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Abstract 

 

In this paper, the author derives an explicit form of Heaviside Step Function, which evidently constitutes 

a  fundamental concept of Operational Calculus and is also involved in many other fields of applied and 

engineering mathematics.  

In particular, this special function is exhibited in a very simple manner as a summation of four inverse 

tangent functions. The novelty of this work is that the proposed exact formulae are not performed in terms 

of miscellaneous special functions, e.g. Bessel functions, Error function, Beta function etc and also are 

neither the limit of a function, nor the limit of a sequence of functions with point – wise or uniform 

convergence.  

Hence, this formula may be much more appropriate and useful in the computational procedures which are 

inserted into Operational Calculus techniques and other engineering practices.  
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1. Introduction 

 

The Heaviside step function, or unit step function, which is usually notated by the symbols H or u, is a 

discontinuous single – valued function, the value of which is zero for negative argument and equal to 

unity for positive argument [1]. This special function was introduced by Oliver Heaviside, who was an 

important pioneer in the study of electronics and also made a remarkable contribution to the field of 

Operational Calculus [2]. A very significunt property of this function is that it is capable of being 

represented either as a piecewise constant function or as a generalized function [1,3]. The unit step 

function is mainly used in the calculation processes of Control Theory and signal processing in order to 

represent a signal which switches on at a specified time and stays switched on indefinitely. This function 

is also implemented together with its derivative, i.e. Dirac delta function in structural engineering in order 

to describe various types of structural loads, e.g. off – axis four point bending of simply supported or 

fully constrained beams. Hence, it is very useful for the necessary calculations dealing with conceptual 

and embodiment design procedures from the engineering viewpoint. 

In the meanwhile, there are many smooth analytic approximations to the unit step function as it can be 

seen in the literature [4,5,6]. Besides, Sullivan et al [7] obtained a linear algebraic approximation to this 

function by means of a linear combination of exponential functions. However, the majority of all these 

approaches lead to closed – form representations consisting of non - elementary special functions, e.g. 

Gamma function, Hyperfunction, or Error function and also most of its algebraic exact forms are 

expressed in terms generalized integrals or infinitesimal terms, something that complicates the related 

computational procedures. In Ref. [8] an analytic exact form of the Unit Step Function was proposed as a 

summation of two inverse tangent functions. Nonetheless, according to this simplified approach the 

singularity structure was left ambiguous.  Also, one may point out that a shortcoming of such formulae is 

that the involved inverse trigonometric functions do not have unique definitions. 

Moreover, in Ref. [9] this special function this function was explicitly expressed by the aid of purely 

algebraic representations. The novelty of this work was that the proposed explicit formula is not 

performed in terms of non-elementary special functions, e.g. Error function. 

Further, another elegant approximation to Heaviside function in the form of a summation of two 

logarithmic functions was carried out by Murphy in Ref. [10]. In this interesting work, the author also 

presented an explicitc form of Dirac delta function.    
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In Ref. [11] the Unit Step Function was approached by some cumulative distribution functions (e.g. Half-

Cauchy and Hyperbolic-secant functions), whereas in Ref. [12] an analogous study was carried out 

towards the approximation of Unit Step Function by some other cumulative distribution functions. 

Besides, in Ref. [13] a Hausdorff approximation of Heaviside Step function by means of several sigmoid 

functions (log–logistic, transmuted log–logistic and generalized logistic functions) was taken into account 

and in this framework, upper and lower bounds for the Hausdorff distance were derived.   

Finally in Ref. [14] a single – valued function was introduced, which was proved to be synonymous with 

the Unit Step Function.  This formula consists of purely algebraic representations and does not contain 

either generalized integrals or any other infinitesimal quantities.   

In the present study, in the sense of Ref. [8] an analytic exact form of the Unit Step Function has been 

proposed as a summation of four inverse tangent functions. Indeed, this formula constitutes a purely 

algebraic representation since it does not contain special functions, generalized integrals or any other 

infinitesimal quantities. In this context, this formula seems to be very practical and may have good 

prospects towards the computational procedures that concern the applications of Heaviside function in 

Operational Calculus, as well as in other engineering practices.  

 

2. Towards an exact form of Heaviside Function 

 

Let us introduce the following single – valued function RRf →*:  with 
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3. Claim 

 

The function f  coincides with Heaviside Step Function over its domain of definition. 

 

4. Proof 

 

We shall prove that the value of the function f  vanishes for negative arguments and equals unity for 

strictly positive arguments. 

To this end, let us calculate the first derivative of f  with respect to variable x . 

For facility reasons, let us set txn =   with 
*Rt and therefore 

 

1−= nnx
dx

dt
                                                                                                                                         (2) 

 

Thus we can write out 
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After some algebra, it implies that 

 










+−

−
−

+−

−
= −1

24

2

24

2

13

1

13

1
)( nnx

tt

t

tt

t
xf

dx

d
 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 June 2021                   doi:10.20944/preprints202106.0132.v1

https://doi.org/10.20944/preprints202106.0132.v1


 3 

),0()0,(,0)( +−= xxf
dx

d
                                                                                                   (4) 

 

Here one may also pinpoint that since the left sided and right sided limits of the quantity: 
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)(xf letting x tend to zero does not exist. 

Next, let us focus on the set )0,(−  and suggestively estimate the value of )(xf  at 1−=x  

Thus we can write out 
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Since )0,(,0)( −= xxf
dx

d
 and 0)1( =−f  one may deduce that the value of )(xf  is zero for strictly 

negative arguments. 

Then, let us focus on the set ),0( +  and suggestively estimate the value of )(xf at 1=x  

Thus we can write out 
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Since ),0(,0)( += xxf
dx

d
and 1)1( =f  one may infer that )(xf equals unity for strictly positive 

arguments.  

After all, it was proved that )(xf  is synonymous with Heaviside Step Function over its domain of 

definition. 

5. Discussion 

 

In the previous Section, we proposed an explicit form of Unit Step Function as a summation of four 

inverse tangent functions.  However, one may pinpoint that a shortcoming of the single – valued function 
)(xf  introduced by eqn. (1) is that it cannot be defined at 0=x . Besides, the limit of this function at 

0=x does not exist, since the left sided and right sided limits of )(xf letting x tend to zero are not equal.   
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Here, one may  also remark that when Heaviside step function )(xH  is approached by the well – known 

logistic function  
))((1 0xxkEXP

L

−−+
, it is admitted beforehand that 

2

1
)0( =H  [15].  

In addition, one may also observe that a disadvantage of all mathematical formulae consisting of inverse 

trigonometric functions is that these functions do not have unique definitions. Moreover, one should 

elucidate that mathematical representations containing such quantities are not appropriate for determining 

the Dirac function by differentiating the proposed function with respect to variable x . For instance, it was 

shown that the first derivative of )(xf  with respect to x vanishes over the set ),0()0,( +− . Further, 

one should   emphasize that the formula introduced by eqn. (1) does not describe only one function but in 

fact describes a family of functions, that all have the same property (to be synonymous with Heaviside 

function) and this is an advantage over the mathematical formula proposed in Ref. [8]. 

Finally, on the basis of eqn. (1) one may also propose the following single – valued function expressed in 

power series form, which coincides as well with the Unit Step Function over the set ),0()0,( +− . 

RRg →*:  with 
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where *, Nnm   

6. Conclusions 
 

The objective of this theoretical investigation was to introduce an analytic exact form of the Unit Step 

function. The proposed formula, constitutes a linear combination of four inverse trigonometric functions 

and therefore does not contain either generalized integrals or any other infinitesimal quantities. In 

addition, no other special functions are involved (e.g. Gamma function, Complementary Error function 

etc). In this famework, the proposed formula may have good prospects towards the computational 

procedures that concern the applications of the Unit Step function in Operational Calculus, as well as in 

many engineering practices. Nevertheless, one should pinpoint that a shortcoming of the proposed 

formula is that it cannot be defined at 0=x .  
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