
 

 

1 INTRODUCTION 

For decades an advanced engineering problems are effectively modelled by finite element (FE) 
method, which is very popular due to its versatility and accuracy. The FE models are often im-
plemented in various modern engineering tools, in comparison to the analytical ones they have 
wider applicability and universality. Most civil structures can be analysed using simple 2D beam 
or frame structures without sacrificing the accuracy of the results obtained with simplified models. 
Thus, majority of commercial software for FE analyses of civil structures use the beam, truss or 
frame finite elements only. Nowadays, the developers of engineering software often provide their 
users a functions extending its capabilities with new features. For instance, the users may include 
new material or element subroutines, which are tailored for their particular needs; this trend may 
be observed in many top engineering softwares. In such cases, a numerical and material mechan-
ics expertise is required, in order to extend the mechanical models with nonlinear (material or 
geometric) features through user subroutines. An attractive alternative may be the use of classic 
beams and frames finite element method (FEM) with linear solver extended with a generalized 
nonlinear constitutive law (GNCL) algorithm, which is simple and easy to implement. 

This idea appeared in the 70s of the 20th century. One of the first papers which introduced the 
idea of dividing a cross-section into layers was the analysis of the behaviour of bending composite 
beams by Rotter & Ansourian presented in 1978. The theoretical values were compared with the 
experimental results, a good correlation was obtained. In 1982, Łodygowski applied the method 
of the generalized nonlinear constitutive law (GNCL) to the geometric and physical nonlinear 
analysis of beams and plane frames. Later, Łodygowski & Szumigała applied the division into 
layers in a two-stage bending analysis of composite beams. In the first stage of the method, the 
cross-section is discretized, and the constitutive law is formulated as the bending moment-curva-
ture relationship. In the second stage, the constitutive law is adopted in the nonlinear finite 
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element code. The two-stage approach was also used by Szumigała in 2007 to analyse composite 
steel-concrete frame structures. The constitutive law was formulated in the form of the bending 
stiffness-curvature relationship. In 2019, Grzeszykowski & Szmigiera used the GNCL method to 
compute the nonlinear longitudinal shear distribution in composite steel-concrete beams. The 
GNCL algorithm was described in more detail by Mrówczyński et al. in 2021, where its perfor-
mance in steel and composite beam structures was presented. 

From a practical point of view, the method is a promising alternative to be used by the structural 
engineers. The method proposed here extends its original version by including a shear effect. It is 
easy to use, if one would like to consider in modelling not only complex material/geometrical 
nonlinearities, but also the shear effect, thus, it may be utilized, instead of building a complex 
FEM models. 

2 METHODS & MATERIALS 

2.1 Normal and shear strains 

The classical framework of FE analysis was used to embed the method proposed. In the small 
strains and deformations framework, the beam and frame FE was implemented; it may be  loaded 
with an external forces and/or displacements. The nodal displacements are computed in iterations, 
since the method presented iteratively changes the flexural and shear element stiffness.  

The global stiffness matrix is assembled in the classical way by including the stiffness matrices 
of all elements. In the method proposed, due to deformations the element stiffness is iteratively 
decreased in the loop. Deformations, namely, 𝜀0 – normal strains, 𝛾 – shear strains and 𝜅 – cur-
vature, are computed from the nodal displacements 𝑑. Normal strain, 𝜀0 is taken in  the following 
form: 

 𝜀0 =
𝛥𝑙

𝑙
=

𝑢2 − 𝑢1

𝑙
 , (1) 

where 𝑙 is the beam length, ∆𝑙 is its elongation and 𝑢1, 𝑢2 are the nodal displacements along the 
beam axis.  

Shear strains, 𝛾, are taken as the difference between the nodal rotation 𝜑 and the first derivative 
of vertical deflection, 𝑣, according to Timoshenko theory: 

 𝛾 = 𝜑 −
d𝑣

d𝑥
 . (2) 

Bernoulli theory is also considered in the paper, in order to compare its results with the one 
including Timoshenko theory. According to Bernoulli’s hypothesis the cross-section is perpen-
dicular to the axis of the deformed beam. As the consequence, the shear strains, 𝛾, equals zero.  

The curvature, 𝜅, in small displacements, is calculated as the second derivative of a deflection 
in a vertical direction: 

 𝜅 =
d2𝑣

d𝑥2
 . (3) 

2.2 Stiffness reduction 

Element deformations, namely 𝜀0, 𝛾, and 𝜅 – shown in the previous subsection, serves to calculate 
the element stiffness reduction. For each layer, a location, height, width and cross-sectional area 
of individual material are determined. The procedure is repeated for materials and layers obtained 
from a cross-section division. 

Further, the reduced (effective) strains, 𝜀𝑟𝑒𝑑, are calculated by utilizing the normal and shear 
strains. Next, in each layer the reduced stress, 𝜎𝑟𝑒𝑑, is derived from the reduced strain by using 
𝜎𝑟𝑒𝑑 vs. 𝜀𝑟𝑒𝑑 plot, which is determined for each material used, if multi-material cross-section is 
analysed.  

Later, from the stresses and strains the Young's modulus, 𝐸, is calculated. The shear modulus 
for isotropic materials, 𝐺, may be classically taken as: 



 

 

 𝐺 =
𝐸

2(1 + 𝜈)
 , (4) 

where 𝜈 is Poisson’s ratio. Young’s and shear modulus allows to compute the tensile and shear 
stiffnesses, 𝐵𝑁 and 𝐵𝑉, respectively: 

 𝐵𝑁 = ∑ ∑ 𝐸𝑖
𝑗𝐴𝑖

𝑗

𝑛

𝑖=1

𝑚

𝑗=1

,          𝐵𝑉 = ∑ (∑ 𝐺𝑖
𝑗𝐴𝑖

𝑗

𝑛

𝑖=1

) /𝑘𝑗

𝑚

𝑗=1

 , (5) 

where 𝑖 and 𝑗 are the layers in the cross section and materials, respectively; 𝑛 and 𝑚 are the total 
number of layers and number of materials, respectively. 𝐴𝑖

𝑗
 is area of a cross-section of 𝑖-th layer 

and 𝑗-th material, and 𝑘𝑗 is a shear correction factor for 𝑗-th material. 
A position of neutral axis 𝑦𝑔 is computed from: 

 𝑦𝑔 =
∑ ∑ 𝐸𝑖

𝑗𝐴𝑖
𝑗𝑦𝑖

𝑛
𝑖=1

𝑚
𝑗=1

𝐸𝐴
 . (6) 

From the position of the neutral axis, a moment of inertia of 𝑖-th layer, 𝐼𝑖
𝑗, may be determined; 

then a bending stiffness, 𝐵𝑀, may be computed according to the formula: 

 𝐵𝑀 = ∑ ∑ 𝐸𝑖
𝑗𝐼𝑖

𝑗

𝑛

𝑖=1

𝑚

𝑗=1

 . (7) 

In the original method, the computations for cross-section are performed before the main algo-
rithm. The law 𝐵𝑀 − 𝜅 is only computed for the normal forces assumed. The element stiffness 
values is determined by interpolation of in-between values, thus, the accuracy depends on a prior 
mesh density assumed. Due to this feature of the original method, an additional modification was 
proposed in this paper. In the method proposed, the cross-section was analysed during computa-
tions (within each iteration loop). This allowed to eliminate the interpolation error due to the 
usage of exact values for the cross-section analysed. The updated GNCL method was imple-
mented in the MATLAB in-house code. 

2.3 Materials 

The proposed method allows to use a nonlinear constitutive law of any material. In the examples, 
the nonlinear law of steel were used. In Table 1, the engineering parameters of steel used in the 
study are presented, where 𝐸 is a Young’s modulus, 𝐺 is a shear modulus, 𝜈 is a Poisson’s ratio 
and 𝑓𝑦 is a yield strength of steel. 

 
 

Table 1. Material parameters of steel used in the study. 

Material 
𝐸 𝐺 𝜈 𝑓𝑦 

[GPa] [GPa] [−] [MPa] 

steel 210.0 81.0 0.3 235.0 

 
 
In the examples analysed here, the steel was described by an elastic perfectly-plastic model: 

 𝜎𝑟𝑒𝑑 = {𝐸𝜀𝑟𝑒𝑑 ,     for     𝜀𝑟𝑒𝑑 <
𝑓𝑦

𝐸
 ,        𝑓𝑦          for     𝜀𝑟𝑒𝑑 ≥

𝑓𝑦

𝐸
 }. (8) 



 

 

3 EXAMPLES 

3.1 Example 1 

In order to verify the proposed method, the simply supported beams of IPE300 steel member 
and lengths of 1.5 m and 2.4 m (beams of two lengths to obtain two different values of slenderness 
ratio) were modelled. The beams with a vertical displacement in the center of the span were 
loaded. The displacement control was used. The obtained forces from the GNCL method were 
compared with the reference model results. The beams in FE commercial software were divided 
into 5 mm long elements, thus 300 and 480 2-node linear beam elements were obtained for 1.5 m 
and 2.4 m, respectively. In Figure 1, the static equilibrium paths for two beam lengths were shown. 

 
 

a)  

 

b)  

 
Figure 1. Force vs. displacement plots due to enforcing displacements in the middle of the IPE300 beams 
for their lengths of (a) 1.5 m and (b) 2.4 m. 

 
 
In the beginning, the force increases linearly – the material is in the elastic phase. Later, 

the cross-section begins to plasticize as shown by the nonlinear shape of the plot. For beam 
of length of 1.5 m, the difference between the proposed model and the reference model is 6.2%, 
and for a length of 2.4 m it is 2.1%. 

The influence of the shear force on the load capacity of the cross-section was also analysed. 
For this purpose, the Bernoulli and Timoshenko theory were applied, and the proposed method 
was used. In Figure 2, the obtained static equilibrium paths are presented. 
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b)  

 
Figure 2. Force vs. displacement plots obtained for the Bernoulli and Timoshenko theories of the IPE300 
beams for their lengths of (a) 1.5 m and (b) 2.4 m. 

 
 



 

 

In Figure 2, the force obtained for the Bernoulli theory is greater than the force obtained for 
the Timoshenko theory. This is due to the fact that taking into account the shear strains causes 
a greater stiffness reduction, and thus the possibility of transferring a smaller force. The shorter 
the beam, the greater the influence of the shear force on the behaviour of the structure. In the an-
alysed case, for the slenderness ratio of 5 (beam length 1.5 m) the difference in load capacity is 
6.5%, and for the slenderness ratio of 8 (beam length 2.4 m) it is only 2.2%. 

3.2 Example 2 

The influence of the material plasticization and shear force was also shown on the example of 
a single-nave frame with overhangs (cantilevers) loaded with a uniformly distributed load 𝑄 =
70.0 kN/m on the beam and concentrated forces 𝑃 = 70 kN on the ends of the cantilevers. 
The static scheme of the frame is shown in Figure 3. The stiffness reduction of the beam and can-
tilevers caused by plasticization of the material was computed according to GNCL method for 
Bernoulli theory and Timoshenko theory and was shown in Figure 4a and Figure 4b, respectively. 

 
 

 
Figure 3. Static scheme of the Example 2. 

 
 

a)  

 
b)  

 
Figure 4. Reduction of bending stiffness 𝐵𝑀 of beam and cantilevers according to (a) Bernoulli theory and 
(b) Timoshenko theory. 

 
 



 

 

Comparing Figure 4a and Figure 4b shows that taking into account the effect of the shear force 
causes a greater stiffness decrease. This is associated with an displacement increase. The maxi-
mum deflections in the middle of the horizontal element (point C) and cantilever end (point A) 
for the Bernoulli theory are 4.29 cm and 1.07 cm, respectively, and for the Timoshenko theory 
9.75 cm and 1.23 cm. Taking into account the influence of the shear force, the deflections in the 
middle of the horizontal element and at the cantilever end increased by 127.3% and 15.0%, re-
spectively. 

4 CONCLUSIONS 

The method of generalized nonlinear constitutive law presented in the paper extends the classical 
finite element method approach  and seems to be promising tool for fast and accurate simulations 
of complex structures. Especially in cases, in which the cross-section is multi-material, compound 
of many subsections and the nonlinear properties of material should be included. Here, the clas-
sical GNCL method was extended with Timoshenko theory in order to apply the method in a less 
slender structures. This utility is not available in the classical finite element method softwares for 
structure engineers. In this paper, the method was described and shown on numerical examples. 
The results were compared with the commercial software for simply supported beam, with a good 
agreement of the displacements. Also, the Bernoulli vs. Timoshenko theory was confronted in the 
example of single-nave frame with overhangs, in which including a shear effect had a big influ-
ence on the displacement obtained. 
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