy Precision Recall 𝐹1 

AlexNet 0.9182 0.9322 0.9241 0.9284 

ResNet50 0.9691 0.9691 0.9704 0.9798 
 

Table 1 shows that the performance of the ResNet50 architecture is superior to that 

of AlexNet. This was to be expected but the difference is not very pronounced. It should 

be noted that the Accuracy from the method proposed here which is the detection of in-

ternal cracks from NDT followed by a wavelet-based multiresolution analysis is capped 

at 90%.  

On the other hand, Table 2 shows high performance and the difference between the 

ResNet50 and AlexNet architecture is more clear. 

The apparent limitation of the NDT-Mutiresolution Analysis method is explained by 

the fact that the crack is internal and is more difficult to detect than a surface crack. In 

reality, the method we propose is very efficient since it allows the detection of an invisible 

crack by optical means which would avoid many disasters in sensitive structures. 

4. Conclusions 

In this work, we proposed an original method for monitoring cracks in concrete struc-

tures. This method focuses on internal cracks or on the beginning of cracks invisible from 

the outside.  

Such cracks are detected by ultrasonic NDT and analyzed by wavelets providing a 

space-scale image allowing to localize the crack in space and at each resolution. 

The resulting multiresolution image is then subjected to a crack/non-crack classifica-

tion process based on Deep Learning (AlexNet, ResNet). 

We have shown that it is possible to reach an accuracy of 90%. 

Such a result is very positive and shows that our approach is unavoidable when it 

comes to "securing" vital economic structures such as nuclear power plants and dams 

where the initialization of an optically invisible crack can cause major disasters. 
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