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Abstract: Various products of the Integrated Multisatellite Retrievals for GPM (IMERG) and passive 

microwave (PMW) sensors are assessed with respect to near-surface wet-bulb temperature (Tw), 

precipitation intensity, and surface type (i.e., with and without snow and ice on the surface) over 

the CONUS and using Stage-IV product as reference precipitation. IMERG products include precip-

itation estimates from infrared (IR), combined PMW, and their combination. PMW products gener-

ally have higher skills than IR over snow- and ice-free surfaces. Over snow- and ice-covered surfaces 

(1) PMW products (except AMSR-2) show a higher correlation coefficient than IR, (2) IR and PMW 

precipitation products tend to overestimate precipitation, but at colder temperatures (e.g., Tw<-10oC) 

PMW products tend to underestimate and IR product continues to show large overestimations, and 

(3) PMW sensors show higher overall skill in detecting precipitation occurrence, but not necessarily 

at very cold Tw. The results suggest that the current approach of IMERG (i.e., replacing PMW with 

IR precipitation estimates over snow- and ice-surfaces) may need to be revised. 
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1. Introduction 

Accurate precipitation estimation with high spatiotemporal resolution is key to many 

hydrologic studies. Rain gauges and ground radars have enabled high-quality observa-

tion and estimate of precipitation at a point or regional scales and satellite observations 

have enabled precipitation estimate with global coverage at sub-daily temporal sampling, 

which is important for regional and global studies.  

The high temporal sampling from satellite observations comes through the use of 

infrared images from geostationary satellites, multiple Passive Microwave (PMW) sensors 

on low-earth-orbiting satellites, or a combination of both. PMW sensors often provide 

more information about the hydrometeors, thus tend to result in more accurate precipita-

tion estimates than precipitation retrieval based on IR data. However, PMW-based pre-

cipitation estimation may also face large uncertainties due to several factors including er-

rors related to the poor understanding of precipitation microphysics, difficulties in distin-

guishing between light rain and cloud [1-3], and challenges in determining surface emis-

sivity, especially over snow and ice [4, 5].  

The methods for blending IR- and PMW-based precipitation estimates have been dif-

ferent across different merged precipitation products. Precipitation Estimation from Re-

motely Sensed Information Using Artificial Neural Networks (PERSIANN) [6] and PER-

SIANN Cloud Classification System (PERSIANN-CCS) [7] are mainly based on IR bright-

ness temperature-precipitation rate relationships established using geostationary IR ob-

servations and PMW precipitation estimates.  On the other hand, products such as the 

Integrated Multisatellite Retrievals for GPM (IMERG) [8], Climate Prediction Center’s 

morphing technique (CMORPH) [9], and JAXA’s Global Satellite Mapping of 
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Precipitation (GSMaP) [10] use PMW precipitation as their main input and IR precipita-

tion might be used to fill gaps in time. For example, if the time interval from the nearest 

PMW observation is longer than 30 minutes, IMERG tends to use a combination of IR and 

PMW estimates and for time intervals of more than 90 minutes, the precipitation rate 

mainly comes from IR-estimate. This is because by about ±90 minutes the IR precipitation 

has shown a higher correlation with reference precipitation than the propagated micro-

wave precipitation estimates [8]. 

IMERG also uses IR precipitation estimate over snow and ice surfaces, regardless of 

the time distance from PMW observations and type of PMW sensors [8]. This is because 

PMW precipitation estimates are perceived as unreliable over snow and ice surfaces. 

However, the performance of IR precipitation over snow and ice surfaces has also not 

been well investigated. Furthermore, it has been found that different PMW sensors have 

dissimilar skills for precipitation retrieval over land and ocean [11]. It is important to as-

sess how precipitation estimates from different PMW sensors (or a combination of them 

as used in IMERG) are compared with IR precipitation over surfaces with and without 

snow and ice. IMERG prefers precipitation estimates from PMW imagers over PMW 

sounders, which may not always be the best choice over land [11]. Examples of recent 

PMW imagers used in IMERG are the Special Sensor Microwave Imager/Sounder (SSMIS) 

on the Defense Meteorological Satellite Program (DMSP) platforms, the GPM Microwave 

Imager (GMI) on the GPM Core Observatory satellite, and the Advanced Microwave Scan-

ning Radiometer Earth Observing System (AMSR-E) on the Aqua satellite; and its follow-

on satellite (AMSR2) on board the GCOM-W1 satellite. Among the main PMW sounders 

used in IMERG are: the Advanced Technology Microwave Sounder (ATMS) on board Su-

omi National Polar-Orbiting Partnership (Suomi-NPP) and NOAA-20 satellites; the Mi-

crowave Humidity Sounder (MHS) on board NOAA-18, NOAA-19, MetOp-A, MetOp-B, 

and MetOp-C satellites. In IMERG, IR precipitation is obtained from PERSIANN-CCS. 

Besides considering surface conditions (e.g., surfaces with and without snow and ice) 

in comparison of PMW and IR precipitation, it is important to perform the analysis as a 

function of surface temperature, as surface temperature is used to discriminate the pre-

cipitation phase. Behrangi, Tian [12] compared AMSR-E and CloudSat precipitation de-

tection as a function of surface air temperature at 2m (T2m) and showed that AMSR-E 

significantly underestimates CloudSat precipitation for T2m below the freezing tempera-

ture. Zhang, Lin [13] also used T2m to evaluate high-resolution (0.1°/hourly) precipitation 

estimates from the Weather Research and Forecasting (WRF) Model and IMERG over the 

central United States. Results show that the WRF estimates exhibit higher correlations 

with the reference data when the temperature falls below 280 K, while IMERG estimates 

show higher correlation than WRF for T2m greater than 280 K. They also showed that the 

complementary behavior of the WRF and the IMERG products conditioned on T2m does 

not vary with either season or location. However, their study did not provide information 

on the performance of PMW and IR precipitation estimates that are used in IMERG and 

did not consider surface condition (i.e. surfaces with and without snow and ice) that de-

termines the use of IR or PMW precipitation components in IMERG.  

In the present study, we focus on evaluating the performance of IMERG and its pre-

cipitation components. In addition, analysis as a function of precipitation rate provides 

insights into the performance of the precipitation products under light, moderate, and 

intense precipitation events.  These analyses should add insights to refine strategies for 

combining IR and PMW precipitation estimates in the merged products such as IMERG. 

2. Materials and Methods 

2.1 comparison approach and metrics 

Using three years of Stage IV data (2015-2017) as a reference over the CONUS, the 

performance of each product is assessed within each 1-degree Tw bin, separately over sur-

faces with and without snow and ice cover. Precipitation thresholds of 0, 0.1, 0.3, 1, and 

2mm/hr are used to separate precipitation from no-precipitation. For example, by using a 
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threshold of 2mm/hr, only grids with precipitation rates of greater than 2mm/hr are con-

sidered as precipitating and anything less than that is considered as non-precipitating, so 

the emphasis will be more on intense precipitation events. The calculation of Tw is de-

scribed in [14] and uses 2-m air temperature, 2-m dewpoint temperature, and surface pres-

sure that are obtained from reanalysis. The score metrics used in this study are: Probability 

of Detection (POD), False Alarm Ratio (FAR), Bias, and Heidke Skill Score (HSS) for as-

sessment of precipitation occurrence as well as Correlation Coefficient (CC) and Volume 

Bias (VBias) for assessment of precipitation rate. HSS provides a more generalized skill 

score for assessing the accuracy of the predictions relative to the random chance. In other 

words, HSS shows the fraction of correct predictions by excluding correct predictions due 

to random chance. The range of the HSS is -∞ to 1. Negative values indicate that the fore-

cast by chance is better, 0 means no skill, and 1 means a perfect forecast. The ideal score 

for Bias and VBias is 1. Bias is calculated by dividing the number of estimated precipita-

tion occurrences from each product by the corresponding value from the reference prod-

uct (here Stage IV). VBias is similar to Bias, but is calculated by dividing the amount of 

estimated precipitation by the corresponding value from observation. It should be noted 

that Bias of 1 alone does not necessarily indicate a perfect prediction, because Bias of 1 

means that the number of grids identified as precipitation is the same for the two products 

being compared. However, a product might miss of falsely determine precipitation occur-

rence as can be inferred from POD and FAR. Details for calculation of the above metrics 

are provided in [15].   

Note that it is known that most satellite products underestimate orographic precipi-

tation enhancement and are not able to capture that accurately [16]. Therefore, to separate 

this effect from our analysis, using maps of mountains (See Section 2.2), regions suscepti-

ble to orographic precipitation enhancement were removed from the analysis.  

2.2. Dataset 

A brief description of the products used in this study is provided below: 

• IMERG products 

The latest version of the IMERG products (V06) used in this study. IMERG provides 

gridded precipitation maps with high spatiotemporal resolution (0.1x0.1 deg. every ½ hr) 

within 90°S-N by blending precipitation estimates from two sources: (1) IR images using 

PERSIANN-CCS, and (2) GPM Microwave Imager (GMI) and a constellation of GPM 

PMW sensors. IMERG uses the latest version of PMW precipitation products (V05) re-

trieval based on the 2017 version of the Goddard Profiling Algorithm (GPROF2017) [17]. 

Details of the IMERG algorithm are described in Huffman, Bolvin [18] and in brief in-

cludes four main steps: (1) precipitation estimates from the GPM constellation radiome-

ters are gridded, intercalibrated to the radar-microwave combined product (2BCMB), and 

combined into half-hourly 0.1°x0.1° fields (variable name: “HQprecipitaiton”), hereafter 

referred to as IMERG-HQ, (2) maps of half-hourly IR precipitation rate (“IRprecipitation”) 

are calculated using PERSIANN-CCS, hereafter referred to as IMERG-IR, (3) MW and IR 

estimates are used to create half-hourly estimates (“precipitationUncal”) by utilizing the 

Climate Prediction Center Morphing-Kalman Filter (CMORPH-KF) Lagrangian time in-

terpolation scheme, and (4) the multi-satellite half-hour estimates are adjusted so that they 

sum to a monthly satellite-gauge combination (“precipitationCal”).  This bias-adjusted 

product is referred to as IMERG-Final which is available ~3.5 months after observation for 

accurate estimation with monthly gauge adjustments to reduce bias. IMERG also reports 

sources of PMW sensors “HQprecipSource”, but it does not specify the platform names. 

Note that IMERG provides users with two other runs. The Early run is available ~4 hours 

after observation for real-time applications such as flood prediction and includes only for-

ward morphing and may not benefit from all PMW sensors. The Late run (IMERG-Late) 

is available ~14 hours after observation, implementing forward and backward morphing. 

The current version of IMERG-Late (V6) does not apply climatology bias adjustment, but 

the future versions will.  

In this study, we use IMERG-Late, IMERG-Final, IMERG-HQ (PMW-only), and 

IMERG-IR (IR-only) products available at half-hour at 0.1×0.1 degree resolution. As 
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discussed in Section 1, in IMERG, IR is used over snow and ice surfaces or when the time 

distance from PMW observations is large. For the period of this study, IMERG-HQ uses 

imagers (AMSR-2 and GMI), sounders (ATMS, and MHS), and combined imager and 

sounder (SSMIS) sensors. All of these sensors, regardless of their platform, are used in our 

analysis. When there are available data from sounders and imagers, IMERG prioritizes 

imagers over sounders with consideration of observation time closest to the center of the 

half-hour (Huffman et al. 2020).  

• National Centers for Environment Prediction (NCEP) Stage IV 

The hourly Stage IV product is used in this study as reference data to analyze IMERG 

products’ performance over CONUS. Since 2002 the hourly Stage IV product provides 

hourly estimates using Z-R relationship from over 150 Doppler Next Generation Weather 

Radars (NEXRAD), and a combination of 5500 hourly rain gauge measurements to pro-

duce hourly 4×4 km resolution data [19, 20]. As of April 2017, this dataset includes Alaska 

and Puerto Rico stations. Stage IV benefits from manual quality control (QC) on Stage III 

data gathered at each River Forecast Center (RFC) unlike Stage II which does not include 

manual QC (https://data.eol.ucar.edu/dataset/21.093). Including quality control, gauge 

measurements give assurance of the quality of the data. This becomes more important in 

the case of snowfall measurements when the temperature is below the freezing point be-

cause most of the radar-based estimations under freezing conditions are controversial 

[21]. Cocks, Martinaitis [22] shows the value of nine winter precipitation events over the 

Rocky Mountains is in good agreement with gauge measurements. Altogether we found 

out NCEP Stage IV data is the most suitable and convenient for our study with fairly reli-

able accuracy [21].  

• ERA5-Land 

This dataset is a replay of ECMWF original land component ERA5 climate reanalysis 

with a finer resolution at ~9 Km grid spacing with an hourly time interval. This dataset 

provides surface variable data from 1981 to 2-3 months before the present. In this study 

to calculate wet-bulb temperature, three different variables were obtained from ERA5-

Land including 2-m air temperature, 2-m dewpoint temperature, and surface pressure for 

2015 to 2017 over CONUS. We used wet-bulb temperature to distinguish rainfall from 

snowfall following as it is a better separator than air temperature [14, 23, 24]. 

• NOAA Autosnow Product 

The NOAA Autosnow product provides daily surface ice and snow map with global 

coverage. It is a gridded product with 0.04° lat/lon resolution. It uses data gathered from 

different sensors on various satellites. For details of sensors used in this product see Ro-

manov [25]. IMERG uses Autosnow in two stages: (1) mask snow- and ice-covered sur-

faces for Kalman statistics computation and, (2) mask IMERG precipitation estimates. In 

this study, we use Autosnow to delineate surfaces with and without snow and ice cover.  

• K3 mountain map 

In this study to detach the issues related to the underestimation of orographic pre-

cipitation by satellite products from our analysis, K3 mountain mask was used. K3 pro-

vides a GIS-based, global map of mountains derived from digital elevation models (DEM) 

with a 250m resolution. It has been developed after K1 and K2 mountains raster with a 

coarser resolution [26-28]. For comparison of different K mountain maps see Roger, Char-

lie [29]. K3 characterizes mountains into four different groups: high and high-scattered 

mountains with elevation exceeding 900 m and low and low-scattered mountains with 

elevation ranging between 301-900 m. K3 maps are found useful to identify regions that 

might contain orographic precipitation (Personal communication with Dr. Paula Brow of 

Colorado State University). Since in this study we are not focusing on orographic precip-

itation and radar precipitation estimates over mountainous regions may not be accurate 

[30], we removed all high and high-scattered mountains (see supplementary Figure S1) 

from our analysis.   

 

3. Results 
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The results of this study are presented under three main sections: (1) general charac-

teristics and differences of IMERG and Stage IV products including spatial distribution 

and seasonality accompanied by a case study, (2) analysis of IMERG components versus 

Stage IV data over snow-and ice-covered and snow- and ice-free surfaces with different 

intensities and, (3) investigating the performance of individual PMW sensor types. 

3.1 General Characterization 

Figure 1 shows seasonal mean precipitation maps from Stage IV (Figs. 1a-1d), 

IMERG-Final (Figs. 1e-1h), IMERG-HQ (Figs. 1i-1l), IMERG-IR (Figs. 1m-1p), and IMERG-

Late (Figs. 1q-1t) using three years (2015-2017) of data over CONUS. For a more detailed 

assessment, maps of seasonal differences in mean precipitation rate between IMERG 

products and Stage IV are also plotted in Figure 2. From these two figures, few points can 

be highlighted: (1) because IMERG-Final is bias-adjusted with gauges at monthly scale, it 

is closest to Stage IV in terms of both magnitude and pattern, (2) over mountainous re-

gions, mainly in the west, IMERG products tend to underestimate precipitation rates dur-

ing winter (DJF) where snow and ice are on the surface. This is also observed in spring 

(MAM) and fall (SON), but not in summer (JJA), although the underestimation is more 

noticeable for IMERG-HQ than IMERG-IR that is consistent with previous studies [31, 32], 

(3) IMERG products (except IMERG-Final that is bias-adjusted) show larger precipitation 

amount than Stage IV over the central and eastern parts of the CONUS, especially during 

DJF and MAM. It is not clear if this overestimation, especially during the DJF, is due to 

overestimation of rainfall, snowfall, or due to surface conditions (e.g., snow and ice on the 

surface). Therefore, to better understand the performance of the satellite products, a more 

detailed analysis as a function of surface type and precipitation phase is needed.  

The observed underestimation over the mountainous west can be due to poor skill of 

satellite products in capturing orographic enhancement [16, 33] and the fact that most of 

the annual precipitation over this region occurs in wintertime [34] and a large fraction of 

the that is through the atmospheric rivers [35, 36].  However, it is important to note that 

radar beam blockage may also contribute to the lower quality of Stage IV product in 

mountainous regions. Most of these regions are masked out using the K3 mask applied in 

this study.  
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Figure 1: Spatial distribution of mean seasonal precipitation rate (mm/day) over the CONUS using 

STAGE IV and various IMERG products, each presented in a row. Average intensity is calculated 

from three years (2015 to 2017) of data. 
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Figure 2: Seasonal spatial distribution of the difference in mean daily precipitation between 

IMERG products and STAGE IV for three years (2015-2017). Average intensity includes zero pre-

cipitation rate. Each row is labeled with IMERG product minus Stage IV data 

 Figure 3 shows a precipitation event on December 29, 2017, over the Washington and 

Oregon states (Figure 3a). This event contains both rain and snowfall, rainfall mainly oc-

curs over the western and southern parts and snowfall occurs over the north-eastern part 

of the study area as can be seen from the liquid probability (Figure 3h) and Wet-bulb 

temperature (Figure 3g) maps. The snow- and ice-covered surfaces are also shown in Fig-

ure 3i using the Autosnow product. Stage IV precipitation map (Figure 3b) is used as a 

comparison reference.  The white areas in Figure 3b represent regions with no data either 

because it is over the ocean located in the western part of the region (Stage IV has no 

coverage over the ocean) or missing radar data inland (Figure 3a). As discussed in Section 

2, IMERG-Final and IMERG-Late are produced by combining the IR-based and PMW-

based precipitation estimates. IMERG-Final bias-adjusts IMERG-Late using rain-gauges 

at a monthly scale. While the bias adjustment is often effective at a monthly scale, it does 

not necessarily improve the product at a sub-monthly scale, which could be a reason for 

the considerable difference between the IMERG-Final and STAGE IV products. IMERG-

Late uses IR-based precipitation over snow and ice surfaces and when PMW overpasses 

are far in time from each other. Therefore, over the northeast, IR-precipitation is directly 

used in IMERG-Late products as can be inferred from Figure 3d-3j. Over the rainfall area, 

IMERG-Late is produced by combining the IMERG-IR and IMERG-HQ products as can 

be inferred from Figures 3e and 3f. 

As discussed in the introduction section, there is a need for a more detailed analysis 

of the performance of IR (represented by IMERG-IR) and PMW (represented by IMERG-

HQ) precipitation estimates over snow and ice surfaces that is investigated in the next 

section.    
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Figure 3: A precipitation event on Dec. 29 2017 for a selected study area shown in (a).  Precipita-

tion intensity from STAGE IV and IMERG products are shown in Panels b-f. Wet-bulb tempera-

ture, liquid probability, and snow- and ice-covered surfaces are shown in panels (g), (h), and (i), 

respectively.  

3.2 Assessment of the IMERG products as a function of precipitation rate, surface, and 

environmental conditions 

This section compares different IMERG products (e.g., IMERG-Final, IMERG-HQ, 

IMERG-IR and, IMERG-Late) with the Stage IV precipitation estimates by considering 

precipitation intensity, temperature effects (Tw; that is also related to the precipitation 

phase), and surface type (i.e., surface with or without snow and ice cover). To investigate 

how the performance of the precipitation products varies with precipitation rate, five dif-

ferent thresholds (e.g., 0, 0.1, 0.3, 1 and, 2 mm/hr) were used and statistical scores were 

calculated for precipitation events identified by these thresholds (Figure 4 and 5). In other 

words, precipitation rates smaller than the thresholds were set to non-precipitating events 

and precipitation rates equal or greater than the threshold were considered as precipita-

tion events.  

Figure 4 shows the performance of different IMERG products over snow- and ice-

covered surfaces as a function of Tw, plotted in the X-axis. Five different intensity thresh-

olds are used to assess how products perform under events with higher precipitation 

rates. The top row shows the number of samples used in the analysis (Figure 4a-4d), fol-

lowed by CC, POD, FAR, Bias, Volume Bias (VBias), and HSS in the lower rows.  Note 

that the ideal score for Bias and VBias is one as discussed in Section 2. In general, IMERG-

Late and IMERG-Final are similar to IMERG-IR, because by design IMERG uses IMER-IR 

over snow and ice surfaces. IMERG-Final can be slightly different from IMERG-Late due 
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to the monthly bias adjustment utilized in IMERG-Final.  Comparison of IMERG-IR with 

IMERG-HQ, as a function of Tw and precipitation intensity, enables us to assess whether 

the use of IR instead of PMW precipitation in IMERG is effective or not, especially at cold 

temperatures and over snow- and ice-covered regions. Figure 4 shows that as Tw decreases 

CCs tend to decrease for all the products. While IMERG-HQ is more sensitive than 

IMERG-IR to changes in Tw, IMERG-HQ has higher CC than IMERG-IR at all Tw bins (Fig-

ure 4e-4h). This is the case for all precipitation intensities, but note that CC is generally 

lower once we focus on higher precipitation rates.  

IMERG-HQ has a higher POD than IMERG-IR at Tw greater than ~ -10oC, but at colder 

temperatures POD of IMERG-HQ is generally lower than IMERG-IR (Figure 4i-4l). Over-

all, both IMERG-IR and IMERG-HQ show reduction in POD at colder temperatures, alt-

hough this is not necessarily the case for precipitation rates greater than 1 mm/hr, in which 

both IMERG-IR and IMERG-HQ show a slight increase in POD as Tw decreases. Note that 

precipitation is well detected (i.e., POD is about 1) by both products for precipitation in-

tensities greater than 1 mm/hr. Figure 4m-4p show that FAR tends to be higher at colder 

Tw and lower at higher precipitation rates for both IMERG-IR and IMERG-HQ. IMERG-

HQ, however, has a slightly lower FAR than IMERG-IR overall. This results in IMERG-

HQ having generally higher HSS than IMERG-IR, almost at all Tw ranges, except at very 

cold temperatures (e.g., Tw< -15oC) where the two products are comparable (Figure 4z-

4aa). With respect to Bias (Figure 4q-4t), both IMERG-IR and IMERG-HQ show values 

around 1 for precipitation intensities greater than 0.1 mm/hr, but at colder temperatures 

(e.g., Tw less than -10oC) IMERG-HQ tends to under detect (Bias<1) and IMERG-IR tends 

to over detect (Bias>1) precipitation occurrences. When precipitation intensities lower 

than 0.1 mm/hr are included in the analysis, both IMERG-IR and IMERG-HQ show larger 

Bias values, suggesting that the products tend to have large false detection of light precip-

itation as can also be noticed from the FAR plots. This is not necessarily the case for 

IMERG-HQ for Tw< -10oC where the products tend to under detect precipitation inci-

dences. VBias plots (Figure 4u-4x) show that over snow- and ice-covered surfaces both 

IMERG-HQ and IMERG-IR tend to overestimate precipitation amount, except for IMERG-

HQ for light precipitation at cold temperatures (e.g., Tw less than -12oC). This is consistent 

with previous studies showing that PMW tends to underestimate light precipitation over 

cold surfaces [13]. Clearly, the impact of PMW underestimation is larger in high latitude 

regions, where light precipitation is dominant [37, 38].  Note that for precipitation rates 

higher than 1 mm/hr, there are large overestimations by both IMERG-HQ and IMERG-IR 

at colder temperatures that might be related to the confusion of the retrieval methods over 

snow- and ice-covered surfaces. As can be seen, the bias adjustment employed in IMERG-

Final can only slightly improve the IMERG-Late product, likely because the adjustment is 

performed at a monthly scale, while statistical scores shown in Figure 4 are based on the 

instantaneous matchups. Overall, results show that IMERG-HQ may outperform IMERG-

IR over snow and ice surfaces, at least over the CONUS, suggesting that unconditional 

use of IR as a replacement for IMERG-HQ over snow and ice surfaces needs to be revis-

ited.  

Figure 5 is similar to Figure 4, but it is over snow- and ice-free surfaces. Here IMERG-

Late and IMERG-Final mainly follow IMERG-HQ scores rather than IMERG-IR. However, 

the impact of IMERG-IR on IMERG-Late (thus IMERG-Final) can be seen (at least in the 

CC plot), as IR is still used in IMERG-Late when the time-distance between successive 

PMW overpasses is large. It can be seen that both IR and PMW products tend to have 

better scores over snow- and ice-free than over snow-and ice-covered surfaces and both 

show worse skill scores as Tw decreases. Furthermore, IMERG-HQ tends to outperform 

IMERG-IR almost regardless of the Tw and intensity ranges. Both products also show 

higher skill scores when light precipitation is removed from the analysis, except for CC 

and VBias. Both IMERG-IR and IMERG-HQ show large VBias when precipitation inten-

sities greater than 1 mm/hr are assessed at lower temperatures, but VBias is clearly larger 

for IR at Tw less than 5oC. At Tw less than 0oC, IMERG-HQ shows slight underestimation 

for events that include light precipitation. Overall, it appears that the use of IMERG-IR 
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performs worse than IMERG-HQ over snow- and ice-free surfaces. Note that IMERG-HQ 

does not include morphed PMW estimates, so the outcomes of this analysis do not apply 

to the morphed PMW estimates that may show less skill at a longer time distance from 

the time of PMW observations [39].  

 

Figure 4: Comparison of different IMERG products (from left to right column: Final, HQ, IR and, 

Late) with Stage IV data for three years (2015-2017) over CONUS over snow- and ice-covered sur-

faces. Orographic effects are excluded using mountains mask. The X-axis indicates wet-bulb tem-

perature 1-degree bins. Each color indicates the threshold for rainfall intensity from 0 mm/hr (in 

black) to 2 mm/hr (in cyan). The number of events for each threshold is shown in the first row. The 

second row to the seventh row shows statistical indices for correlation coefficient (CC), probability 

of distribution (POD), false alarm ratio (FAR), bias, volume bias (VBias) and, Heidke skill score 

(HSS). 
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Figure 5: Similar to figure 4, but for snow- and ice-free surfaces. 

 

Figure 6 facilitates comparing IMERG-IR with IMERG-HQ as a function of Tw over 

snow- and ice-covered (left-column) and snow- and ice-free (right-column) surfaces. Here, 

a fixed threshold of 0.3 mm/hr is used for precipitation delineation. It can be seen that 

IMERG-HQ outperforms IMERG-IR over snow- and ice-free surfaces across all tempera-

tures, although it shows slightly worse Bias and VBias than IMERG-IR for Tw< ~5C (Figure 

6h) and Tw between 10C and 20C (Figure 6j), respectively. Over snow- and ice-covered 

surfaces IMERG-HQ outperforms IMERG-IR in terms of CC (Figure 6a) and FAR (Figure 

6e), regardless of Tw. However, IMERG-IR shows higher POD and HSS than IMERG-HQ 

for Tw< ~-12C (Figure 6c and 6k), but this is along with higher FAR and Bias (Figure 6e 

and 6g). Figure 6i shows a significantly large VBias for IMERG-IR, especially for Tw<-8C. 
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Figure 6: Comparison of IMERG-HQ and IMERG-IR over snow- and ice-covered and snow- and 

ice-free surfaces using three years (2015-2017) of data over CONUS. Stage IV is used as a reference. 

Dashed and solid lines represent  IMERG-IR and IMERG-HQ, respectively. Precipitation is delin-

eated from no precipitation using a threshold of 0.3 mm/hr. Orographic effects are excluded using 

mountains mask. 

3.3 Performance of individual PMW precipitation estimates  

In the previous section precipitation estimates from a combination of PMW sensors 

(i.e., through IMERG-HQ) were compared with precipitation estimates from geostation-

ary IR observations. However, IMERG-HQ is composed of precipitation estimates from 

several PMW sensors that are identified in the IMERG output fields. Here the performance 

of individual PMWs is compared with IMERG-IR as a function of Tw and using Stage IV 

as reference. Similar to the previous section, analysis is conducted separately on snow- 

and ice-covered and snow- and ice-free surfaces. Timespan, study area, and procedure are 

the same as in the last section and a threshold of 0.3 mm/hr is used to delineate precipita-

tion from no-precipitation. Orographic effects are excluded using mountains mask. Note 

that the analysis is based on sensor type, not satellite, so if a sensor is available on more 

than one platform a combination of the sensors is used. Furthermore, IMERG prefers 

PMW imagers over PMW sounders, so if they coincide, precipitation estimates from PMW 

imagers are used in IMERG-HQ (Huffman et al. 2020). Based on Figure 7, and over snow- 

and ice-covered surfaces, the following observations are highlighted: (1) all PMW sensors, 

except AMSR-2, have better CC than IMERG-IR regardless of Tw (Figure 7c), and AMSR-

2 shows the lowest CC among all the studied products for Tw<~-5°C, (2) SSMIS shows the 

best and AMSR-2 shows the worst POD among all the PMW sensors, IMERG-IR has better 

POD than SSMIS for Tw<-10°C, better POD than GMI, MHS and ATMS for Tw<-3°C, and 

better POD than AMSR-2 for Tw<5°C (Figure 7e).  

POD of AMSR-2 is almost zero for Tw<-10°C, (3) for FAR (Figure 7g), IMERG-IR has 

higher FAR than all PMW sensors except AMSR-2 that shows higher FAR than IMERG-

IR for Tw<2°C or generally snowfall, (4) for Bias, PMW and IMERG-IR show good skill 

(i.e., Bias near 1) for Tw> 0°C, but for Tw<0°C, IMERG-IR tends to show Bias values greater 
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than one and PMW sensors tend to show Bias values smaller than 1. The Biases get worse 

as Tw decreases. AMSR-2 has Bias values greater than 1 for Tw>-10°C, but Bias values less 

than one for Tw< -10°C, (5) in terms of volume Bias, individual sensors tend to perform 

differently, but all of them overestimate Stage IV precipitation amount for Tw> -15°C, ex-

cept GMI and AMSR-2 that tend to underestimate for Tw<~-5°C. The overestimation of 

IMERG-IR is more significant than all PMW sensors at Tw<-8C at which AMSR-2’s VBias 

reaches almost zero. The increase of AMSR-2 VBias at Tw<-15 could be due to unstable 

sampling (note that AMSR-2 has the lowest sampling among all other sensors; Figure 7a), 

(6) as an overall score for precipitation detection, HSS suggests that IR is superior to the 

individual PMW sensors for Tw<-10°C ( 2°C  for AMSR-2), although SSMIS shows lower 

HSS than IMERG-IR only for Tw<-15°C, AMSR-2 show almost no skill at Tw<-15°C. One 

reason for the relatively poor performance of AMSR-2 compared to other PMW products 

could be the lack of high frequency (e.g., greater than 90 GHz) and also sounding channels 

in AMSR-2 compared to other PMW sensors. It has been shown that high-frequency MW 

and sounding channels are valuable in retrieving snowfall and can be used to mask out 

scattering signals from snow- and ice-covered surfaces that might otherwise interfere with 

scattering signals from ice particles in clouds (e.g.,Skofronick-Jackson, Kulie [40]).   

PMW sensors perform generally better over snow- and ice-free than over snow- and 

ice-covered surfaces. PMW sensors have higher CC than IMERG-IR for Tw<15°C, but at 

warmer Tw they are relatively comparable (Figure 7d). Over snow- and ice-free surfaces, 

PMW sensors tend to have higher POD than IMERG IR (except for Tw<~0°C at which PMW 

sensors’ POD decreases with reduction in Tw; Figure 7f), IMERG-IR shows higher FAR 

than PMW sensors for all temperatures (Figure 7h), and both Bias and VBias of PMW 

sensors and IMERG-IR are fairly comparable for Tw>0°C. At Tw<0°C, IMERG-IR tends to 

show a slight overestimation in Bias (Figure 7j) and large overestimation in VBias (Figure 

7l), but PMW sensors tend to underestimate both precipitation occurrence (Bias) and 

amount (VBias) at colder temperatures. As an overall metric, HSS suggests that IMERG-

IR tends to outperform PMW sensors at Tw<0°C for AMSR-2 and Tw<-4°C for other sensors 

over snow- and ice-free surfaces. 
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Figure 7: Comparison of precipitation estimates from different passive microwave sensors (used in 

IMERG-HQ) with IMERG-IR using STAGE IV data as a reference. Three years (2015-2017) of data 

over CONUS are used. Orographic effects are excluded using mountains mask. 

4. Discussion 

Although, performance of PMW sensors over snow- and ice-covered surfaces has 

been heavily studied, IR-based precipitation measurements have not been fully discov-

ered. Previous studies show poor performance of PMW-based precipitation estimation as 

the temperature decreases especially in the presence of the snow or ice on the surface. This 

study confirms this issue related to PMW however, it also indicates majority of PMW sen-

sors could outperform IR-based precipitation in cold temperatures over snow- and ice-

covered surfaces. It should be mentioned that assessment of PMW- and IR-based precipi-

tation in higher latitudes where environment and type of precipitation could be very dif-

ferent (light precipitation is dominant over high latitudes) from CONUS might be differ-

ent from our results and could be further investigated.  

    

5. Conclusions 

Accurate estimation of precipitation is important for water cycle studies and various 

hydrologic applications. A long-standing challenge for remote sensing products has been 

an estimation of precipitation in cold regions, especially over snow and ice surfaces. Here 

using three years of Stage IV data (2015-2017) over the CONUS, the performance of vari-

ous products of IMERG is investigated as a function of near-surface wet-bulb temperature 

(used for precipitation phase detection), precipitation intensity, and surface type (i.e., with 

and without snow and ice on the surface). The IMERG products include precipitation es-

timations from infrared (IR), combined passive microwave (PMW) sensors, and a combi-

nation of the precipitation estimate from IR and PMW sensors, that are either bias adjusted 

using in situ data (IMERG-Final) or not (IMERG-Late). In the analysis, steep mountainous 

regions were eliminated to reduce complexities that might be due to the orographic en-

hancement of precipitation. 

Results show that precipitation estimates from PMW products generally have better 

statistics than IR over snow- and ice-free surfaces. Over snow- and ice-covered surfaces, 

PMW products (except AMSR-2) show a higher correlation coefficient (with Stage IV data) 

than IR. Both IR and PMW precipitation products tend to overestimate precipitation over 

snow and ice surfaces, but at colder temperatures (e.g., Tw<-10oC) PMW products tend to 

underestimate while IR product continues to show large overestimations. With respect to 

precipitation occurrence, both PMW and IR products show considerably higher skill in 

capturing intense precipitation than light precipitation rates. PMW sensors outperform IR 

over snow- and ice-free surfaces and also show higher overall skill in detection precipita-

tion occurrence over snow- and ice-covered regions, but not necessarily at Tw colder than 

-5oC. Generally, AMSR-2 performs worst and SMMIS performs best among the studied 

PMW sensors that also include GMI, MHS, and ATMS. The results suggest that the current 

approach of IMERG, replacing PMW with IR precipitation estimates over snow- and ice-

covered surfaces, needs further investigations and has room for revisions.   

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 

Mask of high and high-scatter mountains based on K3 mountain maps. 
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