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Abstract: The paper presents a modified finite element method for nonlinear analysis of 2D beam structures. To 

take into account the influence of the shear flexibility, a Timoshenko beam element was adopted. The algorithm 

proposed enables using complex material laws without the need of implementing advanced constitutive models in 

finite element routines. The method is easy to implement in commonly available CAE software for linear analysis 

of beam structures. It allows to extend the functionality of these programs with material nonlinearities. By using 

the structure deformations, computed from the nodal displacements, and the presented here generalized nonlinear 

constitutive law, it is possible to iteratively reduce the bending, tensile and shear stiffnesses of the structures. By 

applying a beam model with a multi layered cross-section and generalized stresses and strains to obtain a 

representative constitutive law, it is easy to model not only the complex multi-material cross-sections, but also the 

advanced nonlinear constitutive laws (e.g. material softening in tension). The proposed method was implemented 

in the MATLAB environment, its performance was shown on the several numerical examples. The cross-sections 

such us a steel I-beam and a steel I-beam with a concrete encasement for different slenderness ratios were 

considered here. To verify the accuracy of the computations, all results are compared with the ones received from 

a commercial CAE software. The comparison reveals a good correlation between the reference model and the 

method proposed. 
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1. Introduction 

For decades a finite element (FE) analysis has been a popular method for modelling advanced 

engineering problems. The FE models in comparison to the analytical ones have wider applicability 

and universality, therefore it is often implemented in various modern engineering tools. Most civil 

structures can be analysed using simple 2D beam or frame models without sacrificing the accuracy 

of the results obtained with these simplified models. Therefore, majority of commercial software for 

strength analyses of engineering structures use the beam, truss or frame finite elements formulation. 

Nowadays, the developers of FE software more and more often provide their users new functions 

extending its capabilities. Following this trend, the software often allows to include users’ material 

or element subroutines tailored for particular needs. However, despite its popularity, they usually 

allow only linear elastic analysis. In order to extend its functionality with nonlinear (material or 

geometric) analyses through user subroutines the computational and / or material mechanics expertise 

is required. A practical solution may be the use of classic beams and frames FE linear solver extended 

with a simple implemented generalized nonlinear constitutive law (GNCL) algorithm. This idea was 

first time mentioned by Mahin and Bertero in 1977 [13]. The idea of dividing the cross-section into 

layers was then used to analyse the strength of reinforced concrete columns. A similar approach was 

used by El-Tawil and Mirza [3, 14], where e.g. uni- and biaxial bending strengths of composite short 

columns were analysed. In 1978, the layer model was used by Rotter and Ansourian to analyse the 

behaviour of bending composite beams [18]. The theoretical values were compared with the results 

obtained from the experiments, obtaining a good correlation. In 1982, Łodygowski used generalized 

nonlinear constitutive law (GNCL) method for geometrically and physically nonlinear analysis of 

beams and plane frames [11]. Later, Łodygowski and Szumigała used the division into layers in a 

two-stage analysis of bending composite beams [12]. In the first stage of the method, the cross-section 

is discretized and the constitutive law is formulated in the form of bending moment-curvature 

relationship. In the second stage, the constitutive law is adopted in the finite element nonlinear code. 

The two-stage approach was also used by Szumigała [21] to analyse composite steel-concrete frame 

structures. In this case, the constitutive law was formulated in the form of bending stiffness-curvature 

relationship. In 2019, Grzeszykowski and Szmigiera used the GNCL method to compute the nonlinear 

longitudinal shear distribution in composite steel-concrete beams [8]. 

The proposed method can have many applications in engineering computations regarding multi 

material cross-sections. It can be used for strength analysis of engineering structures. An example of 

such application can be found in the paper of Farhan [4], where behaviour of concrete-filled steel 
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tube composite beams was experimentally tested. Also, the proposed method can be adopted as a 

method of homogenization in cases, in which a cross-section composed of several materials is used. 

One of such methods was proposed by Siwiński [19], where the cross-sections of reinforced concrete 

elements were homogenized. Notice that when using composite structures, it is important to ensure 

homogeneity in transferring the loads by material integrity. This problem was addressed by Jayanthi 

[10] where the performance of different types of shear connectors in steel-concrete composite 

construction was analysed. The GNCL method can be adopted in such cases, but also in all kinds of 

beam or truss structure analyses. One of the examples is the work by Barszcz [2], in which a multi-

storey steel structure is analysed. Having in mind that for some complex structures or materials, as 

examples discussed above, it is important to take into account the shear effect in the finite element 

model, the paper presents the following method that takes into account the shear forces. 

2. Methods & materials 

2.1. Normal and shear strains 

The proposed method is embedded in the classical framework of FE analysis, see Fig. 1a. Here beam 

and frame FE implemented in the small strains and deformations framework, loaded with external 

forces and/or displacements are considered. Since the presented method is based on the iterative 

change of the flexural and shear element stiffness, the nodal displacements in 𝑘-th iteration 𝑑𝑘 should 

be computed.  

Classically, the global stiffness matrix is assembled by considering the stiffness matrices of all 

elements. In the method proposed, the element stiffness is iteratively reduced during the analysis due 

to deformations, namely, 𝜀0 − normal strains, 𝛾 − shear strains and 𝜅 − curvature, which are 

computed from the nodal displacements 𝑑, see Fig. 1a. Normal strain, 𝜀0 is taken as the ratio of 

an elongation Δ𝐿 to a beam length 𝐿, which takes the following form: 

 

(2.1)  𝜀0 =
Δ𝐿

𝐿
=
𝑢2 − 𝑢1
𝐿

 , 
 

 

where 𝑢1, 𝑢2 are the nodal displacements along the beam axis.  

Shear strains, 𝛾, according to Timoshenko theory are computed as the difference between the nodal 

rotation 𝜑 and the first derivative of vertical deflection, 𝑣, of the beam: 
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(2.2)  𝛾 = 𝜑 −
d𝑣

d𝑥
 . 

 

 

In the paper, for comparison only, Bernoulli beams are also considered. Bernoulli’s hypothesis 

assumes that the cross-section is perpendicular to the axis of the deformed beam, consequently, this 

assumes that the shear strains, 𝛾, are equal to zero. 

 

a)  b)  

 

Fig. 1. Block diagrams of the computational algorithm of the proposed method: (a) the overall finite element 

method framework (𝑘 is the finite element method iteration number), and (b) detailed framework of stiffness 

reduction function (𝑙 is the iteration number of deriving neutral axis position) 

 

The curvature, 𝜅, is derived from the beam deflection function 𝑣(𝑥), which is represented by a third 

degree polynomial: 

 

(2.3)  𝑣(𝑥) = 𝐶1 + 𝐶2𝑥 + 𝐶3𝑥
2 + 𝐶4𝑥

3 .  
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The constants of the polynomial are determined from the boundary conditions. Thus, let assume that: 

 

𝑥 = 0,     𝑣(0) = 𝑣1 ,     
d𝑣(0)

d𝑥
= 𝑣1

′ , 

𝑥 = 𝐿,     𝑣(𝐿) = 𝑣2 ,     
d𝑣(𝐿)

d𝑥
= 𝑣2

′ . 

 

From above, we obtain the following: 

 

𝐶1 = 𝑣1 , 

𝐶2 = 𝑣1
′ , 

𝐶3 = −
3(𝑣1 − 𝑣2) + (2𝑣1

′ + 𝑣2
′)𝐿

𝐿2
 , 

𝐶4 =
2(𝑣1 − 𝑣2) + (𝑣1

′ + 𝑣2
′)𝐿

𝐿3
 . 

 

Knowing the beam deflection function, 𝑣(𝑥), enables determining the curvature. In the case of small 

displacements, the following simplification can be taken: 

 

(2.4)  𝜅(𝑥) =
d2𝑣

d𝑥2
 . 

 

 

Therefore, the curvature reduces to: 

 

(2.5)  𝜅(𝑥) = −
2

𝐿3
[𝑣1

′𝐿(2𝐿 − 3𝑥) + 𝑣2
′𝐿(𝐿 − 3𝑥) + 3(𝑣1 − 𝑣2)(𝐿 − 2𝑥)] . 

 

 

In the approach proposed here, the representative curvature is used, namely, a weighted mean 

curvature, 𝜅̅, computed in three Gauss points: 

 

(2.6)  𝜅̅ = 𝐴1𝜅1 + 𝐴2𝜅2 + 𝐴3𝜅3 , 
 

 

where 𝐴1, 𝐴2, 𝐴3 are weights, which takes the values: 𝐴1 = 5/18, 𝐴2 = 4/9  and 𝐴3 = 5/18. The 

curvatures 𝜅1, 𝜅2, 𝜅3 are computed in the following Gaussian coordinates: 𝑥1 = 1/9 𝐿,   𝑥2 = 1/2 𝐿, 

and  𝑥3 = 8/9 𝐿. 
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2.2. Stiffness reduction 

In Fig. 1, an overall algorithm of the method proposed here in the form of a block diagram is 

presented. The method proposed, as an extension of the approach proposed by Szumigała [21], is 

introduced in the following section. The extension is including the influence of shear strains on 

a stiffness reduction. Similar to the original version of the method, here, the element cross-section is 

also divided into thin horizontal layers, see Fig. 1b. The stiffness reduction may be now computed 

from element deformations, namely 𝜀0, 𝛾, and 𝜅 − introduced in the previous subsection. For each 

layer, a location, height, width and cross-sectional area of individual material are determined. This is 

repeated for all layers and materials. 

Next, see Fig. 1b, the reduced (effective) strains, 𝜀𝑟𝑒𝑑, are computed by considering, both, the normal 

and shear strains: 

 

(2.7)  𝜀𝑟𝑒𝑑 = sign(𝜀𝑥)√
1

2
[(𝜀𝑥 − 𝜀𝑦)

2
+ (𝜀𝑦 − 𝜀𝑧)

2
+ (𝜀𝑧 − 𝜀𝑥)2] +

1

3
(𝛾𝑥𝑦2 + 𝛾𝑦𝑧2 + 𝛾𝑧𝑥2) , 

 

 

where: 𝜀𝑥, 𝜀𝑦 and 𝜀𝑧 are normal strains and 𝛾𝑥𝑦, 𝛾𝑦𝑧 and 𝛾𝑧𝑥 are shear strains. Later, the reduced 

stress, 𝜎𝑟𝑒𝑑, in each layer is determined from the reduced strain based on 𝜎𝑟𝑒𝑑 vs. 𝜀𝑟𝑒𝑑 plot for a 

particular material. If multi-material cross-section is considered, the computations are performed for 

each material.  

In the next step, see Fig. 1b, the Young's modulus, 𝐸, is computed from the values of stresses and 

strains by the following: 

 

(2.8)  𝐸 =
𝜎𝑟𝑒𝑑
𝜀𝑟𝑒𝑑

 .  

 

Further, the shear modulus for isotropic materials, 𝐺, can be computed from: 

 

(2.9)  𝐺 =
𝐸

2(1 + 𝜈)
 ,  

 

where 𝜈 is Poisson’s ratio. After determining the Young’s and shear modulus, it is possible to compute 

the tensile and shear stiffnesses, 𝐵𝑁 and 𝐵𝑉, respectively: 
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(2.10)  𝐵𝑁 =∑∑𝐸𝑖
𝑗

𝑛

𝑖=1

𝐴𝑖
𝑗

𝑚

𝑗=1

,          𝐵𝑉 =∑(∑𝐺𝑖
𝑗

𝑛

𝑖=1

𝐴𝑖
𝑗)/𝑘̅𝑗

𝑚

𝑗=1

 ,  

 

where 𝑖 and 𝑗 are number of layers in the cross section and number of materials, respectively; 𝑛 and 

𝑚 are the total number of layers and number of materials, respectively. 𝐴𝑖
𝑗 is a cross-section area of 

𝑖-th layer and 𝑗-th material, and 𝑘̅𝑗 is a shear correction factor for 𝑗-th material, which is computed 

from: 

 

(2.11)  𝑘̅𝑗  =
𝐴

𝐼2
∫
𝑆2(𝑧)

𝑏2(𝑧)
𝐴

𝑑𝐴 , 
 

 

where 𝐼 is a moment of inertia about the horizontal axis of the cross-section, 𝑆 is a static moment 

about the horizonal axis of the severed part, 𝐴 is a cross-section area and 𝑏 is a width of a layer. A 

position of neutral axis in 𝑙-th iteration of computing 𝑦𝑔
𝑙 is obtained from: 

 

(2.12)  𝑦𝑔
𝑙 =

∑ ∑ 𝐸𝑖
𝑗𝑛

𝑖=1 𝐴𝑖
𝑗𝑚

𝑗=1 𝑦𝑖

𝐸𝐴
 . 

 

 

Knowing the position of the neutral axis enables computing a moment of inertia of 𝑖-th layer, 𝐼𝑖
𝑗; then 

a bending stiffness, 𝐵𝑀, may be determined according to the expression: 

 

(2.13)  𝐵𝑀 =∑∑𝐸𝑖
𝑗

𝑛

𝑖=1

𝐼𝑖
𝑗

𝑚

𝑗=1

 .  

 

In the original version of the method [21], a cross-section analysis is done prior to main computations. 

The relationship 𝐵𝑀 − 𝜅 is created for assumed values of normal forces only. Element stiffness values 

are then obtained by interpolating in-between values, is such case the accuracy depends on a prior 

assumed mesh density. Therefore, another modification proposed in this paper is to analyse the cross-

section during computations (within each iteration loop), what allows to compute exact values and 

avoid the interpolation errors. 
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2.3. Materials 

The proposed method allows to use a nonlinear constitutive law of any material. In the examples 

analysed here, the nonlinear law describing the behaviour of concrete and steel were used. 

In Table 1, the engineering parameters of the materials used in the study are presented, where 𝑓𝑐𝑚 is 

a medium value of a compressive strength of concrete, 𝑓𝑐𝑡𝑘 is a characteristic value of a tension 

strength of concrete, 𝐺𝑓 is the fracture energy and 𝑓𝑦 is a yield strength of steel. 

 

Table 1. Material parameters of concrete and steel used in the study. 

Material 
𝑬 𝑮 𝝂 𝒇𝒄𝒎 𝒇𝒄𝒕𝒌 𝑮𝒇 𝒇𝒚 

[𝐆𝐏𝐚] [𝐆𝐏𝐚] [−] [𝐌𝐏𝐚] [𝐌𝐏𝐚] [𝐍/𝐦] [𝐌𝐏𝐚] 

concrete 35.0 15.0 0.2 48.0 2.5 120.0 − 

steel 210.0 81.0 0.3 − − − 235.0 

 

In Fig. 2, the nonlinear stress-strain relations for concrete and steel are presented. The reference FE 

models used in the results section were computed in a commercial software of ABAQUS FEA [1]. 

In these examples, the steel was described by an elastic perfectly-plastic model: 

 

(2.14)  𝜎𝑟𝑒𝑑 =

{
 
 

 
 𝐸𝑠𝜀𝑟𝑒𝑑,     for     ε𝑟𝑒𝑑 <

𝑓𝑦

𝐸𝑠
,

𝑓𝑦              for     ε𝑟𝑒𝑑 ≥
𝑓𝑦

𝐸𝑠
,

  

 

where 𝐸𝑠 is the Young’s modulus of steel. 

For concrete in compression, a nonlinear model presented in Eurocode 2 was used: 

 

(2.15)  𝜎𝑟𝑒𝑑 =
𝑘∗𝜂 − 𝜂2

1 + (𝑘 + 2)𝜂
𝑓𝑐𝑚 , 

 

 

where 𝜂 = 𝜀𝑟𝑒𝑑/𝜀𝑐1 and 𝑘∗ is computed as 

 

(2.16)  𝑘∗ = 1,05𝐸𝑏
𝜀𝑐1
𝑓𝑐𝑚

 ,  
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where 𝐸𝑏 is the Young’s modulus of concrete and 𝜀𝑐1 is given in Eurocode 2 for a different grades of 

concrete. 

In order to simulate behaviour of concrete in compression and in tension, a concrete damage plasticity 

(CDP) model with additional definition of a fracture energy was used: 

 

(2.17)  𝜎𝑟𝑒𝑑 = (1 − 𝑑∗)𝜎 ,  

 

where 𝜎 is the effective stress and 𝑑∗ is a scalar degradation parameter. More formal details and 

practical numerical outlines regarding CDP model may be found in the paper of Jankowiak and 

Łodygowski [9]. An identification procedure of main concrete parameters for this constitutive model 

can be found in Gajewski and Garbowski [5], alternative models can be characterized using approach 

described in the paper of Gajewski and Garbowski [6], Garbowski et al. [7] or Zirpoli et al. [22]. 

 

a)  

 

b)  

 

c)  

 

Fig. 2. Constitutive relations for (a) concrete in compression, (b) concrete in tension and (c) steel,  

which were used in the study. 
 

The material parameters used in the study for the concrete in CDP model are specified in Table 2, 

while properties of the steel are already presented in Table 1. 

 

Table 2. Material parameters of concrete used in the reference models. 

Elastic Concrete Damage Plasticity 

𝑬 𝝂 
Dilation 

Angle 
Eccentricity 𝒇𝒃𝟎/𝒇𝒄𝟎 K 

Viscosity 

Parameter 

[𝐆𝐏𝐚] [−] [°] [−] [−] [−] [−] 

35.0 0.2 38 0 1.16 0.667 1e-6 
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2.4. The analysis of bending, tensile and shear stiffness 

Apart the possibility of computing the internal forces of particular beam structure by using GNCL, it 

is also possible to determine stiffness reduction plots for defined cross-sections and adopted material 

models prior to FE computations. The stiffness reduction for three examples of different cross-

sections is presented here, namely, steel IPE240, encased IPE240 and encased IPE450 with a concrete 

slab. 

In Fig. 3, the selected diagrams of bending, tensile and shear stiffnesses, 𝐵𝑀, 𝐵𝑁 and 𝐵𝑉, for the 

IPE240 steel cross-section depending on the internal forces are shown. In Fig. 3a, it may be observed 

that the stiffness 𝐵𝑀 is much more sensitive to the change of the bending moment, 𝑀, than to the 

change of the normal force, 𝑁. Fig. 3c shows that stiffness 𝐵𝑉 has comparable sensitivity to the 

change of the shear force, 𝑉, and the bending moment. In all cases, the double symmetry is observed.  

 

a)  

 

b)  

 

 c)  

 

 

Fig. 3. Bending, tensile and shear stiffnesses, 𝐵𝑀 , 𝐵𝑁 and 𝐵𝑉, for the IPE240 depending respectively on: 

(a) bending moment and normal force (𝑉 = 0), (b) normal force and shear force (𝑀 = 0),  

and (c) bending moment and shear force (𝑁 = 0). 

 

In Fig. 4, the diagrams of bending, tensile and shear stiffnesses, 𝐵𝑀 , 𝐵𝑁 and 𝐵𝑉, for the encased IPE240 

with respect to the internal forces are shown. Here for low values of internal forces (especially for the 
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bending moment, 𝑀), the stiffness decreases more rapidly. This effect is observed because of the 

particular nonlinear form of the constitutive law describing the concrete behaviour. The stiffnesses 

are symmetrical with respect to the bending moment, 𝑀, and the shear force, 𝑉. This is due to the 

symmetry of the cross-section. Stiffness symmetry is not present about the normal force axis, because 

the concrete has different compressive and tensile properties. 

 

a)  

 

b)  

 

 c)  

 

 

Fig. 4. Bending, tensile and shear stiffnesses, 𝐵𝑀 , 𝐵𝑁 and 𝐵𝑉, for the encased IPE240 depending 

respectively on: (a) bending moment and normal force (𝑉 = 0), (b) normal force and shear force (𝑀 = 0), 

and (c) bending moment and shear force (𝑁 = 0). 

 

In Fig. 5, the diagrams of bending, tensile and shear stiffnesses, 𝐵𝑀 , 𝐵𝑁 and 𝐵𝑉, for the encased IPE450 

with a concrete slab depending on the internal forces are shown. The stiffnesses are not symmetrical 

about the bending moment axis, due to the asymmetry of the cross-section. Tension of the upper 

layers of the cross-section is represented by a positive value of the bending moment, 𝑀. Notice that 

for the positive values of the bending moment, the stiffnesses are higher than for the negative values. 
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a)  

 

b)  

 

 c)  

 

 

Fig. 5. Bending, tensile and shear stiffnesses, 𝐵𝑀 , 𝐵𝑁 and 𝐵𝑉, for the encased IPE450 with a concrete slab 

depending respectively on: (a) bending moment and normal force (𝑉 = 0), (b) normal force and shear force 

(𝑀 = 0), and (c) bending moment and shear force (𝑁 = 0). 

2.5. Reference models 

In order to verify the proposed method, a few examples were computed via in-house code 

implemented in MATLAB and its results were compared with a FE commercial software (ABAQUS 

FEA [1]) results. In Model 1, a simply supported beams of IPE240 steel member were modelled as a 

wire structures. The beams were 1.2 m, 1.8 m and 2.4 m long and divided into 5 mm long elements, 

as a result of which 240, 360 and 480 2-node linear beam elements (B21 according to [1]) were 

obtained, respectively. 

In Model 2, the beam with a composite cross-section of encased IPE240 was modelled as 3D solids 

(concrete) with special technique of skins (steel) available in a FE commercial software. The concrete 

cross-section was divided into 1920, 2208, and 2880 8-node brick elements (C3D8 according to [1]), 

and the steel part into 800, 920, and 1200 4-node, quadrilateral shell elements with reduced 

integration (S4R according to [1]); the beams of lengths of 1.2 m, 1.8 m, and 2.4 m were analysed, 

respectively.  
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The boundary conditions of simply supported beam were applied at the ends of the structures. In all 

FE computations, the displacement control was used. The kinematically enforced displacement was 

applied in the middle point of the beams. 

3. Examples 

3.1. Bernoulli vs. Timoshenko beam 

In order to verify the effect of taking the shear into account on the beam displacement the relations 

between results from Timoshenko and Bernoulli theories were compared. In Fig. 6, the effect of the 

shear force included while computing vertical displacement of the beam is shown. For this purpose, 

a simply-supported beam of a rectangular cross-section of 0.12 m was used, the length of the beam 

was 2.4 m. The height of the beam varied from 0.12 m to 0.60 m to obtain its different slenderness 

ratios (from 20 to 4). Both Bernoulli and Timoshenko beam theories were used for comparison. The 

Fig. 6 presents on the horizontal axis the beam slenderness ratios and on the vertical axis the ratio of 

Timoshenko beam displacements (new approach) to Bernoulli beam displacements (classic approach 

[21]) is shown. In results, as expected, the smaller the slenderness ratio of the beam, the greater the 

influence of the shear force on the displacements. For slenderness ratio of 20, the effect of the shear 

force is less than 1% and increases hyperbolically to almost 10% for a slenderness ratio of 5. 

 

 

Fig. 6. The effect of the shear force on the beam displacement. 
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3.2. Proposed method: Timoshenko theory vs. Bernoulli theory 

To demonstrate the influence of the shear force on the behaviour of the structure, 1.2 m, 1.8 m, and 

2.4 m long beams were analysed here, including (with Timoshenko theory) and excluding (with 

Bernoulli theory) shear effect in the GNCL model. All computations in this subsection were computed 

using GNCL method and by using Model 1 (see Section 2.5). 

In Fig. 7, the diagrams of the force in the mid-span of the IPE240 beam with respect to 

the displacement applied are shown. The greater the length of the beam (more slender structure), the 

smaller the difference between the forces obtained for the Bernoulli and Timoshenko theories; this is 

due to lower influence of the shear force on the displacements, see Fig. 6. In all cases, as expected, 

the forces for the Bernoulli beam were greater than those obtained for the Timoshenko beam.  

 

a)  

 

b)  

 

 c)  

 

 

Fig. 7. Static equilibrium paths obtained for the Bernoulli and Timoshenko theories of the IPE240 beams for 

their lengths of (a) 1.2 m, (b) 1.8 m, and (c) 2.4 m. 

 

In Fig. 7a, force-displacement curves for the beam with the shortest length are shown. In this case, as 

expected, the differences between the curves obtained by the Bernoulli and Timoshenko theory are 

the greatest. For the 1.8 m and 2.4 m long beams, shown in Fig. 7b and Fig. 7c, the differences are 

smaller because the influence of the shear force is smaller for the beams with greater slenderness 
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ratio. The percentage differences between ultimate load decrease with increasing beam length and are 

equal 8.7 %, 6.4 % and 2.2%, respectively. 

In Fig. 8, the force-displacement diagrams in the mid-span of the encased IPE240 beam are shown. 

As in the previous example, the forces obtained by Bernoulli theory are greater than for Timoshenko 

theory. Fig. 8 shows that the shorter the beam, the greater the differences between values obtained by 

the two theories. The influence of the shear force on the load capacity is smaller and equals 3.2 %, 

1.5 % and 0.8 %, respectively. 

 

a)  

 

b)  

 

 c)  

 

 

Fig. 8. Static equilibrium paths obtained for the Bernoulli and Timoshenko theories of the encased IPE240 

beams for their lengths of (a) 1.2 m, (b) 1.8 m, and (c) 2.4 m. 

3.3. GNCL method compared to elasto-plastic approach 

To verify the new algorithm, the examples of a simply-supported beams using GNCL method are 

analysed and later compared with a reference model (computed with FE commercial software with 

elasto-plastic approach). The examples with different slenderness ratios are considered here. 

The cross-section of IPE240 was used and the lengths of 1.2 m, 1.8 m and 2.4 m were assumed. 

Displacement control protocol was used and the displacement was applied in the mid-span of the 

beam. In Fig. 9, the force-displacement diagrams in the mid-span of the IPE240 beam are shown. 
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a)  

 

b)  

 

 c)  

 

 

Fig. 9. Force plots due to enforcing displacements in the middle of the IPE240 beams for  

their lengths of (a) 1.2 m, (b) 1.8 m, and (c) 2.4 m. 

 

In Fig. 9a, a small difference between static equilibrium paths obtained by the GNCL method and 

using reference beam model is shown. The difference in load capacity is 6.2 %. The static equilibrium 

paths for beams of lengths of 1.8 m and 2.4 m almost the same. The differences in the load capacity 

are 1.2 % and 1.8 %, respectively. 

In Fig. 10, the force-displacement diagrams in the mid-span of the encased IPE240 beam are shown. 

Notice that, here, the reference model, a 3D solids FE analysis was used (Model 2, see Section 2.5). 

After plasticity was reached, the static equilibrium paths stabilized at a certain level. As in the 

example of the IPE240 beam, it may be observed a greater difference for the length of 1.2 m than for 

the lengths of 1.8 and 2.4 m. The differences in load capacity are 8.1 %, 4.2 % and 3.9 %, respectively. 

The results obtained by the method proposed and FE commercial software are in good agreement 

(see Fig. 9 and Fig. 10). Also, the classic and proposed GNCL approach, however, for Bernoulli 

theory only, were compared (not included here); the mean error between forces obtained for encased 

IPE 240 was equal to 1.6 %, 2.4 % and 2.5 %.  
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a)  

 

b)  

 

 c)  

 

 

Fig. 10. Force plots due to enforcing displacements in the middle of the encased IPE240 beams for  

their lengths of (a) 1.2 m, (b) 1.8 m, and (c) 2.4 m. 
 

Compared to the complex 3D model, computations for the method proposed are performed for the 

Model 1 with much less degrees of freedom then in Model 2. This reduces the computational time - 

for encased IPE240 beams for their length of 1.2 m, 1.8 m and 2.4 m, the computational time for the 

3D model was 433 s, 286 s and 291 s, and for the model using the GNCL method 60 s, 70 s and 72 s 

on the same computer. This gives 7.2, 4.1 and 4.0 times shorter computational time. This result is one 

the main advantage of the method proposed, the advanced nonlinear material model was included, 

but the computational time was very low.  

Moreover, structural modelling is easier because it does not require modelling experience, nor 

expertise knowledge of advance techniques of the finite element method, which would allow to 

simulate the structure with complex materials or geometry. In particular, the proposed method can be 

used in beam and truss structures, such approach eliminates the need to model 3D elements taking 

into account the contact in cross-sections composed of several materials with nonlinear constitutive 

laws. The method seems to have many promising applications in civil engineering and mechanics, 

for instance in modelling structures with shear connectors, multi-layers or sandwich panels. 
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4. Conclusions 

In the paper, the method of generalized nonlinear constitutive law (GNCL) together with FE 

formulation including shear theory in beams was presented. It enables computing the shear strains 

and take them into account in the element stiffness reduction. The GNCL method derived here enables 

a nonlinear description of materials used, i.e. concrete and steel. The stiffness of various cross sections 

depending on internal forces was shown. In the presented examples, the beam structures with 

a different length to height ratios were analysed. Performed computations for various beam 

slenderness ratios with Timoshenko beam theory showed expected influence of the shear force on the 

structure behaviour (deflections). 

The method proposed allows an easy consideration of material nonlinearities in the beam/frame 

models. By applying a GNCL model, computations can be performed for complex cross-section 

composed of several materials with different physical properties. This may be obtained not only for 

slender structures, but also in cases of short beams, in which the shear effects are crucial. The GNCL 

provides the simple homogenization of the complex cross-section which then enables the iterative 

stiffness reduction based on the internal forces or deformations. The static equilibrium path in a 

nonlinear form can be easily computed with this approach. Main advantage of the method is that there 

is no need to build a full 3D model with elasto-plastic constitutive models and iterative solvers. This 

makes the modelling of the structure easy; one does not require a knowledge and experience in FE 

method. Also, compared to commercial software, the method gives good results and the 

computational time is several times shorter, due to small number of degrees of freedom, while 

comparing with 3D models. 
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ZASTOSOWANIE UOGÓLNIONEGO NIELINIOWEGO PRAWA KONSTYTUTYWNEGO DLA 

PŁASKICH KONSTRUKCJI BELKOWYCH PODATNYCH NA ŚCINANIE 

Słowa kluczowe: uogólnione nieliniowe prawo konstytutywne, analiza elementu skończonego, nieliniowości materiałowe, 

konstrukcje zespolone, belkowy element Timoshenki 

Streszczenie: 

W artykule przedstawiono zmodyfikowaną metodę elementów skończonych do nieliniowej analizy płaskich konstrukcji 

belkowych. Aby wziąć pod uwagę wpływ podatności na ścinanie, zastosowano belkowy element Timoshenki. 

Zaproponowany algorytm umożliwia stosowanie złożonych praw materiałowych bez konieczności implementacji 

zaawansowanych modeli konstytutywnych w procedurach elementów skończonych. Metoda jest łatwa do wdrożenia 

w powszechnie dostępnym oprogramowaniu CAE do liniowej analizy konstrukcji belkowych. Pozwala to na rozszerzenie 

funkcjonalności tych programów o nieliniowości materiałowe. Wykorzystując odkształcenia konstrukcji, obliczone 

z przemieszczeń węzłów oraz przedstawione tutaj uogólnione nieliniowe prawo konstytutywne, możliwe jest iteracyjne 

zmniejszanie sztywności konstrukcji na zginanie, ściskanie/rozciąganie i ścinanie. Stosując model belkowy z przekrojem 

wielowarstwowym oraz uogólnionymi odkształceniami i naprężeniami w celu uzyskania reprezentatywnego prawa 

konstytutywnego, łatwo jest modelować nie tylko złożone przekroje wielomateriałowe, ale także zaawansowane 

nieliniowe prawa konstytutywne (np. osłabienie materiału przy rozciąganiu). Zaproponowana metoda została 

zaimplementowana w środowisku MATLAB, a jej działanie pokazano na kilku przykładach numerycznych. 

Przeanalizowano przekroje dwuteownika stalowego oraz dwuteownika stalowego obetonowanego dla różnych wartości 

smukłości. Aby zweryfikować dokładność obliczeń, wyniki porównano z wartościami otrzymanymi z komercyjnego 

oprogramowania CAE. Porównanie pokazało dobrą korelację między modelem referencyjnym a proponowaną metodą. 
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