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Abstracts 

p53 is among the most frequently mutated tumor suppressor genes given its prevalence in >50% of all 

human cancers, including high grade serous endometrial cancers and ovarian cancers.  In addition to loss 

of tumor suppression function, many mutated p53 (Mutp53) proteins acquire gain-of-function (GOF) 

activities as oncogenes to promote cancer progression, which manifest through aberrant expression of 

p53. As we have come to see, statins induce CHIP-mediated degradation of mutp53 by blocking the 

interaction between mutp53 and DNAJA1. Therefore, targeting critical downstream pathways of mutp53 

provides an alternative strategy for treating cancers expressing mutp53. In this review, we summarize 

recent advances with Wee1 inhibitors and mevalonate pathway inhibitors, particularly statins, regarding 

their use in gynecological cancers with p53 mutations.  
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Introduction 

Over 50% of all tumors harbor mutations in the p53 gene, demonstrating its criticality in tumor 

development. p53 is activated by a wide variety of stress signals and selectively transcribes a set of 

downstream target genes by acting as a transcription factor to initiate various cellular responses to exert 

its function in tumor suppression.  Although the roles of p53 in regulation of cell cycle arrest, senescence 

and apoptosis have been widely  discussed, the role of p53 in the regulation of ferroptosis and anti-oxidant 

defense is also critical for its tumor suppressive function. Unlike p53 null mice, which rapidly and 

spontaneously develop thymic lymphomas, no tumor development is observed in p53(3KR/3KR) animals 

bearing lysine to arginine mutations at p53 acetylation sites of K117R,K161R and K162R. p53(3KR), an 

acetylation-defective mutant that lacks activities in cell-cycle arrest, senescence and apoptosis, fully 

retains the activity to repress SLC7A11 expression and induce ferroptosis in reactive oxygen species (ROS)-

induced stress (1-3). Analysis of mutant mice with p53(3KR) shows that these non-canonical p53 activities 
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contribute to embryonic development and the lethality associated with loss of Mdm2. It is well established 

that ferroptosis is primarily controlled by inhibiting GPX4. p53 activation modulates ferroptosis without 

apparent effects on glutathione peroxidase 4 (GPX4) function. Instead, ALOX12 is critical for p53-mediated 

ferroptosis. ALOX12 inactivation diminishes p53-mediated ferroptosis induced by ROS and abrogates p53-

dependent inhibition of tumor growth in xenograft models. The Gu lab reported an ALOX12-mediated, 

GPX4/ACSL4-independent ferroptosis pathway for p53-dependent tumor suppression (1-3). p53 inhibits 

cystine uptake by repressing expression of SLC7A11, a key component of the cystine/glutamate antiporter 

and sensitizes cells to ferroptosis, which is highly expressed in human tumors. ALOX12 missense mutations 

abrogate its ability to oxygenate polyunsaturated fatty acids and to induce p53-mediated ferroptosis in 

human cancers. The ALOX12 gene is located at human chromosome 17p13.1, a hotspot of monoallelic 

deletion sites in cancers. Many tumor hotspot mutants p53 not only lose tumor-suppressive functions, 

but also gain new activities in promoting tumorigenesis, called mutant p53 gain-of-function (GOF).  

Mutp53 not only promotes tumor development, but also renders these cancer cells with mutp53 

vulnerable to some downstream pathways which they are dependent on for survival as descripted in many 

reviews (4-6). The progress of Wee1 inhibitors and statins in gynecological cancer with p53 mutations will 

be discussed.  

1. Wee1 inhibitors  

Tumor suppressor p53 plays a critical role in cell cycle arrest at G1/S and G2/M in response to DNA damage 

to prevent DNA replication collapse and mitotic catastrophe. Tumor cells with absent or mutated p53 are 

vulnerable to agents targeting the G2/M checkpoint due to the loss of the G1/S checkpoint. Overriding 

the G2 checkpoint will preferentially sensitize p53-defected tumor cells to DNA-damaging agents and 

spare normal cells with wild type p53, which provides a therapeutic window for cancer cells with p53 

defects. Wee1 and Cdc25 regulate cdc2 activity by modifying phosphorylation at Tyr15 at the G2/M 

checkpoint and preventing entry into mitosis. The overexpression of WEE1 has been observed in several 

cancer types, including ovarian cancer. The WEE1 inhibitor AZD1775 (also called adavosertib and MK1775) 

can override the G2/M checkpoint by activating cdc2 via preventing cdc2 phosphorylation at tyrosine 

15(Figure 1A). AZD1775 was observed to promote a synergistic cytotoxicity with the chemotherapeutic 

agent gemcitabine or the PARP1 inhibitor olaparib in p53-mutant ovarian and endometrial cancer cells (7). 

Diminishing drug resistance to carboplatin via treatment with AZD1775 was observed in p53-mutant 

tumors resistant to first-line platinum-based therapy in a phase II clinical trial (8). GOF mutp53 was found 

to increase the expression of proteasome genes to protect against proteotoxic stress, conferring 
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resistance to proteasome inhibitors (9). Poly (ADP-Ribose) Polymerase (PARP) plays a critical role in 

maintenance genomic stability; as such, inhibition of PARP coincident with Wee1 inhibitors is theorized 

to synergistically reduce cells passing freely through the G2 DNA damage checkpoints. However, 

simultaneous induction of both treatments, although effective in inhibiting tumor growth, is offset by a 

strong toxicity and low tolerance characterized by weight loss and anemia by the end of a month-long 

treatment period. Fang et al. recently reported that the synergistic nature of PARP and Wee1 inhibitors 

was maintained while minimizing toxicity when sequential rather than concurrent therapies were 

employed in ovarian cancer xenograft and patient-derived xenograft models(10). These were significantly 

enhanced from the original monotherapeutic strategies and largely on par with concurrent outcomes to 

create reduced fork speed, increased DNA damage, and consequent slowed cell growth relative to normal 

cells based on endogenous replication stress levels and increased cell cycle arrest at the G1/S and G2/M 

checkpoints. To increase specificity to Wee1 and reduce toxicity to normal cells, the Wee1 kinase degrader, 

ZNL-02-096, was developed by binding AZD1775 to the cereblon (CRBN)-binding ligand pomalidomide by 

using PROTAC technique.  Degradation upon conjugation of AZD1775 to pomalidomide functioned in a 

CRBN and proteasome-dependent manner, creating the novel and notably low-dose mechanism by which 

WEE1 overexpression in cancer cells may be repressed. ZNL-02-096 has recreated mono-therapeutic AZD-

G2/M arrest rates at a significant 10-fold dosage decrease, thereby minimizing dosage-dependent toxicity 

while maintaining WEE1 inhibition efficacy and specificity. In particular, the secondary target PLK1 was 

avoided, indicating the reduction of blood-related side effects of this Wee1 degrader when used to treat 

patients in clinical trials.  
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Figure 1. Therapeutic strategies targeting Wee1 and the mevalonate pathway in cancer with 

p53 mutations. The therapeutic strategies targeting mutp53 in cancer include targeting mutp53 

directly or indirectly. The indirect strategies include inhibition of the critical downstream pathways 

of mutp53 and the direct strategies include inducing mutp53 degradation. (A) Wee1 inhibitor 

induces replication catastrophe and mitotic catastrophe in cancer cells with p53 mutations. (B). 

Statins inhibit mevalonate pathway and promote degradation of mutp53. Mevalonate-5-phosphate 

(MVP) promotes mutp53 stabilization by increasing the interaction between mutp53 and 

KSP40/DNAJA1 and inhibiting CHIP-mediated ubiquitination and proteasomal degradation of 

mutp53. Inhibition of the mevalonate pathway with statins represents a novel therapeutic strategy 

of targeting cancers with mutp53 by inducing mutp53 degradation, inhibiting prenylation of 

oncogenes and cholesterol synthesis, as well as inducing ferroptosis by inhibiting the biosynthesis 

of GPX4 and CoQ10. 
 

The single-agent activity of AZD1775/adavosertib was tested in paired tumor biopsies of patients carrying 

BRCA mutations as proof-of-mechanism to demonstrate the target modulation and DNA damage 

response at clinical trial NCT01748825 (11). AZD1775 was demonstrated to be safe and tolerable as a 

single agent and in combination with chemotherapy at the clinical trial NCT00648648 (8). The 21% 

response rate in TP53-mutated patients (n = 19) was higher than the 12% in TP53 wild-type patients (n = 

33), indicating that AZD1775 is effective at both TP53 wild-type and TP53-mutated patients. Adavosertib 

monotherapy demonstrated encouraging and durable evidence of activity in women with recurrent 

uterine serous carcinoma (USC). Liu et al. reported a phase II single-arm clinical trial  (NCT03668340) of 

adavosertib in 34 patients with recurrent or persistent Uterine Serous Carcinoma (12). Median PFS was 
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6.1 months, and median duration of response was 9.0 months. Adverse events (AEs) included diarrhea 

(76.5%), fatigue (64.7%), nausea (61.8%), anemia (67.6%), low platelet count (17.6%), or low neutrophil 

count (32.4%). (13) Progression-free survival (PFS) was longer with adavosertib plus gemcitabine (median 

4·6 months vs 3·0 months with placebo plus gemcitabine in platinum-resistant or platinum-refractory 

recurrent ovarian cancer patients at the phase 2 trial NCT02151292 (14). Adding adavosertib to 

chemotherapy improved PFS [median, 7.9 vs. 7.3 months in patients with TP53-mutated, platinum-

sensitive ovarian cancer treated with  adavosertib (A+C) plus carboplatin and paclitaxel compared to 

placebo plus carboplatin and paclitaxel group(P+C) in the phase II clinical trial NCT01357161. An increase 

in adverse events of adavosertib was observed in patients treated  with A+C versus P+C: greatest for 

diarrhea (75%; 37%), vomiting (63%; 27%), anemia (53%; 32%), and all grade ≥3 adverse events (78%; 

65%). PMID: 32611648 Additional adavosertib doses within the chemotherapy treatment cycle or the 

potential for maintenance therapy for adavosertib should be considered to increase clinical benefit in 

future studies. 

Clinical activity of ZN-c3, a potent oral WEE1 inhibitor from Zentalis Pharmaceuticals, in a Phase 1 dose-

escalation trial was recently reported in 55 patients with advanced or metastatic solid tumors at the AACR 

Annual Meeting 2021. Better safety results were observed compared to adavosertib and partial responses 

in five patients were observed. The drug’s safety profile could make it particularly well suited for use in 

combinations. Side effects were mostly mild to moderate, with nausea affecting about half of the 55 

patients evaluable for safety, and diarrhea, fatigue and vomiting afflicting less than one-third of them. Of 

note, blood-related side effects struck less than 10% of patients: 1.8% of patients suffered a low white 

blood cell count, 7.2% of patients had a low platelet count and 7.2% of patients developed anemia. There 

are three clinical trials for ZN-c3 relevant to gynecological cancer, including a study of ZN-c3 in patients 

with solid tumors (NCT04158336), a study of ZN-c3 in patients with platinum-resistant ovarian cancer 

(NCT04516447) and a study of ZN-c3 in women with recurrent or persistent uterine serous 

carcinoma( NCT04814108). For the clinical trial in NCT04516447 in a study of ZN-c3 in patients with 

platinum-resistant ovarian cancer, levels of circulating deoxyribonucleic acid TP53 mutations tested by  

TAm-Seq will be correlated with response  and changes in pCDC2 and pH2AX in skin and tumor tissue will 

be evaluated as pharmacodynamic markers of therapy. At clinical trial NCT04158336, ZN-c3 will be tested 

to treat patients with solid tumors with advanced or metastatic disease as a single agent and in 

combination with PARP inhibitor Talazoparib or PD1 inhibitor Pembrolizumab. 
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Wee1 inhibitor treatments were also found to promote cancer immunotherapy. Co-targeting of WEE1 

and DNA damage response kinase ATM was shown to downregulate PD-L1 expression in pancreatic cancer. 

(15)  WEE1 inhibition was found to sensitize cancer cells to immunotherapy to PD-1 checkpoint 

blockade in oral cavity carcinoma, melanoma and colon adenocarcinoma with variable Tp53 mutations, 

which provide a pre-clinical rationale for the combination of agents that target cell cycle checkpoints and 

activate anti-tumor immunity to support the clinical trials of Wee1 inhibitor in combination with 

immunotherapy. (16). The effect of the combination of Wee1 inhibitor ZN-c3 with PD1 inhibitor 

Pembrolizumab will be studied in patients with solid tumors with advanced or metastatic disease at the 

clinical trial NCT04158336. 

 In addition to p53 mutations, overexpression of SKP2 and CUL1 at cancer patients may predict benefit to 

Wee1 inhibitors.  Overexpression of G1/S regulatory genes, including SKP2, CUL1, and CDK2, was 

identified as resistance mechanisms to WEE1 inhibitor in a genome-wide unbiased genetic screen (17). 

Stable depletion of SKP2, CUL1, or CDK2 rescued sensitivity to Wee1 inhibition in breast and ovarian 

cancer cell lines, indicating that cancer patients with overexpression of these G1/S regulatory genes would 

respond well to Wee1 inhibitor.  

2. Mutant p53 and mevalonate pathway 

Missense mutations in the TP53 gene can lead to the accumulation of dysfunctional TP53 

(mutp53) proteins, which have gain-of-function activities that include activation of SREPB 

transcription factors (specifically SREBP2), which upregulates mevalonate pathway enzymes. 

This, in turn, leads to tumor growth and progression. However, these dysfunctional TP53 

proteins must first be stabilized to have these effects. As it turns out, the mevalonate pathway 

itself fulfills this role (18). The mevalonate pathway is critical in facilitating tumor proliferation 

as it produces necessary sterols and isoprenoids from acetyl CoA (19). These compounds, 

especially isoprenoids, are required for processes such as protein prenylation and lipidation that 

enable Ras and Rho GTPases to anchor to the cell membrane, both of which function in cell 

proliferation (18). Though there are many intermediates and reactions found within the 

mevalonate pathway, the action of HMG CoA reductase has been particularly of interest as it is 

believed to be regulated by various other studied factors. Statins are a class of cholesterol-

lowering drugs to inhibit HMG CoA reductase used to prevent  cardiovascular disease including 
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atherosclerosis and coronary heart disease in people at high risk. 

 

As previously mentioned, mutp53 stimulates the mevalonate pathway by binding to SREBP2, 

which is a transcription factor that p53 itself activates. SREBP2 in turn affects cellular location 

and activates YAP and TAZ, both of which have previously been seen to function as potent 

oncogenes while also mediating the Hippo pathway, which prioritizes cell proliferation and 

survival (20, 21). In addition, mutp53 also interacts with nuclear factor Y (NF-Y), which functions 

to increase expression of the Rho family of small GTPases, which also function in cell proliferation. 

Interestingly, recent studies have provided evidence to believe that mutp53, through inducing 

SREBP2 and associated genes/pathways as well as NF-Y, can potentially transcriptionally activate 

HMG CoA reductase, thereby upregulating the mevalonate pathway as a whole and promoting 

survival pathways (20).  

Additionally, these statins have minimal effects on WT p53 and DNA contact mutants, which 

offers the advantage of reducing side effects to normal cells with wild type p53 (Figure 1B). Statins 

accomplish this function by reducing mevalonate-5-phosphate (MVP), a metabolic intermediate 

in the mevalonate pathway (22). This triggers CHIP ubiquitin ligase-mediated degradation by 

disrupting the binding affinity  between mutp53 and DNAJA1, a Hsp40 family member. Since 

mutp51 cannot bind or interact with DNAJA1, it will instead bind to CHIP and undergo 

degradation. The actual mechanism through which this interruption of mutp53-DNAJA1 

interaction after reduction of MVP occurs is not entirely known but is hypothesized to be due to 

subsequent changes in protein folding machinery or post-translational modifications that affect 

DNAJA1 and/or mutp53. To further support the significance of DNAJA1 to mutp53 function, it 

was later found that knockout of DNAJA1 can also induce CHIP-mediated mutp53 degradation 

while overexpression antagonizes statin-induced mutp53 degradation (22). This latter effect is of 

particular interest because statin treatment is a method that is particularly effective against 

conformational mutp53 as statins inhibit mutp53 stabilization and protein prenylation, both of 

which are critical to mutp53’s ability to carry out its effects. It was later determined that knockout 

of mevalonate kinase (MVK) has the same effect as reducing mevalonate 5-phosphate, suggesting 

that the disruption of mutp53 functions may be brought about through targeting and manipulating 

different parts of the mevalonate pathway (18). In addition to its effects on mevalonate 5-phosphate, 

statins inhibit HMG-CoA (HMGCR) reductase activity, which mediates the synthesis of 
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cholesterol and the  inhibition of the biosynthesis of selenoproteins (such as GPX4) and CoQ10, 

and thus enhance ferroptosis (22, 23). Several groups reported that Hsp90, Hsp40, CHIP and 

MDM2 plays critical roles to stabilize mutant p53 by the HSP chaperone system, suggesting 

possible synergism between Hsp90 inhibitors and statins or Hsp90 and Hsp40 inhibitors in 

combination (22, 24-26). 

To support this previous information, it is worth mentioning that the gene signature of the 

activation of the mevalonate pathway was identified in an orthotopic model of epithelial ovarian 

cancer with the p53 mutation in 2016 (20). This model utilized aggressive abdominal ascites-

derived 28-2 cells, which were found to have many upregulated genes of the mevalonate pathway. 

As expected, this upregulation had an association with the acquisition of the p53 mutation. 

Consistent with what was previously mentioned, treatment of these cells with a statin, simvastatin 

in this case, induced apoptosis in these cells via inhibition of HMG CoA reductase, the rate-

limiting step of the mevalonate pathway that normally produces an intermediate that is converted 

into mevalonate 5-phosphate via mevalonate kinase (20). As an added note, it was found that 28-

2 cells were more sensitive than other parental cell lines (such as ID8) to statin treatment and that 

simvastatin-induced cell death could only be rescued by mevalonate and not by cholesterol, 

demonstrating the significance of interrupting the mevalonate pathway in dealing with mutp53 

(20).  

As of now, there are over 100 recorded clinical trials that implement statin treatment in cancer-

related scenarios, including gynecological cancers. For instance, atorvastatin was used in the phase 

II cancer prevention clinical trial NCT04767984 in treating patients with ulcerative colitis who 

have dominant-negative missense p53 mutations and are at risk of developing large intestinal 

cancer. Atorvastatin was also used in pilot trial NCT03560882, which will hopefully determine if 

atorvastatin given at a dose of 80 milligrams per day (mg/day) for 1 to 4 weeks can decrease the 

level of conformational mutant p53, Ki-67 and increase caspase-3 in patients with solid tumor and 

relapsed acute myeloid leukemia (AML). In gynecological cancers, there are several clinical trials 

involving statin treatment in ovarian cancer patients and endometrial cancer patients. The clinical 

trial NCT04491643 will explore the treatment efficacy of megestrol acetate 160mg plus 

rosuvastatin 10mg by mouth daily for 6 months in patients with early endometrial carcinoma (EEC) 

seeking for conservative treatment by hysteroscopy at every 3 months. The preoperative window, 
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phase 0 study of trial NCT02767362 will evaluate anti-proliferative effects of atorvastatin for 2 to 

4 weeks treatment by measuring Ki67 immunohistochemical staining in obese women who are to 

undergo surgical staging for endometrial cancer. The clinical trial NCT04457089, yet another 

example, is a single arm pilot trial to evaluate of the effect of simvastatin at 40mg daily for 

approximately 6 months  on  cancer progression and change in serum level of CA125 among 

patients with platinum-sensitive ovarian cancer, treated with carboplatin and liposomal 

doxorubicin at Cedars-Sinai Medical Center.  These platinum-sensitive ovarian cancer patients are 

at high risk of developing recurrent disease and have the potential to get the maximum benefit 

from simvastatin. Another clinical trial, NCT00585052, will evaluate if the treatment combination 

of paclitaxel and lovastatin is more effective for patients with refractory or relapsed ovarian cancer. 

Other than this, there are 3 recorded trials investigating the role of TP53 at statins associated 

treatment to cancer. The clinical trial NCT02767362 will study the effect of atorvastatin for a 

minimum of 2 weeks with a dosage of 80 mg once, daily on endometrial cancer. In clinical trial 

NCT03560882, atorvastatin will be used for a period of 1-4 weeks with a dosage of 80 mg per day 

to see efficiency and potency of atorvastatin and the effect on the reduction of mutant p53. In 

trial NCT04767984, atorvastatin will be investigated on its effect in reducing mutant p53 levels in 

patients.  These trials demonstrate remarkable effort and drive in an attempt to see if statins can be 

re-purposed against the effects of mutp53 by blocking the mevalonate pathway in cancer patients 

with TP53 mutations.  

Concluding remarks 

As summarized above, Wee1 inhibitor and statins have shown to be effective to certain extent 

and promising in both preclinical studies and clinical trials to gynecologic cancer with p53 

mutations; however, there are still unresolved obstacles. More studies on the application of Wee1 

inhibitors and statins as monotherapy or combined with other reagents in p53 mutated cancers 

will improve therapeutics efficacy mutp53 in gynecologic cancers.  
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