Growth performance, immunity, and disease resistance of Pacific white shrimp fed dietary organic acid and their salts microencapsulated with four materials

Mohiuddin Amirul Kabir Chowdhury $^{\rm a*}$ , Hong-Li ${\rm Song^b}$ , Yao Liu $^{\rm c}$ , Jean-Daniel Bunod $^{\rm a}$ , Xiao-Hui ${\rm Dong^b}^*$ 

<sup>a</sup> Jefo Nutrition Inc., 5020 JEFO Avenue, St-Hyacinthe, Quebec Canada, J2S 7B6

<sup>b</sup> Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong

Ocean University, Zhanjiang 524088, China

<sup>c</sup> Nutritech Solutions Inc., No. 99, District D, ShangXue RoadMalu, Shanghai, China

\*Corresponding authors.

Email addresses: kchowdhury@jefo.ca (M.A.K. Chowdhury)

#### **ABSTRACT**

A 63-day trial with Pacific white shrimp (0.33g) was conducted to assess the effects of two forms of organic acid (COMP), free acids (OA) and acid salts (OS) microencapsulated (ENCAP) with hydrogenated fat (HF), hydrogenated fat + alginate (HA), wax esters – (WE), and double coating of HA and WE (HAWE) on their growth performance, nutrient utilization, digestive enzyme, immune response and resistance to pathogenic Vibrio parahaemolyticus. A high fishmeal (FM) diet containing 200 g/kg FM and a low FM diet containing 130 g/kg FM and 120 g/kg soybean meal were formulated as positive (PC) and negative control (NC), respectively. Eight other diets were formulated supplementing NC diet with microencapsulated OA (OAHF, OAHA, OAWE, OAHAWE) and OS (OSHF, OSHA, OSWE, OSHAWE). All diets were formulated to be iso-proteic (36.9% CP) and iso-energetic (16.1 MJ/g). Total 1600 shrimps were distributed to 40 tanks (40 shrimps/tank and 4 replicates/treatment). Shrimp fed diets containing OA showed significantly lower feed intake (P = 0.017) and FCR (P = 0.012), and higher protein retention efficiency (P = 0.016) than those fed the OS diets. Among the ENCAPs, significant difference was observed in serum malondialdehyde (P = 0.026) where HF showed the lowest level (6.4  $\pm 0.3$  mmol/L). Significant interactions between COMP and ENCAP were observed in lipid deposition (P = 0.047), serum alkaline phosphatase and acid phosphatase (P < 0.0001), and hepatopancreatic and serum phenol oxidase (P < 0.0001). Despite no differences, the 96-h mortality in all treatment diets (45% - 56%) was significantly lower compared to the NC diets (63%) under pathogenic *vibrio parahaemolyticus* challenge tests. Overall score combining the parameters shows that shrimp fed the OA diets with HF microencapsulation performed better compared to those fed diets with OS and other microencapsulation materials.

Key words

Organic acid; Digestive enzymes; Immune response; Microencapsulation; *Vibrio* sp.; Shrimp

# 1. Introduction

The global farmed shrimp industry is frequently plagued with disease outbreaks starting from yellow head (YHV) and white spot syndrome (WSSV) virus in the 1990s to more recently, acute hepatopancreatic necrosis disease (AHPND) (Flegel 2019, Ng et al. 2015). The frequent outbreaks led to an increased use of antibiotics as a metaphylactic or prophylactic to treat or prevent diseases, respectively or as antibiotic growth promoters (AGP) (Limbu et al. 2020). Reducing antibiotic use in farmed animals for disease control and banning as AGP is a global trend driven mainly by the increasing risk of antibiotic resistant bacteria (WHO 2017, Zhao et al. 2020).

Various alternatives to AGP such as, phytogenic compounds or plant derived essential oils (Kesselring et al., 2020, Yang et al. 2015), probiotic, prebiotic and synbiotic (Jamal et al. 2019, Jueliang et al. 2013), enzymes (Song et al. 2017, Yao et al. 2019), organic acids and their salts (Da Silva et al. 2013, Krome et al. 2018, Mine and Boopathy 2011, Ng et al. 2015, 2017, Nascimento et al. 2020) have been proposed

in recent years. Organic acids are "Generally Regarded as Safe" compounds often containing one or more carboxyl groups (-COOH) (Defoirdt et al. 2009, Sarder et al. 2020). The most common are those with short chain (C1–C6) such as formic, lactic, propionic and citric acids, and their salts. Their probable mode of actions includes reducing the digesta pH, stimulating digestive enzyme secretion, promoting intestinal integrity, and regulating gut microbial populations. The efficacy of an acid in inhibiting microbes is dependent on its pKa value, which is the pH where 50% of the acid is dissociated. The pKa of organic acids ranges from 3.02 for fumaric acid (COOHCH:CHCOOH) high 6.4 citric acid for to as as (COOHCH2C(OH)(COOH)CH2COOH) (Reviewed in Ng and Koh 2016).

Intestinal pH usually ranges from slightly acidic (>6.4) in the proximal intestine to full alkaline (>8.0) in the rest of the intestine, e.g., tilapia (Payne, 1978). In Pacific white shrimp, the pH remains above 8.0 throughout the gastrointestinal tract. The organic acids and their salts need to remain in undissociated form or for dissociated form, pH needs to be highly acidic to be effective against most pathogens (Eklund, 1983). The required high dosage (2-5 g/kg) to suppress intestinal pH induces high stress and costs significant energy to maintain homeostasis (Li et al. 2019; Yu et al. 2020). An alternative strategy is to encapsulate active ingredient to bypass the proximal intestine ensuring their release in the microbe rich hind gut.

Microencapsulation has been becoming one of the most popular and practical approaches to deliver bioactive compounds in the GI tract of farmed animals

(Chitprasert and Sutaphanit 2014, Omonjio 2018, Piva et al. 2007, Yang et al. 2019). An ideal encapsulation should not only present the stability of the active compound but also release them in the target regions of the intestine (Chen et al. 2016). Many materials including polysaccharides (alginate and xanthan gum), starch, proteins (whey protein and gelatin) and lipids (milk fat and hydrogenated fat) have been used for encapsulation for effective delivery in the gut (El Asbahani et al. 2015, Fiorda et al. 2015, Romano et al. 2018, Tester et al. 2004, Udachan et al. 2012, Zhu 2017). Hydrogenated fat has been considered one of the most cost-effective materials for encapsulating bioactive compounds because of low cytotoxicity (Müller et al. 2000) and higher stability (Souto and Müller 2010). Alginate, a natural polymer derived from brown seaweed and a linear and anionic polysaccharide (Dragan 2014). At room temperature, alginate is soluble in water allowing the formation of gel without heating and cooling cycles, which make alginate as an attractive material for feed applications (Agüero et al. 2017, Benavides et al. 2016). The inclusion of alginate to the starch or hydrogenated fat matrix can improve the shape and surface properties that could be attributed to its remarkable crosslinking capability and excellent film-forming properties (Costa et al. 2018). Recently, an advanced lipid-based delivery system has been developed using edible wax as an encapsulation material (Soleimanian et al. 2020).

Both organic acids and their salts have been used in aquafeed for better performance and disease resistance of aquatic animals (Huan et al. 2018). The blends of organic acids used in this study are fumaric acid, sorbic acid and citric acid. Salts of organic

acids used are calcium propionate, calcium formate, and sodium acetate. Dietary fumaric acid (catfish, Omosowone et al. 2015), fumaric and sorbic acid (E. coli, Lu et al. 2011), citric acid (E. coli, Allende et al. 2009), calcium propionate (tilapia, Reda et al. 2016; silver catfish, Pereira et al. 2018), calcium formate (shrimp Da silva et al. 2013) and sodium acetate (tilapia, Li et al. 2020; yellowfin seabream, Sangari et al. 2020) showed varying level of antimicrobial activity in-vitro and in various farmed species. Most of these studies tested a single compound in free-form and rarely in combination of two or more compounds. In addition, there are very few studies with shrimp using dietary microencapsulated blend of organic acid or salt. To address this gap, in this study, the effects of blends of organic acids (fumaric acid, sorbic acid and citric acid) and organic acid salts (calcium propionate, calcium formate and sodium acetate) encapsulated with hydrogenated fat - HF, a mixture of HF and alginate - HA, wax esters - WE, and double coating with HA and WE - HAWE on Pacific white shrimp performance, immune response and disease resistance were assessed.

### 2. Materials and methods

The experiment had two components: in-vitro stability tests of the microencapsulation materials and in-vivo feeding trial with Pacific white shrimp fed diets supplemented with microencapsulated blends of fumaric, sorbic and citric acids (OA) and calcium propionate, calcium formate and sodium acetate (OS).

# 2.1. Stability tests

Four microencapsulation products using hydrogenated fat (HF), HF and alginate (HA), wax esters (WE) and double coating with HA followed by WE (HAWE) as encapsulation materials were tested to determine solubility or leaching of the active ingredient. All four products were prepared by spray drying and congealing where active ingredients are dispersed in HF, HA, WE, and for the double coated HAWE, the process was conducted first with HA and them repeated with WE using a process slightly modified from Jyothi et al. (2010). In brief, active ingredients are dispersed in a solution and spray-dried where the material solidifies onto the particles of active ingredients such that the microcapsules obtained are of matrix type.

For solubility, 10 g of each test product was mixed with 200 ml of deionized water, then stirred for 6 hrs at 100 rpm at 19 °C. After 6 hrs, the supernatant was filtered, and insoluble active ingredient from the filtrate was dried and weighed. A mix of organic acids corresponding to the active ingredients of the micro-encapsulated product was used as a control. The pH of the solution was determine following the same protocol mentioned above. The pH of the supernatant was determined after filtration. Each treatment was conducted in triplicates.

# 2.2. Feeding trial

The feeding trial was conducted for 63 days at the Guangdong Ocean University field experimental station situated at Donghai Island, Zhanjiang of Guagdong province of China. Experimental procedure and animal care were accomplished in accordance

with the ethical guidelines for the care and use of laboratory animals provided by the Animal Care Committee of the Guangdong Ocean University.

#### 2.2.1. Experimental design and diet preparation

Ten isoproteic (37.3 ±0.12 % CP) and isoenergetic (16.4 ±0.02 MJ/kg) diets were prepared: diet 1 - positive control with 20% FM (PC); diet 2 - negative control with 13% fishmeal and 12% meat and bone meal (NC); diets 3-6 were manufactured by supplementing NC with 0.75 mg/kg of OA microencapsulated with HF, HA, WE and HAWE (OAHF, OAHA, OAWE and OAHAWE, respectively); and diets 7-10 were manufactured by supplementing 0.85 mg/kg of OS microencapsulated with HF, HA, WE and HAWE (OSHF, OSHA, OSWE and OSHAWE, respectively) (Table 1 & 2). It was ensured that all microcapsulated products contain same amount of active ingredients. The microencapsulated test products were supplied by Jefo Nutrition Inc., Quebec, Canada. Diet composition and their proximate chemical composition including amino acid profile are provided in Table 1 and 2, respectively.

All feed ingredients were ground, sieved through 80 mesh screens, mixed with a V-type mixer (Shanghai Tianxiang & Chentai Pharmaceutical Co., Ltd., Shanghai, China), pelleted with a screw pelletizer (South China university of technology, Guangzhou, China) after adding 30% water, air-dried, and then stored at -20 °C until used. Pellets of two different sizes, 1.0- and 1.5-mm diameter, were produced for the trial.

#### 2.2.2. Experimental conditions

Twenty-five thousand PL8-10 Pacific white shrimp L. vannamei postlarvae were obtained from Allied Pacific Aquaculture Co., Ltd., Zhanjiang, Guangdong, China. The shrimp were acclimatized in two cement pools for 40 days until the average body weight reached 0.3 g. From the cement pools, a total of 1600 white shrimp (0.33  $\pm$ 0.02g ABW) were selected and 40 shrimp/tank were randomly distributed into 40 coneshaped tanks (350-L volume each) with four replicates per treatment.

The shrimp were fed the experimental diets four times daily (7:00, 11:00, 17:00 and 21:00 h) at 8%-10% of their body weight. The water was completely exchanged once in every 2-3 days from 1<sup>st</sup> to 4<sup>th</sup> week and once daily from 5<sup>th</sup> to 9<sup>th</sup> week.

### 2.2.3. Sampling

At the end of the experiment, shrimp were fasted for 24 hours before the final sampling. From each treatment, 15 and 10 shrimps were randomly selected from each tank for serum and hepatopancreatic analyses, respectively. Both analyses were not conducted on same shrimp because of possibility of influence of one sampling on another. For serum, the blood was drawn using a dispensable 1 ml syringe into 1.5 ml test-tube. The test-tubes were then stored at 4 °C overnight before being centrifuged at 5867 g for 10-min at 4 °C (3K30, Sigma, Germany). The supernatant was then collected into 1.5 ml tube and stored at -80 °C for subsequent analyses. Hepatopancreas was removed from each shrimp, immediately frozen in liquid nitrogen, and then stored at -80°C for analyses. Another six shrimps from each tank were taken for body chemical composition, ground into slurry, lyophilized and kept at -20 °C until analyses.

# 2.3. Chemical analyses and enzymatic assay

Diets, ingredients, body chemical composition were analyzed following AOAC (1995). Nitrogen for crude protein (CP, %N×6.25) was analyzed using a Kjeldahl apparatus (Kjeltec<sup>TM</sup> 8400, FOSS, Sweden), moisture by drying the samples at 105 °C under atmospheric pressure for 24 hours, crude lipid using a Soxhlet apparatus (Soxtec<sup>TM</sup> 2050, FOSS, Sweden), crude ash by burning the samples at 550 °C using a muffle furnace (Shanghai Boxun industry & Commerce Co., Ltd., Shanghai,China), and gross energy using a bomb calorimeter (Changsha Kaiyuan Instuments, Changsha, China).

The activity of acid (ACP) and alkaline phosphatase (ALP), total superoxide dismutase (T-SOD), malondialdehyde (MDA), lipase and amylase were determined using diagnostic kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Prophenoloxidase (PO) activity was measured spectrophotometrically by recording the formation of dopachrome produced from *L*-di-hydroxy-phenylalanine (*L*-DOPA) following a procedure slightly modified from Huang et al. (2010). In brief, 3 mg/ml *L*-DOPA solution was prepared by using 1 L of 0.1M potassium phosphate buffer (0.1 M K<sub>2</sub>HPO<sub>4</sub>·3H<sub>2</sub>O, 0.1 M KH<sub>2</sub>PO<sub>4</sub>, adjusted to pH 6.6). Shrimp serum (20μl) was mixed thoroughly with 980 μl *L*-DOPA solution. A 300 μl of the mixture was placed in a 96-well plate and incubated at room temperature. The absorbance was recorded after 6 min (OD<sub>sample</sub>) on a Microplate Spectrophotometer (Multilskan spectrum, Thermo, USA) at 490 nm. At the same time, 300 μl of *L*-DOPA solution was placed in a 96-well plate

and absorbance of the blank control group was recorded ( $OD_{blank}$ ). Enzymatic activity for all assays was expressed as the change in absorbance/min.

### 2.4. Resistance to Vibrio parahaemolyticus

Resistance to the pathogen, V. parahaemolyticus was determined from the cumulative mortality of shrimp in 96 h. For this, 10 shrimps for each replicate (3 replicates in each treatment) were used. After injecting each shrimp with  $2.4 \times 10^7$  colony-forming units (CFU) of V. parahaemolyticus, the cumulative mortality in 96 h was recorded.

# 2.5. Scoring

All variables from treatment 3-8 were grouped into three categories to determine the most suitable composition (COMP: free acid vs acid-salt) and microencapsulation (ENCAP: HF, HA, WE and HAWE), and scored ranging from 1-8. The scores assigned from smallest to largest are as follows: growth performance (SGR – 1-8; FCR – 8-1; and PER – 1-8), nutrient utilization (PRE – 1-8; LRE – 1-8; and amylase (1-8) and lipase (1-8) activity), and immune response (serum SOD – 1-8, ALP – 1-8, ACP – 1-8, PO – 1-8 and MDA – 8-1; and cumulative mortality – 8-1).

# 2.6. Calculation

Specific growth rate (SGR) =  $[(\ln \text{ final weight} - \ln \text{ initial weight})/\text{Days}] \times 100.$ Feed conversion ratio (FCR) = Feed intake/Weight gain.

Protein efficiency ratio (PER) = (Weight gain/Protein intake) X 100.

 $Serum\ MDA\ (nmol/mL) = (OD_{sample} - OD_{sample\ blank})/(OD_{standard} - OD_{standard\ blank})\ X$   $standard\ concentration\ (10nmol/ml)\ X\ sample\ dilution\ times\ before\ assay.$ 

Serum T-SOD (U/mL) =  $(OD_{contrast} - OD_{sample})/OD_{contrast}/50\%$  X reaction system dilute multiple X sample dilute multiple before assay.

 $He patopancreas \ T-SOD\ (U/mL) = (OD_{contrast} - OD_{sample})/OD_{contrast}/50\%\ X\ reaction$   $system\ dilute\ multiple/protein\ content\ in\ he patopancreas\ (mgprot/mL).$ 

Serum ACP (King U/100mL) =  $(OD_{sample} - OD_{blank})/(OD_{standard} - OD_{blank}) X$ 

standard concentration (0.1 mg/mL) X 100 mL X sample dilution times before assay.

Hepatopancreas ACP (King U/gprot) =  $(OD_{sample} - OD_{blank})/(OD_{standard} - OD_{blank})$ 

X standard concentration (0.1 mg/mL)/protein content in hepatopancreas (gprot/mL).

Serum ALP (King U/100mL) =  $(OD_{sample} - OD_{blank})/(OD_{standard} - OD_{blank}) X$ 

standard concentration (0.1 mg/mL) X 100 mL X sample dilution times before assay.

Hepatopancreas ALP (King U/gprot) =  $(OD_{sample} - OD_{blank})/(OD_{standard} - OD_{blank})$ 

X standard concentration (0.1 mg/mL)/protein content in hepatopancreas (gprot/mL).

 $PO(U/mL) = (OD_{sample} - OD_{blank}) / 6 \times 1000 \times 1000 / 20.$ 

 $Amylase \ (U/gprot) = (OD_{blank} - OD_{assay})/OD_{blank} \ X \ 80/[volume \ of \ sample \ (0.1mL)$ 

X protein concentration (mgprot/mL)] X 1000

Lipase (U/gprot) =  $(A_{sample1}-A_{sample2})/A_{standard}$  X Standard tube concentration (454 umol/L) X Sample dilution times in reaction system/Reaction time length (10 min)/Protein concentration in sample homogenate (gprot/L)

2.7 Statistical analysis

All data were expressed as the mean  $\pm$ SD (standard deviation) and subjected to one-way ANOVA (SPSS 17.0, Chicago, IL, USA). Percentage data were arcsine-square root transformed before statistical analysis. Multiple comparison analyses were performed using Duncan's multiple-range tests. Statistically significant differences were considered at P < 0.05.

# 3. Results

During the feeding trial, the water temperature was ranged between 28 °C and 34 °C, and salinity, dissolved oxygen and total ammonia nitrogen content were maintained at 27-28 g/L, >7 mg/L, and <0.03 mg/L, respectively. Feed intake was normal, and survival was not affected by the dietary treatments.

#### 3.1 Stability test of the microencapsulation materials

The pH-value were similar among the non-protected acids, HF and HA microencapsulation (2.8-2.9) which slightly increased with WE (3.2) and HAWE (3.5) microencapsulation (Figure 1A). All four microencapsulation materials showed significantly higher recovery than the free acid. Corresponding to the pH values, the recovery was significantly higher for WE (95%) and HAWE (97%) compared to HF (74%) and HA (77%) (Figure 1B).

#### 3.2 Growth Performance and body composition

Feed intake and growth were normal and similar to the studies conducted at the laboratory. Effects of the microencapsulated OA and OS on body chemical composition and final body weight, specific growth rate (SGR), feed conversion ratio (FCR), and

protein efficiency ratio (PER) are presented in tables 3 and 4, respectively. The form of organic acids (free or salt) significantly affected the feed intake and FCR where shrimp fed diets with OA showed lower FCR and feed intake compared to those fed the OS diets (P < 0.05). There were no differences (P > 0.05) in body chemical composition among the treatments.

# 3.3 Nutrient utilization and hepatopancreatic enzyme activity

Either the form of organic acid (COMP) or the microencapsulation (ENCAP) did not affect (P > 0.05) protein deposition, lipid retention efficiency, and hepatopancreatic amylase and lipase activity (Table 5). However, protein retention efficiency of shrimp fed diets supplemented with OA (0.29) was significantly higher (P = 0.016) than those fed the OS (0.28) diets. Significant interaction (COMP\*ENCAP) was observed in lipid deposition where OS (0.27) and HAWE (0.28) was higher compared to OA (0.26) and HF (0.24), HA (0.27) and WE (0.25) (P = 0.047).

# 3.4 Immune response and disease resistance

No differences in serum SOD, hepatopancreatic ALP, ACP and MDA (Table 6), and cumulative 96-h mortality (Figure 2) when challenged with *Vibrio parahaemolyticus* was observed with either main effects of COMP, ENCAP or their interaction (Table 6). Significant interaction was observed for serum ALP (P < 0.0001), ACP (P < 0.0001), and hepatopancreatic and serum phenol oxidase level (P < 0.0001). Significantly lower serum MDA level (P < 0.026) was observed in HF (6.4) compared to the other microencapsulation (HA = 7.7, WE = 6.9 and HAWE = 7.7).

# 3.5 Scoring

Shrimp fed the OA diets showed higher scores in growth performance (58 vs 38), nutrient utilization (67 vs 57) and immune response (112 vs 96) than those fed the OS diets with a combined score of 237 compared to 191 (Table 7). Among the four microencapsulation materials, the overall scores of HF and HA (118 and 117, respectively) were higher than WE (95) and HAWE (98) (P < 0.05) (Table 7).

# 4. Discussion

This study investigated the efficacy of dietary organic acids (free or salt) microencapsulated with hydrogenated fat (HF), hydrogenated fat + alginate (HA), wax esters (WE), and the double coating of HAWE (first coated with HA followed by WE) on performance of Pacific white shrimp. The organic acid blend contains fumaric acid (pKa = 3.03), sorbic acid (pKa = 4.75) and citric acid (pKa = 2.92-5.21). Whereas, the organic acid salt blend contains Ca-propionate, Ca-formate and Na-acetate.

Organic acids are low molecular weight aldehyde containing compounds with one or more carboxyl groups. They are used as dietary supplement to reduce gastrointestinal tract pH and inhibit the growth of gram-negative bacteria through the disassociation of the acids and production of anions in bacterial cells (Hosseinifar et al. 2016). As weak acids, the pKa values or the disassociation constant of organic acids are higher than the strong acids such as HCl or H<sub>2</sub>SO<sub>4</sub> (Soames et al. 2018). These acids do not dissociate in the highly acidic stomach pH but tend to dissociate quickly in the proximal intestine as pH increases and the condition becomes alkaline. Shrimp are slow-eating animals

taking 1-2 hours for holding and chewing the pellets. In free-form, organic acid or their salts have considerable risk of leaching in water preventing them from reaching the hepatopancreas and gut in undissociated form (Romano et al. 2015). Coating or encapsulation may significantly reduce leaching and consequently, can remain effective at lower dosage (Yao et al. 2019). For example, micro-encapsulated organic acid salt blend used by Yao et al. (2019) and in this study, is much lower (835 mg/kg) than in their free form (2000-6000 mg/kg) reported in various studies (Chuchird et al. 2015; Su et al. 2014). Micro-encapsulation provides better protection than simple coating that may prevent or reduce the loss of active ingredient in case of breakage of the prills as active ingredients are embedded in the matrix of coating material (Bakry et al. 2015).

Microencapsulation of easily degradable bioactive compounds has been becoming a popular and practical approach to mask unpleasant characteristics of the compounds and deliver them at the intended location of the gastrointestinal tract (Chen et al. 2017; Piva et al. 2007). In this study, despite their lower solubility and recovery, both HF and HA (118 and 117, respectively) had higher total performance scores in-vivo compared to WE and HAWE (95 and 98, respectively (Table 7). However, between HF and HA, growth performance score was higher for HA but lower for immune response than those for HF. No differences in the nutrient utilization score was observed between the two materials. Omnojio et al. (2018) tested both HF and HA *in vitro* and observed well-timed release of the active ingredient. Timely release of active ingredient at the intended location of the digestive tract is utterly important for their efficacy. Hydrogenated fat

can be easily digested by intestinal lipase thus guaranteeing the slow release of the active ingredient along the GI tract. In a recent study, Ndiyae et al. (2020) reported efficacy of HF based microencapsulated aluminum and iron sulfate in in-situ chelation of undigestible phosphorus in the hind gut of rainbow trout. The study confirms the release of the active ingredient in the hindgut where it was intended to bind with phosphorus thus reducing the risk of eutrophication of the surrounding environment. Relatively poor performance of shrimp fed WE diets compared to those fed other treatment diets may be attributed to low solubility and higher retention of active ingredient than hydrogenated fat (Figure 1). Wax based solid lipid matrix provides better physical stability and more protection against chemical reaction (Soleimanian et al. 2020). The positive characteristics such as slower degradation and mass transfer rate may not be suitable for shrimp for their short gut-transit time (~2 hours) to release the active ingredient.

Blends of organic acids and their salts in free or microencapsulated forms have shown to improve growth performance of fish (Huan et al. 2018; Moradi 2015; Sherif and Doaa 2013) and shrimp (Ng et al. 2015; Romano et al. 2015; Rombenso et al. 2020; Yao et al. 2019) as well as antioxidant status (He et al. 2017). Several studies reported improved growth performance, nutrient utilization and immune response in crustacean fed microencapsulated blend of organic acid or acid salts. Safari et al. (2020) reported efficacy of encapsulated blend of Na-butyrate, Na-lactate and Na-propionate on growth performance and survival of crawfish at 20g/kg. The OS blend used in the present study

contains Ca-propionate, Ca-formate and Na-acetate and showed higher feed intake compared to those fed the OA diets. Yao et al. (2019) also reported improved weight gain and FCR in Pacific white shrimp compared to NC diet with the same OS blend. When compared between the OA and OS treatments of this study, shrimps fed the OA diets showed improved FCR, protein retention, and immune response i.e., higher ALP and PO compared to the OS blend (Table 4-6). This is in accordance with the findings of Romano et al. (2015), who reported improved growth performance of Pacific white shrimp with 1-4% microencapsulated OA (blend of formic, lactic, malic and citric acids).

In an in-vitro study, Mine and Boopathy (2011) demonstrated EC50 values of 0.023%, 0.041%, 0.03%, and 0.066% for formic, acetic, propionic and butyric acid, respectively against *Vibrio harveyi*. Romano et al. (2015) showed similar efficacy in *V. harveyi* resistance when fed OA supplemented diets. Efficacy of organic acid in combination with essential oil against *Vibrio* sp. infections also demonstrated by He et al. (2017), where a microencapsulated blend of organic acid (citric acid and sorbic acid) and essential oils (thymol and vanillin) showed significantly higher survival in Pacific white shrimp challenged with *V. parahaemolyticus* after 48-h compared to those fed the control diets. These are in accordance with the findings of the present study where treatments containing microencapsulated organic acid and organic acid salt blends showed significantly lower cumulative 96-h mortality ranging from 45 to 56%

compared to 63% for those fed the NC diets when challenged with pathogenic *V. parahaemolyticus* (Figure 2).

This is one of the first reports comparing the effects of OA and OS on performance, nutrient utilization, immune response and disease resistance of Pacific white shrimp as well as comparing different microencapsulation materials and techniques in the same study. Based on the findings, it can be concluded that organic acid blend microencapsulated with hydrogenated fat or hydrogenated fat + alginate may provide better responses in Pacific white shrimp and can be used as an effective strategy to improve immune response and disease resistance. Further studies are recommended to investigate the effects of microencapsulated organic acid compounds on intestinal health, metabolic response and gut microbiome of farmed Pacific white shrimp.

#### **Author contribution**

Xiao-Hui Dong and Mohiuddin Amirul Kabir Chowdhury designed the experiment, prepared the first draft of the manuscript, Hong-Li Song conducted the feeding trial, laboratory assays and statistical analysis, Jean-Daniel Bunod conducted the in-vitro tests and reviewed the manuscript, Xiao-Hui Dong supervised the trial and reviewed the manuscript, and Liu Yao participated in the feeding trial and reviewed the manuscript.

#### **Conflict of interest**

The authors declared no conflict of interest.

#### **Funding and Acknowledgement**

This study was supported by the Special Fund for Agroscientific Research of Public Interest (No. 201003020), by Guangdong Ocean University. We would like to extend our sincere thanks to Ze-Zhong Tian and Qiu-Long Liu for their assistance during the study.

# Reference

Allende A, McEvoy J, Tao Y, Luo Y. Antimicrobial effect of acidified sodium chlorite, sodium chlorite, sodium hypochlorite, and citric acid on Escherichia coli O157:H7 and natural microflora of fresh-cut cilantro. Food Control 2009; 20:230-4. doi:10.1016/j.foodcont.2008.05.009

Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, et al.

Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Comp Rev Food Sci Safety 2015; 15:143-82.

https://doi.org/10.1111/1541-4337.12179.

- Benavides S, Cortes P, Parada J, Franco W. Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chem 2016; 204:77-83. https://doi.org/10.1016/j.foodchem.2016.02.104.
- Chen H, Ma D, Li Y, Liu Y, Wang Y. Optimization the process of microencapsulation of *Bifidobacterium bifidum* BB01 by Box-Behnken design.

  Acta Universitatis Cibiniensis. Series E: Food Tech 2016; 20:17-28.

  https://doi.org/10.1515/aucft-2016-0012.

- Chen J, Wang Q, Liu CM, Gong J. Issues deserve attention in encapsulating probiotics: critical review of existing literatures. Crit Rev Food Sci Nut 2017; 57:1228-38. DOI: 10.1080/10408398.2014.977991.
- Chitprasert P, Sutaphanit P. Holy basil (*Ocimum sanctum* Linn.) Essential oil delivery to swine gastrointestinal tract using gelatin microcapsules coated with aluminum carboxymethyl cellulose and beeswax. Agri Food Chem 2014; 62:12641–8. DOI: 10.1021/jf5019438.
- Chuchird N, Rorkwiree P, Rairat T. Effect of dietary formic acid and astaxanthin on the survival and growth of Pacific white shrimp (*Litopenaeus vannamei*) and their resistance to *Vibrio patahaemolyticus*. Springer Plus 2015; 4:440. DOI: 10.1186/s40064-015-1234-x.
- Costa RS, Teixeria C, Alves TVG, Ribeiro-Costa RM, Casazza AA, Aliakbarian B, et al. Optimization of spray drying conditions to microencapsulate cupuassu (*Theobroma grandiflorum*) seed by-product extract. Nat Prod Res 2018; 33:2600-8. https://doi.org/10.1080/14786419.2018.1462178.
- Da Silva BC, Vieira FN., Mourino JLP, Ferreira GS, Seiffert WQ. Salts of organic acids selection by multiple characteristics for marine shrimp nutrition.

  Aquaculture 2013; 384-387:104-110.

  https://doi.org/10.1016/j.aquaculture.2012.12.017.
- Defoirdt, T, Boon N, Sorgeloos P, Verstraete W, Bossier P. Short-chain fatty acids and poly-β-hydroxyalkanoates: (new) biocontrol agents for a sustainable animal

- production. Biotechnol Adv 2009; 27:680–5. https://doi.org/10.1016/j.biotechadv.2009.04.026.
- Dragan ES. Design and applications of interpenetrating polymer network hydrogels.

  A review. Chemical Eng 2014; 243:572-90.

  https://doi.org/10.1016/j.cej.2014.01.065.
- El Asbahani A, Miladi K, Badri W, Sala M, Ait Addi EH, et al. Essential oils: From extraction to encapsulation. Int J Pharm 2015; 483:220-43. https://doi.org/10.1016/j.ijpharm.2014.12.069.
- Eklund T. The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl Bacteriol 1983; 54:383-9.
- Fiorda FA, Soares Jr. MS, Da Silva FA, De Moura CMA, Grossmann MVE. Physical quality of snacks and technological properties of pre-gelatinized flours formulated with cassava starch and dehydrated cassava bagasse as a function of extrusion variables. LWT-Food Sci Tech 2015; 62:1112-9. DOI: 10.1016/j.lwt.2015.02.030.
- Flegel TW. A future vision for disease control in shrimp aquaculture. J World Aquacul Soc 2019; 50:249-66. https://doi.org/10.1111/jwas.12589.
- He W, Rahimnejad S, Wang L, Song K, Lu K, Zhang C. Effects of organic acids and essential oils blend on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (*Litopenaeus vannamei*) against *Vibrio*

- parahaemolyticus. Fish Shell Immun 2017; 70:164-73. DOI: 10.1016/j.fsi.2017.09.007.
- Hosseinifar SH, Sun Y-Z, Caipang CM. Short-chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquacult Res 2016; 48:1380-91. https://doi.org/10.1111/are.13239.
- Huan D, Li X, Chowdhury MAK, Yang H, Liang G, Leng XJ. Organic acid salts, protease and their combination in fish meal-free diets improved growth, nutrient retention and digestibility of tilapia (*Oreochromis niloticus* × *O. aureus*).

  Aquacult Nut 2018; 24:1813-21. https://doi.org/10.1111/anu.12820.
- Jamal MT, Abdulrahman IA, Al-Harbi M, Chithambaran S. Probiotics as alternative control measures in shrimp aquaculture: A review. Appl Biol Biotech 2019; 7:69-77. doi: 10.3389/fmicb.2018.02429.
- Jueliang P, Chuchird N, Limsuwan C. The effects of probiotic, β-1,3-glucan and organic acid on Pacific white shrimp's (*Litopenaeus vannamei*) immune system and survival upon challenge with *Vibrio harveyi*. Fish Env 2013; 3:25-37.
- Jyothi NVN, Prasanna PM, Sarkerkar SN, Prabha KS, Ramaiah PS, Srawan GY.
  Microencapsulation techniques, factors influencing encapsulation efficiency.
  Microencapsulation 2010; 27:187–97. DOI: 10.3109/02652040903131301.
- Kesselring J, Gruber C, Standen B, Wein S. Effect of a phytogenic feed additive on the growth performance and immunity of Pacific white leg shrimp, *Litopenaeus*

- *vannamei*, fed a low fishmeal diet. J World Aquacult Soc 2020; 1–13. https://doi.org/10.1111/jwas.12739.
- Krome C, Schuele F, Jauncey K, Focken U. Influence of a sodium formate/formic acid mixture on growth of juvenile common carp (*Cyprinus carpio*) fed different fishmeal replacement levels of detoxified *Jatropha curcas* kernel meal in practical, mixed diets. J Appl Aquacult 2018; 30:137-56.

  https://doi.org/10.1080/10454438.2017.1412845.
- Li H, Ren C, Jiang X, Cheng C, Ruan Y, Zhang X, et al. Na<sup>+</sup>/H<sup>+</sup>exchanger (NHE) in Pacific white shrimp (*Litopenaeus vannamei*): Molecular cloning, transcriptional response to acidity stress, and physiological roles in pH homeostasis. PLoS ONE 2019; 14, e0212887. https://doi.org/10.1371/journal.pone.0212887.
- Li M, Hu F-C, Qiao F, Du Z-Y, Zhang M-L. Sodium acetate alleviated high-carbohydrate induced intestinal inflammation by suppressing MAPK and NF-κB signaling pathways in Nile tilapia (*Oreochromis niloticus*). Fish Shellfish Immuno 2020; 98:758-65. https://doi.org/10.1016/j.fsi.2019.11.024.
- Limbu SM, Chen L-Q, Zhang M-L, Du Z-Y. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: a review. Rev Aquacult 2020; https://doi.org/10.1111/raq.1251.
- Lu HJ, Breidt F, Perez-Diaz IM, Osborne JA. Antimicrobial effects of weak Acids on the survival of *Escherichia coli* O157:H7 under anaerobic conditions. J Food Protect 2011; 74(6):893-8. doi:10.4315/0362-028X.JFP-10-404.

- Mine S, Boopathy R. Effect of organic acids on shrimp Ppathogen, *Vibrio harveyi*. Curr Microbiol 2011; 63:1–7. DOI: 10.1007/s00284-011-9932-2.
- Moradi S. Effect of Feeding Diets Containing Organic Acid (Propionic Acid and Formic Acid) on Growth Indices, Salinity Stress Resistance and Intestine Microbiota in Common Carp (*Cyprinus carpio*). Master Thesis, Gorgan University of Agricultural Sciences and Natural Resources, pp 70.
- Müller RH, Radtke MM, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drug. Int J Pharm 2000; 242:121-8. https://doi.org/10.1016/S0378-5173(02)00180-1.
- Nascimento MS, Mattos BO, Bussons MRFM, Oliveira AT, Liebi ARS, Carvalho TB.

  Supplementation of citric acid in plant protein- based diets for juvenile tambaqui,

  Colossoma macropomum. J World Aquac Soc 2020; DOI: 10.1111/jwas.12735.
- Ndiaye WN, Deschamps M-H, Comeau Y, Chowdhury K, Bunod J-D, Letourneau-Montminy M-P, et al. *In situ* chelation of phosphorus using microencapsulated aluminum and iron sulfate to bind intestinal phosphorus in rainbow trout (*Oncorhynchus mykiss*). Anim Feed Sci Tech 2020; https://doi.org/10.1016/j.anifeedsci.2020.114675.
- Ng W-K, Koh C-K, Teoh C-Y, Romano N. Farm-raised tiger shrimp, *Penaeus monodon*, fed commercial feeds with added organic acids showed enhanced nutrient utilization, immune response and resistance to *Vibrio harveyi* challenge.

  Aquacult 2015; 449:69-77. https://doi.org/10.1016/j.aquaculture.2015.02.006.

- Ng W-K, Lim C-L, Romano N, Kua B-C. Dietary short-chain organic acids enhanced resistance to bacterial infection and hepatopancreatic structural integrity of the giant freshwater prawn, *Macrobrachium rosenbergii*. Intl Aquat Res 2017; 9:293-302.
- Ng W-K, Koh C-B. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev Aquacult 2016; 9:342–68. doi:10.1111/raq.12141.
- Omonjio FA. Microencapsulation for effective delivery of essential oils to improve gut health in pigs. MSc thesis, University of Manitoba, 2018; 126p.
- Omosowone O, Dada A, Adeparusi E. Effects of dietary supplementation of fumaric acid on growth performance of African catfish *Clarius gariepinus* and *Aeromonas sobria* challenge. Croat J Fish 2015; 73:13-9. http://dx.doi.org/10.14798/73.1.782
- Payne AI. Gut pH and digestive strategies in estuarine grey mullet (Mugilidae) and tilapia (Cichlidae). Fish Biol 1978; 13:627-9. https://doi.org/10.1111/j.1095-8649.1978.tb03476.x.
- Pereira SA, Oliveira HM, Jesus GFA, Addam KGS, Silva BC, Yamashita MM, Lehmann NB, Martins ML, Mourinho JLP. Can the minerals calcium and sodium, chelated to propionic acid, influence the health and zootechnical parameters of native silver catfish *Rhamdia quelen*? Aquaculture 2018; 496:88-95. https://doi.org/10.1016/j.aquaculture.2018.07.016.

- Piva A, Pizzamiglio V, Mauro M, Tedeshchi M, Piva G. Lipid microencapsulation allows slow release of organic acids and natural identical flavors along the swine intestine. Anim Sci 2007; 85:486-93. DOI: 10.2527/jas.2006-323.
- Reda RM, Mahmoud R, Selim KM, El-Araby IE. Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, *Oreochromis niloticus*. Fish Shellfish Immuno 2016; 50:255-62. http://dx.doi.org/10.1016/j.fsi.2016.01.040
- Romano N, Koh C-B, Ng W-K. Dietary microencapsulated organic acids blend enhances growth, phosphorus utilization, immune response, hep- atopancreatic integrity and resistance against *Vibrio harveyi* in white shrimp, *Litopenaeus vannamei*. Aquacult 2015; 435:228–36.

  https://doi.org/10.1016/j.aquaculture.2014.09.037.
- Romano N, Mobili P, Zuniga-Hansen ME, Gomez-Zavaglia A. Physico-chemical and structural properties of crystalline inulin explain the stability of *Lactobacillus* plantarum during spray-drying and storage. Food Res Int 2018; 113:167-74. https://doi.org/10.1016/j.foodres.2018.07.007.
- Rombenso AN, Truong H, Simon C. Dietary butyrate alone or in combination with succinate and fumarate improved survival, feed intake, growth and nutrient retention efficiency of juvenile *Penaeus monodon*. Aquacult 2020; 528:735492.

  DOI: 10.1016/j.aquaculture.2020.735492.

- Safari O, Paolucci M, Motlagh HM. Effect of dietary encapsulated organic salts (Naacetate, Na-butyrate, Na-lactate and Na-propionate) on growth performance, haemolymph, antioxidant and digestive enzyme activities and gut microbiota of juvenile narrow clawed crayfish, *Astacus leptodactylus leptodactylus*Eschscholtz, 1823. Aquac Nut 2020; DOI: 10.1111/anu.13167.
- Sangari M, Sotoudeh E, Bagheri D, Morammazi S, Torfi M. Growth, body composition, and hematology of yellowfin seabream (*Acanthopagrus latus*) given feeds supplemented with organic acid salts (sodium acetate and sodium propionate). Aquacult Int 2020; <a href="https://doi.org/10.1007/s10499-020-00625-x">https://doi.org/10.1007/s10499-020-00625-x</a>
- Sarder P, Shamna N, Sahu NP. Acidifiers in aquafeed as an alternate growth promoter: a short review. Anim Nut Feed Tech 2020; 20:253-366. DOI: 10.5958/0974-181X.2020.00032.3.
- Sherif AH, Doaa MG. Studies on the effect of acidifier on cultured *Oreochromis niloticus* fish. J Arab Aquacult Soc 2013; 8, 229–36.
- Soleimanian Y, Goli SAH, Shirvani A, Elmizadfeh A, Marangoni AG. Wax-based delivery systems: Preparation, characterization, and food applications. Comp Rev Food Sci Food Safety 2020; DOI:10.1111/1541-4337.12614.
- Soames A, Iglauer S, Barifcani A, Gubner R. Acid dissociation constant (pKa) of common monoethylene glycol (MEG) regeneration organic acids and methyldiethanolamine at varying MEG concentration, temperature, and ionic

- strength. Chem Eng Data 2018; 63:2904–13. https://doi.org/10.1021/acs.jced.8b00221.
- Song H-L, Tan B-P, Chi S-Y, Liu Y, Chowdhury MAK, Dong X-H. The effects of a dietary protease-complex on performance, digestive and immune enzyme activity, and disease resistance of *Litopenaeus vannamei* fed high plant protein diets.

  Aquac Res 2017; 48:2550-60. https://doi.org/10.1111/are.13091.
- Souto EB, Müller RH. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol 2010; 197:115-41. DOI: 10.1007/978-3-642-00477-3\_4.
- Su X, Li X, Leng X, Tan C, Liu B, Chai X, et al. The improvement of growth, digestive enzyme activity and disease resistance of white shrimp by the dietary citric acid. Aquacult Int 2014; 22:1823-35. DOI: 10.1007/s10499-014-9785-3.
- Tester RF, Karkalas J, Qi X. Starch composition, fine structure and architecture.

  Cereal Sci 2004; 39:151-65. https://doi.org/10.1016/j.jcs.2003.12.001.
- Udachan IS, Sahu AK, Hend FM. Extraction and characterization of sorghum (Sorghum bicolor L. Moench) starch. Int Food Res J 2012; 19:315-19.
- World Health Organization. WHO Guidelines on Use of Medically Important

  Antimicrobials in Food-producing Animals. 2017; 68pp.
- Yang C, Chowdhury MAK, Hou Y, Gong J. Phytogenic compounds as alternatives to in-feed antibiotics: potentials and challenges in application. Pathogens 2015; 4:137-56. DOI: 10.3390/pathogens4010137.

- Yang X, Liu Y, Yan F, Yang C, Yang X. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poult Sci 2019; 98:2858–65. DOI: 10.3382/ps/pez031.
- Yao W, Li X, Chowdhury MAK, Wang J, Leng X-J. Dietary protease, carbohydrase and micro-encapsulated organic acid salts individually or in-combination improved growth, feed utilization and intestinal histology of Pacific white shrimp. Aquacult 2019; 503:88-95.

  https://doi.org/10.1016/j.aquaculture.2018.12.064.
- Yu Q, Xie J, Huang M, Chen C, Qian D, Qin JG, et al. Growth and health responses to a long-term pH stress in Pacific white shrimp *Litopenaeus vannamei*. Aquac Rep 2020; Vol 16, https://doi.org/10.1016/j.aqrep.2020.100280.
- Zhao Y, Yang QE, Zhou X, Wang F-H, Muurinen J, Virta MP, et al. Antibiotic resistome in the livestock and aquaculture industries: Status and solutions, Crit Rev Env Sci Tech 2020; DOI: 10.1080/10643389.2020.1777815.
- Zhu F. Encapsulation and delivery of food ingredients using starch based systems. Food Chem 2017; 229:542-52. https://doi.org/10.1016/j.foodchem.2017.02.101.

4

5

6

7

8

9

# 1 Table 1. Ingredient composition of the control and test diets

| Ingredient (g/kg)           | PC     | NC     | OAHF   | OAHA   | OAWE   | OAHAWE | OSHF   | OSHA   | OSWE   | OSHAWE |
|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Fish meal, 70% CP           | 200.0  | 130.0  | 130.0  | 130.0  | 130.0  | 130.0  | 130.0  | 130.0  | 130.0  | 130.0  |
| Shrimp head meal, 46% CP    | 30.0   | 30.0   | 30.0   | 30.0   | 30.0   | 30.0   | 30.0   | 30.0   | 30.0   | 30.0   |
| Soybean meal 50% CP         | 30.0   | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  |
| Corn gluten meal, 61% CP    | 60.0   | 60.0   | 60.0   | 60.0   | 60.0   | 60.0   | 60.0   | 60.0   | 60.0   | 60.0   |
| Peanut meal, 41% CP         | 75.0   | 75.0   | 75.0   | 75.0   | 75.0   | 75.0   | 75.0   | 75.0   | 75.0   | 75.0   |
| Soybean meal, 52% CP        | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  | 120.0  |
| Wheat flour                 | 318.0  | 318.0  | 318.0  | 318.0  | 318.0  | 318.0  | 318.0  | 318.0  | 318.0  | 318.0  |
| Fish oil                    | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   |
| Soy lecithin                | 10.0   | 10.0   | 10.0   | 10.0   | 10.0   | 10.0   | 10.0   | 10.0   | 10.0   | 10.0   |
| Soybean oil                 | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   |
| Lysine-HCl                  | 0.0    | 2.3    | 2.3    | 2.3    | 2.3    | 2.3    | 2.3    | 2.3    | 2.3    | 2.3    |
| Methionine                  | 0.0    | 1.2    | 1.2    | 1.2    | 1.2    | 1.2    | 1.2    | 1.2    | 1.2    | 1.2    |
| Choline chloride            | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    |
| Di-calcium phosphate        | 10.8   | 10.8   | 10.8   | 10.8   | 10.8   | 10.8   | 10.8   | 10.8   | 10.8   | 10.8   |
| Mineral premix <sup>a</sup> | 8.0    | 8.0    | 8.0    | 8.0    | 8.0    | 8.0    | 8.0    | 8.0    | 8.0    | 8.0    |
| Vitamin premix <sup>b</sup> | 2.0    | 2.0    | 2.0    | 2.0    | 2.0    | 2.0    | 2.0    | 2.0    | 2.0    | 2.0    |
| Antioxidant                 | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    |
| Microencapsulated OA or OS  | 0.0    | 0.0    | 0.75   | 0.75   | 0.75   | 0.8    | 0.850  | 0.9    | 0.9    | 0.9    |
| Cellulose                   | 99.4   | 75.9   | 75.2   | 75.2   | 75.2   | 75.2   | 75.1   | 75.1   | 75.1   | 75.1   |
| Vitamin C                   | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    |
| Attractant                  | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    |
| Total                       | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 |

Note: PC - positive control, NC = negative control, OA - organic acid, OS - organic acid salt, HF - hydrogenated fat, HA - HA + alginate, WE - wax ester, HAWE - double coating with HA and WE.

aContained the following (per kg of mineral premix):  $KIO_4$  0.03 g,  $CoCl_2$ - $6H_2O$  4.07 g,  $CuSO_4$ - $5H_2O$  19.84 g, ferric citrate 13.71 g,  $ZnSO_4$ - $7H_2O$  28.28 g,  $MgSO_4$ - $7H_2O$  0.12 g,  $CaH_2PO_4$  80 g,  $MnSO_4$ - $H_2O$  12.43 g, KCl 15.33 g,  $Na_2SeO_3$  2 g, zeolite power 824.19 g.

<sup>b</sup>Contained the following (per kg of vitamin premix): Vit-A 10 g, Vit-D3 50 g , Vit-E 99 g, Vit-K 5.0 g, Vit-B<sub>1</sub> 25.50 g, Vit-B<sub>2</sub> 25 g, Vit-

 $B_6\,50\ g,\ Vit-B_{12}\,0.1\ g,\ calcium\ pantothenate\ 61\ g,\ nicotinic\ acid\ 101\ g,\ biotin\ 25\ g,\ inositol\ 153.06\ g,\ folic\ acid\ 6.25\ g,\ cellulose\ 389.09\ g.$ 

# Table 2. Proximate chemical composition and calculated essential amino acid profile of the control and

# 11 test diets (dry matter – DM basis)

| Proximate composition, DM basis | PC   | NC   | OAHF | ОАНА | OAWE | OAHAWE | OSHF | OSHA | OSWE | OSHAWE |
|---------------------------------|------|------|------|------|------|--------|------|------|------|--------|
| Dry matter, %                   | 91.3 | 91.6 | 91.5 | 91.6 | 91.6 | 91.5   | 91.8 | 91.6 | 91.5 | 91.5   |
| Crude protein, %                | 37.2 | 37.2 | 37.2 | 37.4 | 37.1 | 37.4   | 37.3 | 37.4 | 37.4 | 37.4   |
| Crude lipid, %                  | 8.0  | 8.0  | 7.9  | 7.9  | 7.9  | 8.0    | 7.9  | 8.0  | 8.0  | 8.0    |
| Crude ash, %                    | 8.0  | 8.0  | 7.9  | 7.9  | 7.9  | 8.0    | 8.0  | 7.9  | 8.0  | 8.0    |
| Gross energy, MJ/kg             | 16.4 | 16.4 | 16.4 | 16.4 | 16.4 | 16.4   | 16.5 | 16.5 | 16.4 | 16.4   |
| Digestible EAA, %               |      |      |      |      |      |        |      |      |      |        |
| Methionine, %                   | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80   | 0.80 | 0.80 | 0.80 | 0.80   |
| Cystine, %                      | 0.47 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45   | 0.45 | 0.45 | 0.45 | 0.45   |
| Methionine + Cystine, %         | 1.27 | 1.24 | 1.24 | 1.24 | 1.24 | 1.24   | 1.24 | 1.24 | 1.24 | 1.24   |
| Lysine, %                       | 2.17 | 2.17 | 2.17 | 2.17 | 2.17 | 2.17   | 2.17 | 2.17 | 2.17 | 2.17   |
| Tryptophan, %                   | 0.39 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35   | 0.35 | 0.35 | 0.35 | 0.35   |
| Threonine, %                    | 1.31 | 1.28 | 1.28 | 1.28 | 1.28 | 1.28   | 1.28 | 1.28 | 1.28 | 1.28   |
| Isoleucine, %                   | 1.33 | 1.28 | 1.28 | 1.28 | 1.28 | 1.28   | 1.28 | 1.28 | 1.28 | 1.28   |
| Histidine, %                    | 0.88 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90   | 0.90 | 0.90 | 0.90 | 0.90   |
| Valine, %                       | 2.08 | 1.91 | 1.91 | 1.91 | 1.91 | 1.91   | 1.91 | 1.91 | 1.91 | 1.91   |
| Leucine, %                      | 2.52 | 2.45 | 2.45 | 2.45 | 2.45 | 2.45   | 2.45 | 2.45 | 2.45 | 2.45   |
| Arginine, %                     | 2.41 | 2.28 | 2.28 | 2.28 | 2.28 | 2.28   | 2.28 | 2.28 | 2.28 | 2.28   |
| Phenylalanine, %                | 1.41 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40   | 1.40 | 1.40 | 1.40 | 1.40   |
| Tyrosine, %                     | 0.86 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71   | 0.71 | 0.71 | 0.71 | 0.71   |
| Phenylalanine + Tyrosine, %     | 2.27 | 2.11 | 2.11 | 2.11 | 2.11 | 2.11   | 2.11 | 2.11 | 2.11 | 2.11   |

Note: PC - positive control, NC = negative control, OA - organic acid, OS - organic acid salt, HF - hydrogenated fat, HA - HA +

 $14 \qquad \text{alginate, WE - wax ester, HAWE - double coating with HA and WE} \\$ 

12 13

1617

18

19

Table 3. Whole body chemical composition of shrimps fed the control and test diets (dry matter basis)

|            | Dry matter      | Crude protein   | Crude           | Crude ash       |
|------------|-----------------|-----------------|-----------------|-----------------|
| Treatments | (%)             | (%)             | lipid (%)       | (%)             |
|            | , ,             | <u> </u>        | • • •           | · · · ·         |
| PC         | 22.9 ±0.72      | 73.2 ±0.32      | 8.7 ±0.57       | 13.5 ±0.35      |
| NC         | 22.6 ±0.98      | 73.9 ±1.11      | 8.5 ±0.49       | 13.2 ±0.67      |
| OAHF       | 22.3 ±0.84      | 73.4 ±1.83      | 8.2 ±0.77       | 13.3 ±1.05      |
| OAHA       | 23.2 ±0.58      | 74.6 ±1.06      | 8.7 ±0.30       | 13.1 ±0.21      |
| OAWE       | 22.8 ±0.53      | 74.3 ±0.15      | 8.2 ±0.82       | 13.7 ±0.69      |
| OAHAWE     | 22.9 ±0.77      | 74.0 ±0.91      | $8.5 \pm 0.62$  | $13.5 \pm 0.63$ |
| OSHF       | 22.5 ±0.78      | $73.7 \pm 0.98$ | 8.1 ±0.45       | 13.5 ±0.30      |
| OSHA       | 23.2 ±0.77      | $73.6 \pm 0.30$ | $8.9 \pm 0.62$  | 13.2 ±0.76      |
| OSWE       | 23.1 ±0.58      | 73.4 ±1.47      | $9.0 \pm 0.46$  | 13.2 ±0.72      |
| OSHAWE     | 22.8 ±0.65      | 73.7 ±0.77      | 8.8 ±0.68       | 14.0 ±0.70      |
| COMP       |                 |                 |                 |                 |
| OA         | $22.7 \pm 0.36$ | $13.3 \pm 0.28$ | $74.0 \pm 0.49$ | $8.4 \pm 0.24$  |
| OS         | $22.9 \pm 0.29$ | $13.3 \pm 0.15$ | $73.7 \pm 0.28$ | $8.6 \pm 0.39$  |
| ENCAP      |                 |                 |                 |                 |
| HF         | $22.4 \pm 0.13$ | $13.4 \pm 0.13$ | $73.6 \pm 0.20$ | $8.2 \pm 0.07$  |
| НА         | $23.2 \pm 0.00$ | $13.2 \pm 0.08$ | $74.1 \pm 0.67$ | $8.8\pm0.18$    |
| WE         | $23.0 \pm 0.17$ | $13.5 \pm 0.39$ | $73.8 \pm 0.63$ | $8.6 \pm 0.57$  |
| HAWE       | $22.9 \pm 0.07$ | $13.7 \pm 0.38$ | $73.9 \pm 0.25$ | $8.7 \pm 0.17$  |
| P-Value    |                 |                 |                 |                 |
| COMP       | NS              | NS              | NS              | NS              |
| ENCAP      | NS              | NS              | NS              | NS              |
| COMP*ENCAP | NS              | NS              | NS              | NS              |

Note: PC - positive control, NC = negative control, OA - organic acid, OS - organic acid salt, HF - hydrogenated fat, HA - HA + alginate, WE - wax ester, HAWE - double coating with HA and WE; COMP - composition; ENCAP - microencapsulation.

- Table 4. Growth performance (final body weight, specific growth rate, feed intake, feed conversion ratio,
- protein efficiency ratio) of shrimp fed the control and test diets.

| വ  |   |
|----|---|
| ZZ | , |
|    |   |

25

26

27

| Treatments | Final body weight<br>- FBW (g) | Specific growth rate - SGR | Feed intake<br>(g/shrimp) | Feed conversion<br>ratio - FCR | Protein efficiency<br>ratio - PER |
|------------|--------------------------------|----------------------------|---------------------------|--------------------------------|-----------------------------------|
|            |                                |                            |                           |                                |                                   |
| PC         | $13.0 \pm 1.9ab$               | $5.7 \pm 0.2ab$            | $20.9 \pm 2.8ab$          | $1.65 \pm 0.04ab$              | $1.63 \pm 0.04ab$                 |
| NC         | $12.3 \pm 0.6b$                | $5.6 \pm 0.1b$             | $20.5\pm0.5ab$            | $1.72 \pm 0.05a$               | $1.57 \pm 0.04b$                  |
| OAHF       | $13.1 \pm 1.3ab$               | $5.7 \pm 0.2ab$            | $19.8\pm1.8b$             | $1.56\pm0.10b$                 | $1.73 \pm 0.11a$                  |
| OAHA       | $13.3 \pm 1.0ab$               | $5.8 \pm 0.1ab$            | $19.9\pm1.7b$             | $1.54\pm0.05b$                 | $1.74 \pm 0.06a$                  |
| OAWE       | $12.4 \pm 1.3ab$               | $5.7 \pm 0.2ab$            | $18.7 \pm 2.0b$           | $1.55 \pm 0.00b$               | $1.74 \pm 0.00a$                  |
| OAHAWE     | $14.0 \pm 2.2ab$               | $5.8 \pm 0.2ab$            | $21.8 \pm 3.6ab$          | $1.60 \pm 0.03 ab$             | $1.67 \pm 0.04ab$                 |
| OSHF       | $13.0 \pm 1.6ab$               | $5.7 \pm 0.2ab$            | $20.4 \pm 2.3ab$          | $1.62 \pm 0.14ab$              | $1.67 \pm 0.14ab$                 |
| OSHA       | $13.7 \pm 1.0ab$               | $5.8 \pm 0.1ab$            | $21.8 \pm 0.6ab$          | $1.63 \pm 0.08ab$              | $1.64 \pm 0.08ab$                 |
| OSWE       | $13.8\pm\!0.3ab$               | $5.8 \pm 0.0$ ab           | $22.2\pm1.4ab$            | $1.65 \pm 0.07ab$              | $1.63 \pm 0.07ab$                 |
| OSHAWE     | $14.6 \pm 1.0a$                | $5.9 \pm 0.1a$             | $23.6 \pm 2.7a$           | $1.65 \pm 0.09ab$              | $1.62\pm\!0.09ab$                 |
| COMP       |                                |                            |                           |                                |                                   |
| OA         | $13.2 \pm 0.66$                | $5.8 \pm 0.06$             | $20.1 \pm 1.29b$          | $1.56 \pm 0.03b$               | $1.72 \pm 0.03a$                  |
| OS         | $13.8 \pm 0.66$                | $5.8 \pm 0.08$             | $22.0 \pm 1.32a$          | $1.63 \pm 0.02a$               | $1.64 \pm 0.02b$                  |
| ENCAP      |                                |                            |                           |                                |                                   |
| HF         | $13.1 \pm 0.07$                | $5.7 \pm 0.07$             | $20.1 \pm 0.42$           | $1.59 \pm 0.04$                | $1.70 \pm 0.04$                   |
| HA         | $13.5 \pm 0.28$                | $5.8 \pm 0.00$             | $20.9 \pm 1.34$           | $1.59 \pm 0.06$                | $1.69 \pm 0.07$                   |
| WE         | $13.1 \pm 0.99$                | $5.8 \pm 0.07$             | $20.5 \pm 2.47$           | $1.60 \pm 0.06$                | $1.69 \pm 0.08$                   |
| HAWE       | $14.3 \pm 0.42$                | $5.9 \pm 0.07$             | $22.7 \pm 1.27$           | $1.63 \pm 0.04$                | $1.65 \pm 0.04$                   |
| P-Value    |                                |                            |                           |                                |                                   |
| COMP       | NS                             | NS                         | 0.017                     | 0.012                          | NS                                |
| ENCAP      | NS                             | NS                         | NS                        | NS                             | NS                                |
| COMP*ENCAP | NS                             | NS                         | NS                        | NS                             | NS                                |

Note: PC - positive control, NC = negative control, OA - organic acid, OS - organic acid salt, HF - hydrogenated fat, HA - HA + alginate, WE - wax ester, HAWE - double coating with HA and WE; COMP - composition; ENCAP - microencapsulation. Values in a column with different superscripts are significantly different from each other (P < 0.05). P-values in bold are significant.

#### Table 5. Nutrient utilization and digestive enzyme (amylase and lipase) activity in shrimps fed the control

# and test diets.

28

30 31

32

33

3435

|            | Protein deposition | Lipid deposition    | Protein retention efficiency | Lipid retention efficiency | Hepatopancrea<br>tic amylase | Hepatopancrea tic lipase |
|------------|--------------------|---------------------|------------------------------|----------------------------|------------------------------|--------------------------|
| Treatments | PD (g)             | LD (g)              | PRE (%)                      | LRE (%)                    | (U/gprot)                    | (U/gprot)                |
| PC         | 2.13 ±0.36         | 0.25 ±0.05abc       | 27.3 ±1.2ab                  | 15.2 ±1.2ab                | 54.1 ±12.1a                  | 21.5 ±3.2a               |
| NC         | $1.99 \pm 0.16$    | $0.23 \pm 0.03$ bc  | $26.1 \pm 1.5b$              | $13.8 \pm 1.3b$            | $41.6 \pm 6.0b$              | 8.9 ±0.7e                |
| OAHF       | $2.15 \pm 0.27$    | $0.24 \pm 0.04$ abc | 29.1 ±3.2ab                  | $15.4 \pm 2.0ab$           | $51.2 \pm 6.0$ ab            | 16.6 ±4.5bcd             |
| OAHA       | $2.23 \pm 0.15$    | $0.26 \pm 0.02$ abc | $30.0 \pm 1.5a$              | $16.5 \pm 0.5a$            | $47.4 \pm 5.9ab$             | 12.1 ±1.5de              |
| OAWE       | $2.05 \pm 0.26$    | $0.23 \pm 0.03c$    | 29.5 ±0.6a                   | $15.1 \pm 1.6ab$           | $49.1 \pm 7.2ab$             | 15.7 ±3.2bcd             |
| OAHAWE     | $2.33 \pm 0.47$    | $0.27 \pm 0.04$ abc | $28.4\pm1.7ab$               | $15.2 \pm 0.5 ab$          | $47.8 \pm 1.8ab$             | $14.6 \pm 2.4 bcd$       |
| OSHF       | $2.10 \pm 0.30$    | $0.23 \pm 0.03 abc$ | $27.7 \pm 3.1ab$             | $14.3 \pm 1.0ab$           | $47.8 \pm 3.7ab$             | $18.3 \pm 4.0ab$         |
| OSHA       | $2.28\pm0.14$      | $0.28\pm0.02abc$    | $27.9 \pm 1.1ab$             | $15.9 \pm 1.3ab$           | $49.6 \pm 7.3ab$             | 17.7 ±2.8abc             |
| OSWE       | $2.25 \pm .0.06$   | $0.27 \pm 0.01$ abc | $27.2 \pm 1.7ab$             | $15.6 \pm 1.2ab$           | $47.6 \pm 2.0ab$             | 14.2 ±2.3bcd             |
| OSHAWE     | $2.39 \pm 0.18$    | $0.28 \pm 0.01a$    | $27.2 \pm 2.0ab$             | 15.1 ±1.7ab                | 49.1 ±5.9ab                  | 14.8 ±3.2bcd             |
| COMP       |                    |                     |                              |                            |                              |                          |
| OA         | $2.19 \pm 0.12$    | $0.26 \pm 0.0$      | $0.29 \pm 0.68a$             | $15.6 \pm 0.65$            | $48.9 \pm 1.71$              | $14.8 \pm 1.95$          |
| OS         | $2.26\pm\!0.12$    | $0.27 \pm 0.02$     | $0.28\pm\!0.36b$             | $15.2 \pm 0.70$            | $48.5 \pm 0.98$              | $16.3 \pm 2.05$          |
| ENCAP      |                    |                     |                              |                            |                              |                          |
| HF         | $2.12\pm\!0.04$    | $0.24 \pm 0.01$     | $28.4 \pm 0.99$              | $14.9 \pm 0.78$            | $49.5 \pm 1.40$              | 17.5±1.20                |
| HA         | $2.25\pm0.04$      | $0.27 \pm 0.01$     | $29.0\pm1.48$                | $16.2 \pm 0.42$            | $49.5 \pm 1.56$              | $14.9 \pm 3.96$          |
| WE         | $2.15\pm\!0.14$    | $0.25 \pm 0.03$     | $28.4\pm1.63$                | $15.4 \pm 0.35$            | $48.4 \pm 1.06$              | $15.0 \pm 1.06$          |
| HAWE       | $2.36\pm\!0.04$    | $0.28 \pm 0.01$     | $27.8\pm0.85$                | $15.2 \pm 0.07$            | $48.5 \pm 0.92$              | $14.7 \pm 0.14$          |
| P-Value    |                    |                     |                              |                            |                              |                          |
| COMP       | NS                 | NS                  | 0.016                        | NS                         | NS                           | NS                       |
| ENCAP      | NS                 | 0.047               | NS                           | NS                         | NS                           | NS                       |
| COMP*ENCAP | NS                 | 0.047               | NS                           | NS                         | NS                           | NS                       |

Note: PC - positive control, NC = negative control, OA - organic acid, OS - organic acid salt, HF - hydrogenated fat, HA - HA + alginate, WE - wax ester, HAWE - double coating with HA and WE; COMP - composition; ENCAP - microencapsulation. Values in a column with different superscripts are significantly different from each other (P < 0.05). P-values in bold are significant.

38 39

40

41

42

# Table 6. Antioxidant capacity, immune response and cumulative 96-h mortality under pathogenic Vibrio

#### parahaemolyticus challenge of shrimp fed the control and test diets.

|            | Superoxide       |                |                   |                  |                 |                   |                    |                   |                 |              |
|------------|------------------|----------------|-------------------|------------------|-----------------|-------------------|--------------------|-------------------|-----------------|--------------|
|            | dismutase - SOD  | Alkaline phosp |                   |                  |                 |                   |                    |                   |                 |              |
|            | (unit/ml))       | (unit/         |                   | Acid phosphatase |                 | Phenol oxidase    | . ( ,              | Malonaldehyde - N |                 | Cumulative   |
| Treatments | Serum            | Hepatopancreas | Serum             | Hepatopancreas   | Serum           | Hepatopancreas    | Serum              | Hepatopancreas    | Serum           | mortality (% |
| PC         | 339.1 ±23.9a     | 493.5 ±8.8a    | 17.4 ±3.3ab       | 493.5±8.8a       | 62.9 ±1.3a      | 885.4 ±46.8ab     | 761.5 ±14.2a       | 2.3 ±0.2abc       | 7.1 ±0.7bcd     | 42.2 ±1.86   |
| NC         | 264.4 ±31.8c     | 431.6 ±5.4b    | 7.2 ±0.9f         | 431.6 ±5.4b      | 19.8 ±0.4e      | 535.4 ±68.8f      | 427.4 ±21.9e       | 2.5 ±0.2abc       | 9.3 ±0.7a       | 62.8 ±5.9    |
| OAHF       | 316.4 ±42.6ab    | 475.9 ±15.3ab  | 16.8 ±1.7b        | 475.9 ±15.3ab    | 38.6 ±2.9b      | 800.0 ±10.8abcd   | 694.1 ±79.7ab      | 2.4 ±0.3abc       | 6.6 ±0.8cd      | 47.2 ±2.3bc  |
| OAHA       | 296.5 ±19.6abc   | 491.2 ±77.5a   | 7.8 ±0.3ef        | 491.2 ±77.5a     | 21.2 ±0.7de     | 704.2 ±87.3de     | 715.3 ±47.8ab      | 2.3 ±0.4abc       | 7.8 ±1.5bc      | 51.3 ±9.2b   |
| OAWE       | 306.1 ±18.0abc   | 518.3 ±21.9a   | 9.3 ±0.9def       | 518.3 ±22.0a     | 14.0 ±0.2f      | 820.8 ±138.5abcd  | 625.0 ±88.8bc      | 2.2 ±0.3c         | 6.8 ±0.4bcd     | 55.6 ±9.1a   |
| OAHAWE     | 291.5 ±39.1bc    | 503.0 ±27.1a   | 14.6 ±0.4c        | 503.0 ±27.1a     | 36.8 ±4.5b      | 718.8 ±90.1cd     | 460.4 ±42.7de      | 2.2 ±0.2c         | 7.5 ±1.4bcd     | 45.0 ±4.1c   |
| OSHF       | 300.6 ±20.5abc   | 511.8 ±37.5a   | 8.6 ±0.0def       | 511.8 ±37.5a     | 25.7 ±3.7c      | 600.0 ±64.2ef     | 464.6 ±20.8de      | 2.2 ±0.3c         | 6.2 ±0.7d       | 52.2 ±6.4b   |
| OSHA       | 323.5 ±26.7abc   | 513.2 ±37.9a   | 18.8 ±1.0a        | 513.2 ±37.9a     | 25.6 ±1.3c      | 906.3 ±61.4a      | 537.5 ±110.8cd     | 2.3 ±0.1bc        | 7.5 ±0.8bcd     | 50.0 ±4.5bc  |
| OSWE       | 296.8 ±8.0abc    | 463.0 ±27.3ab  | 14.7 ±0.4c        | 463.0 ±27.3ab    | 13.4 ±0.9f      | 779.2 ±10.8bcd    | 431.9 ±14.2e       | 2.7 ±0.1ab        | 7.0 ±0.7bcd     | 45.0 ±4.1c   |
| OSHAWE     | 303.2 ±26.8abc   | 472.3 ±36.9ab  | 10.1 ±0.4d        | 472.3 ±36.9ab    | 23.1 ±1.9cd     | 829.2 ±54.3abc    | 437.5 ±3.4e        | 2.4 ±0.4abc       | 7.9 ±0.9abc     | 47.2 ±2.3bc  |
| COMP       |                  |                |                   |                  |                 |                   |                    |                   |                 |              |
| OA         | $302.6 \pm 11.0$ | 497.1 ±18.0    | 12.1 ±4.27b       | 497.1 ±18.9      | $27.7 \pm 12.0$ | $761.0 \pm 58.0$  | 623.7 ±115.5       | 2.3 ±0.10         | $7.2 \pm 0.57$  | 49.8 ±4.6    |
| OS         | $306.0 \pm 11.9$ | 490.1 ±26.2    | 13.1 ±4.63a       | 490.1 ±26.2      | $22.0 \pm 5.8$  | $778.7 \pm 130.1$ | 467.9 ±48.6        | 2.4 ±0.22         | $7.2 \pm 0.73$  | 48.6 ±3.1    |
| ENCAP      |                  |                |                   |                  |                 |                   |                    |                   |                 |              |
| HF         | $308.5 \pm 11.2$ | 493.9 ±25.4    | 12.7 ±5.80ab      | 493.9 ±25.4      | 32.15 ±9.1a     | 700.0 ±141.4b     | 579.3 ±162.7ab     | 2.3 ±0.14         | $6.4 \pm 0.28c$ | 49.7 ±3.5    |
| HA         | $310.0 \pm 19.1$ | 502.2 ±15.6    | 13.3 ±7.78a       | 502.2 ±15.6      | 23.4 ±3.1b      | 805.3 ±142.9a     | 626.4 ±125.7a      | 2.3 ±0.00         | 7.7 ±0.21a      | 50.7 ±0.9    |
| WE         | 301.5 ±6.6       | 490.7 ±39.1    | $12.0 \pm 3.82b$  | 490.7 ±39.1      | 13.7 ±0.4b      | 800.0 ±29.4a      | $528.5 \pm 136.5b$ | 2.5 ±0.35         | 6.9 ±0.14b      | 50.3 ±7.5    |
| HAWE       | 297.4 ±8.3       | 487.7 ±21.7    | $12.4 \pm 3.18ab$ | 487.7 ±21.7      | 30.0 ±5.7ab     | 774.0 ±78.1ab     | $449.0 \pm 16.2c$  | 2.2 ±0.03         | $7.7 \pm 0.28a$ | 46.1 ±1.5    |
| P-Value    |                  |                |                   |                  |                 |                   |                    |                   |                 |              |
| COMP       | NS               | NS             | 0.004             | NS               | < 0.0001        | < 0.0001          | < 0.0001           | NS                | NS              | NS           |
| ENCAP      | NS               | NS             | < 0.0001          | NS               | < 0.0001        | 0.039             | < 0.0001           | NS                | 0.026           | NS           |
| COMP*ENCAP | NS               | NS             | < 0.0001          | NS               | < 0.0001        | < 0.0001          | < 0.0001           | NS                | NS              | NS           |

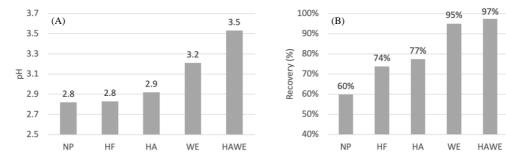

Note: PC - positive control, NC = negative control, OA - organic acid, OS - organic acid salt, HF - hydrogenated fat, HA - HA + alginate, WE - wax ester, HAWE - double coating with HA and WE; COMP - composition; ENCAP - microencapsulation. Values in a column with different superscripts are significantly different from each other (P < 0.05). P-values in bold are significant.

Table 7. Performance score of "COMP" (organic acid and organic acid salts) and "ENCAP" (hydrogenated fat, hydrogenated fat + alignate, wax ester, and double coating with hydrogenated fat + alignate and wax ester) based on growth performance, nutrient utilization and immune response of shrimps fed the control and test diets.

|         |      | Growth performance | Nutrient utlization | Immune response  | Total score      |
|---------|------|--------------------|---------------------|------------------|------------------|
| Factors | Type |                    |                     |                  |                  |
| COMP    | OA   | 58 <sup>b</sup>    | 67 <sup>b</sup>     | 112              | 237 <sup>b</sup> |
|         | OS   | 38 <sup>a</sup>    | 57 <sup>a</sup>     | 96               | 191 <sup>a</sup> |
|         |      |                    |                     |                  |                  |
| ENCAP   | HF   | 22                 | 35 <sup>b</sup>     | 61 <sup>b</sup>  | 118 <sup>b</sup> |
|         | HA   | 27                 | 37 <sup>b</sup>     | 53 <sup>ab</sup> | 117 <sup>b</sup> |
|         | WE   | 22                 | 27 <sup>a</sup>     | 46 <sup>a</sup>  | 95 <sup>a</sup>  |
|         | HAWE | 25                 | 25 <sup>a</sup>     | 48 <sup>a</sup>  | 98 <sup>a</sup>  |

Note: PC - positive control, NC = negative control, OA - organic acid, OS - organic acid salt, HF - hydrogenated fat, HA - HA + alginate, WE - wax ester, HAWE - double coating with HA and WE. Values in a column with different superscripts are significantly different from each other (P < 0.05).

- Figure 1. The pH value and recovery of the active ingredient during the *in vitro* solubility test of four
- microencapsulation (HF, HA, WE and HAWE) compared the non-protected product (NP).



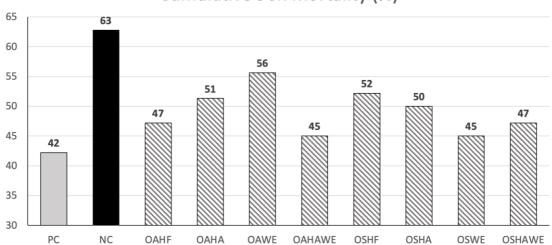
Note: NP = unprotected, HF - hydrogenated fat, HA - HA + alginate, WE - wax ester, HAWE - double coating with HA and WE

5556

# Figure 2. Cumulative 96-h mortality under pathogenic Vibrio parahaemolyticus challenge of shrimp fed

#### the control and test diets.

57


58

59 60

61

62

# Cumulative 96h mortality (%)



Note: PC - positive control, NC = negative control, OA - organic acid, OS - organic acid salt, HF - hydrogenated fat, HA - HA + alginate, WE - wax ester, HAWE - double coating with HA and WE.