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Abstract: We discuss two methods to detect the presence and location of a person in a small-scale1

room and compare the performances. The first method is Direct Intersection, which determines a2

coordinate point based on the intersection of spheroids defined by observed distances of high-3

intensity reverberations. The second method, Sonogram analysis, overlays all channel’s room4

impulse responses to generate an intensity map for the observed environment. We demonstrate5

that the former method has lower computation complexity and higher accuracy for small numbers6

of channels, while the latter performs more robustly.7

Keywords: Presence detection; passive localization; room impulse response; acoustic localization;8

indoor localization9

1. Introduction10

ACOUSTIC localization systems outperform the radio-based counterpart in indoor11

settings, which are not covered by ubiquitous satellite signals of Global Navigation12

Satellite Systems [1,2]. For some applications, it may not be desirable to equip persons or13

objects with additional hardware as trackers due to inconvenience and privacy reasons.14

Previously, we reported coarsely about indoor localization by Direct Intersection in15

[3]. In this work, we report in detail on two algorithms for this application and their16

performances. The proposed system is categorized as a passive localization system [4].17

Echolocation, such as the method used by bats to locate their prey, is a phenomenon18

where the reflected sound waves are used to determine the location of objects or surfaces19

which reflect the sound waves due to a change in acoustic impedance. This concept has20

been extensively used for various investigations in the physics and engineering fields,21

such as sound navigation and ranging (Sonar) [5,6].22

We draw the approach from bats, which can perceive the incoming reflected wave’s23

direction due to its precise awareness of head angle, body motion, and timing. While24

the exhaustive echolocation method of bats is not completely understood, one of the25

more obvious aspects is the back-scattered signals’ difference of arrival in time between26

left and right ears, which can be used to calculate the incoming sound wave’s direction27

[7]. We investigate two different algorithms to interpret the returned signals in a small28

office room of approximately 3× 4× 3 m similar to [8], which are characteristic for the29

strong multipath fading effects that partially overlap and interfere with the line-of-sight30

reverberations. Furthermore, we raise the question of the performance of two approaches31

and compare the memory consumption and execution time.32

The detection of more than one person or object is not investigated in this work.33
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2. Related Work34

Indoor presence detection may be achieved through a variety of different tech-35

nologies and techniques. For one, radio-frequency (RF) based approaches have been36

implemented. In general, these may be classified into two different employed techniques:37

received signal strength indicator (RSSI) and radar based approaches. The former offers38

low-complexity systems with cheap hardware [9], whereas with the latter one, higher39

accuracy may be achieved [10]. The other main concept employed in indoor presence40

detection is using the ultrasonic waves, which are applied in active trackers indoors41

[11,12] and even underwater [13,14].42

2.1. RF-RSSI43

Mrazovac et al. [15] track the RSSI between stationary ZigBee communication nodes,44

detecting changes to infer a presence from it. In the context of home automation this45

work is used to switch on and off home appliances. Kosba et al. [9] and Retscher46

and Leb [16] analyze different signal strength features for usability of detection and47

identification using standard Wi-Fi hardware. Kaltiokallio and Bocca [17] reduce the48

power consumption of the detection system by distributed RSSI processing.49

This technique is then improved by Yigitler et al. [18], who build a radio tomographic50

map of the indoor area. The difference from the previously sampled map of RSSI values51

is the notification of a presence or occupancy. This general concept is known in the field52

of indoor localization as fingerprinting. Hillyard et al. [19] utilize these concepts to detect53

border crossings.54

2.2. RF-RADAR55

Suijker et al. [20] present a 24 GHz FMCW (Frequency-Modulated Continuous-56

Wave) radar system to detect indoor presence and to be used for intelligent LED lighting57

systems. An interferometry approach is implemented by Wang et al. [10] for precise58

human tracking in an indoor environment.59

2.3. Ultrasonic presence detection and localization60

A direct approach to provide room-level tracking is presented by Hnat et al. [21].61

Ultrasonic range finders are mounted above doorways to track people passing beneath.62

More precise localization can be achieved by using ultrasonic arrays as proposed by63

Caicedo and Pandharipande [22] [7,22]. The arrays’ signals can be used to obtain the64

range and direction of arrival (DoA) estimates. The system is used for energy-efficient65

lighting systems. Pandharipande and Caicedo [6] enhanced this approach to track users66

by probing and calculating the position via the time difference of arrival (TDoA). Prior67

to that, Nishida et al. [23] proposed a system consisting of 18 ultrasonic transmitters and68

32 receiver, embedded in the ceiling of a room with the aim to track the aged people and69

prevent them from accidents. A time of flight (ToF) approach was proposed by Bordoy70

et al. [24], who use a static co-located speaker-microphone pair to estimate human body71

and wall reflections. Ultrasonic range sensing my be combined with infrared technology,72

as has been done by Mokhtari et al. [25], to increase the energy efficiency.73

2.4. Ultrasonic indoor mapping74

Indoor mapping and indoor presence detection are two views of the same prob-75

lem. In both instances one tries to estimate the range and direction for a geometrical76

interpretation. Ribeiro et al. [26] employ a microphone array co-located to a loudspeaker77

to record the room impulse response (RIR). The multiple reflections can be estimated78

from this RIR with the use of l1-regularization and least-squares (LS) minimization, and79

a room geometry can be inferred, achieving a range resolution of about 1 m. A random80

and sparse array of receivers is proposed by Steckel et al. [27] for an indoor sonar system.81

In addition to that, the authors use wideband emission techniques to derive accurate82

three-dimensional (3-D) location estimates. This system is then enhanced with an emitter83
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array to improve the signal-to-noise-ratio (SNR) [28]. Another approach, implementing84

a binaural sonar sensor, is proposed by Rajai et al. [29]. A sensor was used to detect the85

wall within a working distance of one meter. In a recent work by Zhou et al. [30], it is86

shown that a single smartphone with the help of a gyroscope and an accelerometer can87

be used to derive indoor maps by acoustic probing.88

2.5. Algorithms89

The first set of methods, which are broadly applied are triangulation algorithms90

as described by Kundu [31]. In this work we focus on two Maximum-Likelihood ap-91

proaches, similar to the one proposed by Liu et al. [32]. The first one, Direct intersection92

(DI), uses a Look-up-Table (LUT) and Spheres inferred from the sensors delay measure-93

ments with error margin. While the other one, the sonogram method, populates a 3-D94

intensity map with probabilities to find likely positions of the asset. These the approach95

of the two methods are different, is it likely to expect different outcomes in accuracy,96

precision, computational complexity as well as memory requirements.97

3. System Overview98

The system consists of a single acoustic transmitter, a multi-channel receiver, a99

power distribution board, and a central computer to analyze the recorded signals. Four100

microphones are placed equidistantly around the speaker and connected to the receiver101

board. The set-up is shown in Fig. 1, as it is used for the experiment reported below.102

3.1. Signal Waveform103

Due to their auto-correlation properties and the ability to maximize the Signal-to-
Noise-Ratio (SNR) without incrementing the acoustic amplitude, swept-frequency cosine,
i.e. frequency modulated chirp signals, perfectly fit our case-study. Auto-correlated
frequency modulated chirps are able to provide compressed pulses at the correlator
output, which width in time space is defined as follows [33]

Pw =
2
B

. (1)

The frequency modulated signal employed in our experiments, xTx(t), is mathematically
defined as follows

stx(t) =

{
A cos(2πφ(t)), for 0 ≤ t ≤ Ts

0, otherwise
, with (2)

φ(t) =
fend − fstart

2Ts
t2 + fstartt, (3)

where A denotes the signal amplitude, fstart is the start frequency, fend the end fre-
quency, B = fend − fstart the frequency bandwidth, Ts is the pulse duration and φ(t) the
instantaneous phase. The chirp instantaneous frequency is defined as follows

f (t) = fstart +
fend − fstart

Ts
t, 0 ≤ t ≤ Ts. (4)

Taking into account the hardware characteristics of our setup, we selected a linear up-104

chirp pulse with amplitude A = 1, Ts = 5 ms, fstart = 16 kHz, fend = 22 kHz, which105

result in a time-bandwidth product of T B = 30. The frequency response of a chirp signal106

directly depends on the Time-Bandwidth (T B) product. For chirps with T B ≥ 100,107

the pulse frequency response is almost rectangular [34]. However, due to the hardware108

limitation of our setup, which do not allow to have high (T B) product, the frequency109

response will be characterized by ripples. In order to mitigate the spectrum disturbances,110

we window in time domain the transmitted chirp pulse with a raised cosine window111

[34].112
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3.2. Hardware overview113
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Figure 1. Schematic representation of the system.

To obtain 3-D coordinates with static arrangement, a four-element microphone114

array is sampled, as well as a feedback signal. This array records the incoming echo115

wave with different time of arrival, depending on the incoming signal direction. Since116

unsuitable hardware can affect the system’s performance [35], both, microphones and117

speaker were tested for correct signal generation and reception in an an-echoic box.118

3.3. Data acquisition119

Each microphone’s signal is preconditioned before the digitization by the multi-120

channel analog-to-digital converter, which was chosen to provide each channel with the121

identical sample-and-hold trigger flank before conversion. Each frame consist of the122

signal from each microphone and a feedback, that is recorded as an additional input123

to estimate and mitigate play-back jitter. The first layer of digital signal processing is124

to compress the signal, extracting the reverberated acoustic amplitude over time and125

removing the empty room impulse response (RIR).126

3.3.1. Channel phase synchronization127

Initially, we calculate the convolution of the feedback channel signal sfb with our
known reference signal sref in its analytic form to obtain the RIR and retrieve the time
of transmission from the compressed signal yfb, as shown in eq. 5, where j denotes the
imaginary unit.

yfb = |(sfb ~ sref) + j · H(sfb ~ sref)| (5)

This compressed analytic form yfb of the feedback signal sfb (see Fig. 1 ideally holds only
a single pulse from the transmitted signal, if the output stage is impedance matched.
Searching for the global maximum returns both, time of transmission, as well as the
output amplitude.

aout = max
t−→t0

yfb(t) (6)

In the following, we refer to the start time of a transmission as t0, all other channels’ time128

scales are regarded relative to t0. Therefore, the signals of the microphone channels are129

truncated to remove information prior to the transmission. The ring-down of small office130

rooms is in the order of 100 ms, so the repetition interval of consecutive transmissions is131

chosen accordingly larger. This prevents leakage of late echos into the following interval,132
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that would result in peaks to be recorded after the following interval’s line-of-sight. The133

remaining signal frames from all microphones is compressed with the same approach134

as the feedback channel, shown in eq. 5 and eq. 6 to extract each channel’s compressed135

analytic signal yi and line-of-sight detection time ti.136

3.3.2. Baseline removal137

In the following we refer to the acoustic channel response after the line-of-sight as138

the echo profile. An example of such echo profiles is shown in Fig. 2. While the line-139

of-sight signal ideally provides the fastest and strongest response, large hard surfaces,140

like desks, walls, and floors return high amplitudes, that are orders of magnitude above141

a person’s echo. For a linear and stable channel, we can reduce this interference from142

the environment by subtracting the empty room echo profile from each measurement.143

This profile looses its validity if the temperature changes, the air is moving or objects in144

the room are moved, e. g. an office chair is slightly displaced. A dynamic approach to145

create the empty room profile is updating an estimation, when no change is observed for146

an extended time or alternatively using a very low weight exponential filter to update147

the room estimation. In this work, the empty office room was sounded N times directly148

before each test and averaged into an empty room echo profile ȳ◦i for each channel i149

as denoted in eq. 7, to assure unchanged conditions and reduce the complexity of the150

measurements. The removal itself is then, as mentioned above, the subtracting of the151

baseline from each measurement, as in eq. 8 under the assumption of coherence.152

ȳ◦i = mean(y◦i ) (7)

ỹi = yi − ȳ◦i (8)

Figure 2. Exemplary magnitude plot of the compressed analytic signal with (top) the baseline
drawn from an previous recording of the empty room, (middle) the room with a person in it, and
(bottom) the difference of the two above. The red highlighted line in the center marks the area of
interest due to geometric constraints. Note the changed scale of the ordinate in the bottom plot.
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3.3.3. Time-gating153

For our approach we assume some features of the person being closer to the observ-154

ing system, compared to distant environment objects, like chairs, tables and monitors,155

while another area of reverberations is in the close lateral vicinity of the system, consist-156

ing e. g. of lamps and the ceiling. This is exploited by introducing a time gate, that only157

allows for non-zeros values in the interval of interest as in eq. 9 (also compare Fig. 2).158

ỹtg,i =

{
ỹi, for tmin < t < tmax

0, otherwise
(9)

Another assumption is that of a small reverberation area on the person. We assume
the points of observation from each microphone to be sufficiently close on a person
to overlap. The latter assumption introduces an error, that limits the precision of the
system in the order of 10 cm [36], which we deem sufficient for presence detection, as a
person’s dimension is considerably larger in all directions. This estimation is based on
the approximate size of a person’s skull and its curvature with respect to the distance
to the microphones and their spacing. The closer the microphones and the further
the distance between head and device, the more the reflection points will approach
each other. If we regard a simplified 2-D projection, where a person with a spherical
head of radius rH ≈ 10 cm moves in the y-plane only, the position of a reflection point
R = (xR, zR) on the head can be calculated by

xR = xC − rH sin (αR), and

zR = zC − rH cos (αR),
(10)

where xC and zC are the lateral and vertical center coordinates of the head and αR is the
reflection angle. The latter is calculated through

αR = tan−1 xC + dM
2

zC
, (11)

with the distance dM between the microphone and sender. The origin is set to the speaker159

position. By geometric addition the distance between two such reflection points can160

be calculated and reach the maximum value if the head moves towards the center. In161

this case the reflection points would be on the opposing sides of the head and result in162

a mismatch of 2 rh. The other extreme is laterally moving to a infinite distance, which163

increases the magnitude of xC, while the distance between microphone and speaker164

stays constant, therefore the reflection points converge to a single point of reflection. In165

this work the distance between head center and speaker remained above 120 cm, with a166

projected error distance of about 1.3 cm.167

3.3.4. Echo profile168

During the experiment, the reflected signals from the floor, walls, tables and chairs169

have a very high amplitude. This interference can lead to masking the echo from the170

target object. To reduce the effect of the interference, the empty room profile is used to171

subtract the target impulse response from the input impulse response. If we define the172

reflection from objects other than the target object as noise, we can increase the signal to173

noise ratio with this method. The empty room impulse response is also called empty174

room echo profile in this work. In Fig. 2, the upper plot is the empty room impulse175

response, where the experiment room is cleared of most clutter. The middle plot is the176

room with single static object as target, shown in Fig. 3. The lower plot shows the result177

of subtraction between the the second and first plot, the scale is adjusted for clarity178

purpose.179
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3.3.5. Distance maps180

Look-up tables are calculated before the experiment to estimate the travel distance of
a signal from the speaker to each microphone under the assumption of a direct reverbera-
tion from a point at position ~x in the room and linear beam-like signal propagation. This
grid is formed by setting the center speaker as origin and spanning up a 3-dimensional
Cartesian coordinate system of points ~x through the room in discrete steps. We limit
the grid to the intervals X1 to X3 in steps of 1 cm to decrease the calculational effort and
multipath content under the prior knowledge of the rooms geometry as follows:

~x = (x1, x2, x3) ∈ X, where

X = {X1 × X2 × X3} ⊂ R3.
(12)

The look-up table approach serves to minimize the processing time during execution.181

The distance maps provide pointers to convert from binary sampling points to distance182

points. Each sub-matrix contains the sum of distance between each point in the room to183

the corresponding ith microphone at the position ~xM,i and to the speaker at position ~xS,184

which cover the flight path of the echoes, as in eq. 13:185

Mi(~x) = ‖~x−~xS‖+ ‖~xM,i −~x‖. (13)

Therefore, the resultant entries in matrices M depend on the geometric arrangement of186

speaker and microphones, and the matrix size corresponds to the area of detection, as in187

eq. 12.188

3.4. Data processing189

3.4.1. Direct Intersection190

The main assumption for this approach is, that the highest signal peak in the191

observation window of each channel is indicating the position of interest, as visualized192

in Fig. 2. Each channels’ peak index defines the radius ri of a sphere around each193

microphone, which is contained in the point cloud Li. While ideally those spheres194

overlap in exactly the point of reverberation, in practical application, where noise,195

interference and jitters are present, this is not the case. To compensate this error, we pad196

the sphere by ∆r additional points in radius until all spheres overlap and the unity of197

valid estimation points UL is not empty. The sphere radius widening ∆r can be used198

as an indication of each measurements quality, as a low error case will require little199

to no padding, while in high error cases, the required padding will be large. Another200

approach is to use a fixed and small padding, which will ensure only measurements of201

high quality to be successful, but will fail for high error scenarios.202

3.4.2. Sonogram203

The Sonogram approach leverages available memory and processing power to build204

a 3-D intensity map. This approach utilizes the entire echo profile difference shown in205

Fig. 2 (bottom) and map them into the 3-D distance map explained in section 3.3.5, with206

the assumption that the highest peak correspond to the source of reverberation. The207

multiplication of impulse amplitude that correspond to the same coordinates are used208

as an indication of possible reverberation source. Therefore, the maximum result would209

have the highest likelihood of being the reverberation source location.210
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Algorithm 1: Direct Intersection Estimation
Input : ỹtg, observed intensity data frames,

Mi, distance maps,
K, number of channels,
∆rmax, maximum radius spreading distance.

Output :~xest, estimated 3D-position.

begin
∆r ← 0 // initial estimation tolerance
NOL ← 0 // number of overlapping points
for i = 1 to K do

ri ← maxn→ri ỹtg // get index of peak
Ri ← {ri}

while (NOL = 0) & (∆r < ∆rmax) do
∆r++
for i = 1 to K do

Ri ← {ri − ∆r, Ri, ri + ∆r} // recursively add width
Li ← isMember(Mi, Ri) // select points by radius [37]

UL ← (L1 & . . . & LK)
~xOL ← ind2sub(size(UL), find(UL)) // wrap into 3-D coordinates [38]
NOL ← min(length(~xOL))

~xest = mean(~xOL)

Algorithm 2: Sonogram Estimation
Input : ỹtg, observed intensity data frames,

Mi, distance maps,
K, number of channels,
∆rmax, maximum radius spreading distance.

Output :~xest, estimated 3D-position.

begin
ỹ+ ←

{
ỹtg > 0

}
// remove negative intensities

forall ~x do
I(~x)← ∏K

i=1 ỹ+,i(Mi(~x))

Ax1 ← maxx1∈X1(I) // 2D matrix
~ax2 ← maxx2∈X2(Ax1) // 1D vector
x3,est ← maxx3∈X3(smooth(~ax2)) // scalar, moving average smoothed [39]

x2,est ← find(~ax2, x3,est) // select first matching value [40]
x1,est ← find(Ax1, {x2,est, x3,est})
~xest ← (x1,est, x2,est, x3,est)
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4. Experiments211

4.1. Set-up212

In the experiment, we use a mock-up representing a person’s head as the experiment213

target. The hard and smooth surface of the object is intentional for the sake of usability214

and to remove unintended movements from our measurements at this early stage. In the215

set-up shown in Fig. 3 the central speaker emits the well-known signal stx, the reflected216

echoes from the target s1 to s4 are recorded by the microphone array around the speaker.217

The depiction in Fig. 3 is exaggerated for clarity.218

stx

s2s3

s4 s1

dMM

Figure 3. Experimental Set-up for K = 4 receivers spaced by dMM ≈ 0.2 m. The transmitted signal
stx is observed as reflected signals si by the system located near the ceiling of the room.

Table 1 shows the spherical coordinates of the target inside the room, with the219

center of the device as the reference point. The device is positioned on the ceiling,220

oriented downward. For each position we measure the distance for the assumed acoustic221

path with a laser distance meter Leica DISTOTM D3a BT for reference. As mentioned222

above, the coordinate system’s point of origin is set to the center of the device, the x-axis223

is set perpendicular to the entrance door’s wall (bottom of Fig. 5) and increasing towards224

the right, the y-axis is parallel to the line of sight from the door and increasing towards225

the rear end of the room, and the z-axis is zero in the plane of the device (upper ceiling226

lamp level) and decreasing towards the floor. The measured reference positions of the227

measurement dummy are listed in Tab. 1 and indicated by the green diamond in Fig. 5,228

5, 9, and Fig. 9. The two dimensional depictions are shown in Cartesian coordinates to229

provide clarity, while the detection results are done in spherical coordinates.230
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Table 1. Reference Positions

Pos. r (m) θ (°) φ (°)

1 1.58 77 59
2 1.70 -92 57
3 1.23 -35 54
4 1.26 169 54

4.2. Empty room profile231

Figure 4. Response of the empty room for all 4 channels s1 to s4. The red line indicates the mean
response over 100 measurements, the grey envelope the ±3σ region. The first peak marks the
line-of-sight arrival time and is used for time synchronization.

Similar to the later experiments we sound the room 100 times as described in Ch.232

3.3.2 to record the baseline profiles shown in Fig. 4. This recordings are taken one time233

and serve for reference for all later experiment runs. During the recordings the room234

was left closed and undisturbed. The recordings still show significant variances in each235

channel at varying positions, e.g., as shown in the uppermost subplot of Fig. 4 from 15236

to 16 ms. Below 8 ms this intervals with increased variances do not occur, indicating a237

stable channel. The signals’ interval close to zero contains strong wall and ceiling echos.238

Note the very strong reverberation peak at 12.5 to 13.5 ms that is caused by the floor. As239

our area of interest does not fall in this distance, we omit it for analysis as well. Hence240

the time-gate limits as introduced in Ch.3.3.3 are tmin = 3 ms and tmax = 8 ms.241

4.3. Results242

4.3.1. Direct Intersection243

The localization by Direct Intersection from all 100 runs is shown for each of the244

4 reference positions in Fig. 5 and 5. While the statistical evaluation is performed in245

spherical coordinates due to the geometric construction during the estimation, this246

overview plots, as well as those for the Sonogram localization are drawn in Cartesian247
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coordinates that allow for easier verification and intuitive interpretation. The lateral248

spread of the estimation point cloud in Fig. 5a is misleading as the points are situated249

on a sphere around the origin. The projected lateral extend is almost entirely due to the250

angular errors.251

(a) (b)

(c) (d)

Figure 5. 2D-Projection of 100 estimations of 3D-positions 1 (a), 2 (b) 3 (c) and 4 (d) by Direct Intersection. The
single estimations are indicated by the black circled markers, the red cross marks the Carthesian averaged position and
is highlighted by the red line to the origin, and the green diamond indicates the reference position. The points’ infill is
proportional to the observed intensity relative to the radius spreading (darker is higher).

Positions 1 and 2 show a distance estimation deviation of σr ≈ 10 cm, as well252

as azimuth and elevation angle errors of σ` ≈ σŒ < 5° for both, Direct Intersection253

and Sonogram localization (compare Tab. 2 and 3. For positions 3 and 4 , which are254

situated closer to the desks, the deviation increases to almost 40 cm in distance and255

almost arbitrary azimuth angles with a σ` ≈ 120° and more, but a far less affected256

elevation angle estimation with a σ` < 10°. The deviations are calculated around the257
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mean estimator for each value. For simplicity of interpretation, the mean error for each258

dimension is shown in Tab. 4.259

Table 2. Direct Intersection Estimated Positions

Pos. r (m) θ (°) φ (°)

1 1.83± 0.14 81± 4 61± 1
2 2.01± 0.11 −100± 3 61± 1
3 1.92± 0.37 4± 96 59± 4
4 2.12± 0.25 −58± 135 60± 3

The error distributions for each dimension are shown in Fig. 6, where each column260

depicts one of the spherical dimensions (radius, azimuth angle and elevation angle),261

while each row represents the results from the reference position indicated to the left262

of the plot. For the first two positions the distributions are almost unimodal, but for263

the latter two this does not hold true, making the mean value and standard deviation264

unsuitable estimators.265

Figure 6. Histograms of the error in estimation compared to the reference over 100 localization
repetitions at each position by DI (blue) and Sonogram (red) estimation. Each row depicts the
3 degrees of freedom for each position.

The distribution of the error in the absolute distance between the estimated positions266

and reference positions (see Fig. 7) is likewise a few dozen centimeters for the first two267

cases, but around 1 m for the latter two. If we recall the reference positions from Tab. 1,268

the true distances are between 1 m to 2 m, which puts the error in the same order as the269

expected value.270

The Direct Intersection method allows for an investigation into the time variance271

of the detected maximum peak which is depicted in Fig. 8. In the first two cases we272

observe unimodal distributions of around 10 samples in width, while the latter cases273

show detected peaks all over the interval.274
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Figure 7. Histograms of the absolute distance error in estimation compared to the reference over
100 localization repetitions at each position by DI (blue) and Sonogram (red). Each row depicts the
3 degrees of freedom for each position.

Figure 8. Histograms of the highest peak position of each microphone’s channel over 100 local-
ization repetitions at each position by DI. Each row depicts the 3 degrees of freedom for each
position.
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4.3.2. Sonogram275

The Sonogram localization on the same data as before in Ch. 4.3.1 is shown in Fig. 9276

and 9 for all 4 cases. The lateral distribution of the estimated locations is not following277

the spherical shape as closely as is the case for those by Direct Intersection estimations278

(compare e.g., Fig. 5a).279

(a) (b)

(c) (d)

Figure 9. The same plot as in Fig. 5 for positions 1 (a), 2 (b), 3 (c) and 4 (d) but by Sonogram. The point’s infill is
proportional to the observed intensity.

Similar to before, the method performs well in the first two cases, exhibiting small280

deviations (see Tab. 3), but far less precise with the largest deviation increase in the281

azimuth angle, too. The corresponding mean errors to the reference positions are listed282

in Tab. 4.283
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Table 3. Sonogram Estimated Positions

Pos. r (m) θ (°) φ (°)

1 1.85± 0.10 80± 4 58± 2
2 2.03± 0.11 −100± 3 60± 2
3 1.77± 0.26 −41± 69 47± 7
4 1.96± 0.34 31± 119 51± 9

Table 4. Mean Error for Direct Intersection and Sonogram

Direct Intersection Sonogram

Pos. r (m) θ (°) φ (°) r (m) θ (°) φ (°)

1 0.25 3 2 0.27 2 1
2 0.31 8 4 0.34 8 3
3 0.69 39 5 0.53 6 7
4 0.87 47 6 0.70 138 3

The cases 3 and 4 display two larger clusters of estimated positions, which leads284

to the bimodal error distributions in Fig. 6.285

The absolute error is similarly distributed around lower values for the former286

two cases and widely spread for the two latter cases (see Fig. 7). Note that the error287

distribution plots for the Sonogram are of slightly different horizontal scale, as no errors288

below 20 cm were observed, while the observed maximal error exceeds 200 cm.289

Lastly, the performance of both algorithms with regard to execution time is listed290

in Tab. 5 and mean required memory in Tab. 6. The distribution of those measures is291

shown in Fig. 10 and Fig. 11. The Direct Intersection method requires roughly 2.4× less292

memory than the Sonogram localization. With a best case mean execution time of 0.66 s293

the former algorithm is almost 1.7× faster than the best case mean of the latter method,294

while the worst case mean - almost unchanged for the Sonogram approach - is with a295

factor of 7.1 for the Direct Intersection by far slower than the worst case mean execution296

time of the Sonogram method.297

Table 5. Runtime Performance: Time

Direct Intersection Sonogram

Pos. Time (s) Time (s)

1 0.94± 0.17 1.14± 0.07
2 0.66± 0.13 1.20± 0.02
3 6.38± 6.60 1.10± 0.01
4 8.58± 7.12 1.10± 0.01

Table 6. Runtime Performance: Memory

Direct Intersection Sonogram

Memory
(
×108 bit

)
Memory

(
×108 bit

)
1.600± 0.004 3.840± 0.002
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The Direct Intersection execution time varies strongly, as we observe it anywhere298

between 0.25 s and 25.0 s, thus, without further limitations, does not allow for a well299

confined prediction of the localization algorithm’s execution time.300

Figure 10. Histograms of the execution time of 100 localization repetitions at each position by DI
(blue) and Sonogram (red).

Figure 11. Histograms of the memory allocation during 100 localization repetitions at each position
by DI (blue) and Sonogram (red).
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5. Discussion301

5.1. Localization302

The Direct Intersection method provides throughout all cases distance estimations,303

that are too short, while the Sonogram based localization returns distance estimations304

that are longer than the reference (compare Fig. 6). Regarding the absolute error distribu-305

tion, we observe that the Direct Intersection method performs more accurate, especially306

in the better cases 1 and 2 , as well more precise in the first three of the four observed307

cases, as drawn from Fig. 7. Possible cause of the degradation of both methods perfor-308

mance for cases 3 and 4 is in the peak detection algorithm, as Fig. 8 shows a wide309

error range of detected possible peaks. While this was observed specifically for the Direct310

Intersection method, this also implies the low signal-to-noise ratio of the underlying311

echo profile, and consequently also affects the Sonogram estimation. Interestingly, the312

lower estimation errors for cases 1 and 2 implicate a better performance for the larger313

distances than the closer ones, which is counter-intuitive from a power perspective, but314

if we recall the empty room impulse responses shown in Fig. 4, where noise is included315

as the curves’ variance and compare it to the magnitudes of a person’s signal in Fig.316

2, the difference in magnitude is in the same order. For higher distances the variance317

increases, as fluctuations in the speed of sound cause phase distortions, but for lower318

distances interference effects dominate. The frequency band of the chirp between 16 kHz319

to 22 kHz sets the wavelength range to approximately 2.2 cm to 1.6 cm, which is close to320

the distance between reflection points on a person’s head, as shown above in Sec. 3.3.3.321

Proximity to objects increases interference as well, which explains the lower performance322

in the closer positions 3 and 4 , where the projected distance onto the sensor system’s323

aperture between the person and the wall, screen and desk is reduced. If we regard the324

error distributions of each position in Fig. 6 again, the angles and distances roughly fit325

non-line-of-sight paths, especially for the Sonogram method.326

5.2. Performance327

The Direct Intersection method requires less than half the memory for its computa-328

tions compared to the Sonogram method, as the information is very early condensed329

in the peak selection part of the algorithm. The index look-up is in itself a cheap opera-330

tion, but due to the sphere spreading loop to decrease the probability of the algorithm331

not returning any valid position at all, comes at higher execution duration. The ob-332

served worst case for Direct Intersection is with 25 s so high, that no real-time tracking333

is possible anymore. If we regard Fig. 5c closer, the estimation point gray scale infill is334

proportional to the inverse spreading factor, so darker colors mean less radial spread335

before intersecting points could be found. The notion that including strong outliers by336

allowing the sphere thickness to be spread so far is not confirmed if we consider Fig. 5d.337

6. Conclusion338

The Sonogram Estimation allows for analysis of room response in more detail339

and the results are more accurate (i.e. average error) in 3 of 4 observed cases, but340

inversely the precision (i.e. error variance) of the Direct Intersection is higher in 3 of341

the cases. The Direct Intersection method allows for less expensive computation by342

reducing maximum radius spreading, while the Sonogram method’s cost can be reduced343

effectively by limiting the vertical search interval, e.g., to the clutter free area above344

the desks. For a full range sounding of the room we observed that the locations close345

to the clutter area are estimated worse regarding, both, accuracy and precision. For a346

pragmatic operation on hardware with higher memory limitations the Direct Intersection347

method will perform faster and with similar precision and accuracy, and can be limited348

in execution time by restricting the sphere radius spreading at the cost of not being349

able to estimate the position for several intervals. We esteem further investigation into350

limiting the degradation of the estimation process by single unreliable channels as most351

promising for improving passive acoustic indoor localization.352
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