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Abstract: We discuss two methods to detect the presence and location of a person in a small-scale
room and compare the performances. The first method is Direct Intersection, which determines a
coordinate point based on the intersection of spheroids defined by observed distances of high-
intensity reverberations. The second method, Sonogram analysis, overlays all channel’s room
impulse responses to generate an intensity map for the observed environment. We demonstrate
that the former method has lower computation complexity and higher accuracy for small numbers
of channels, while the latter performs more robustly.
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1. Introduction

COUSTIC localization systems outperform the radio-based counterpart in indoor
settings, which are not covered by ubiquitous satellite signals of Global Navigation
Satellite Systems [1,2]. For some applications, it may not be desirable to equip persons or
objects with additional hardware as trackers due to inconvenience and privacy reasons.
Previously, we reported coarsely about indoor localization by Direct Intersection in
[3]. In this work, we report in detail on two algorithms for this application and their
performances. The proposed system is categorized as a passive localization system [4].

Echolocation, such as the method used by bats to locate their prey, is a phenomenon
where the reflected sound waves are used to determine the location of objects or surfaces
which reflect the sound waves due to a change in acoustic impedance. This concept has
been extensively used for various investigations in the physics and engineering fields,
such as sound navigation and ranging (Sonar) [5,6].

We draw the approach from bats, which can perceive the incoming reflected wave’s
direction due to its precise awareness of head angle, body motion, and timing. While
the exhaustive echolocation method of bats is not completely understood, one of the
more obvious aspects is the back-scattered signals’ difference of arrival in time between
left and right ears, which can be used to calculate the incoming sound wave’s direction
[7]. We investigate two different algorithms to interpret the returned signals in a small
office room of approximately 3 x 4 x 3 m similar to [8], which are characteristic for the
strong multipath fading effects that partially overlap and interfere with the line-of-sight
reverberations. Furthermore, we raise the question of the performance of two approaches
and compare the memory consumption and execution time.

The detection of more than one person or object is not investigated in this work.

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


https://www.mdpi.com
https://orcid.org/0000-0002-0869-4604
https://orcid.org/0000-0002-9336-0122
https://orcid.org/0000-0003-1460-1061
https://orcid.org/0000-0001-8530-1053
https://orcid.org/0000-0002-3167-760X
https://orcid.org/0000-0003-3575-6513
https://orcid.org/0000-0001-5877-1439
https://orcid.org/0000-0002-3881-120X
https://orcid.org/0000-0002-8320-8581
https://orcid.org/0000-0002-4806-9838
https://doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://doi.org/10.20944/preprints202106.0096.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2021 d0i:10.20944/preprints202106.0096.v1

2 of 20

2. Related Work

Indoor presence detection may be achieved through a variety of different tech-
nologies and techniques. For one, radio-frequency (RF) based approaches have been
implemented. In general, these may be classified into two different employed techniques:
received signal strength indicator (RSSI) and radar based approaches. The former offers
low-complexity systems with cheap hardware [9], whereas with the latter one, higher
accuracy may be achieved [10]. The other main concept employed in indoor presence
detection is using the ultrasonic waves, which are applied in active trackers indoors
[11,12] and even underwater [13,14].

2.1. RF-RSSI

Mrazovac et al. [15] track the RSSI between stationary ZigBee communication nodes,
detecting changes to infer a presence from it. In the context of home automation this
work is used to switch on and off home appliances. Kosba ef al. [9] and Retscher
and Leb [16] analyze different signal strength features for usability of detection and
identification using standard Wi-Fi hardware. Kaltiokallio and Bocca [17] reduce the
power consumption of the detection system by distributed RSSI processing.

This technique is then improved by Yigitler et al. [18], who build a radio tomographic
map of the indoor area. The difference from the previously sampled map of RSSI values
is the notification of a presence or occupancy. This general concept is known in the field
of indoor localization as fingerprinting. Hillyard et al. [19] utilize these concepts to detect
border crossings.

2.2. RF-RADAR

Suijker et al. [20] present a 24 GHz FMCW (Frequency-Modulated Continuous-
Wave) radar system to detect indoor presence and to be used for intelligent LED lighting
systems. An interferometry approach is implemented by Wang et al. [10] for precise
human tracking in an indoor environment.

2.3. Ultrasonic presence detection and localization

A direct approach to provide room-level tracking is presented by Hnat et al. [21].
Ultrasonic range finders are mounted above doorways to track people passing beneath.
More precise localization can be achieved by using ultrasonic arrays as proposed by
Caicedo and Pandharipande [22] [7,22]. The arrays’ signals can be used to obtain the
range and direction of arrival (DoA) estimates. The system is used for energy-efficient
lighting systems. Pandharipande and Caicedo [6] enhanced this approach to track users
by probing and calculating the position via the time difference of arrival (TDoA). Prior
to that, Nishida et al. [23] proposed a system consisting of 18 ultrasonic transmitters and
32 receiver, embedded in the ceiling of a room with the aim to track the aged people and
prevent them from accidents. A time of flight (ToF) approach was proposed by Bordoy
et al. [24], who use a static co-located speaker-microphone pair to estimate human body
and wall reflections. Ultrasonic range sensing my be combined with infrared technology,
as has been done by Mokhtari et al. [25], to increase the energy efficiency.

2.4. Ultrasonic indoor mapping

Indoor mapping and indoor presence detection are two views of the same prob-
lem. In both instances one tries to estimate the range and direction for a geometrical
interpretation. Ribeiro ef al. [26] employ a microphone array co-located to a loudspeaker
to record the room impulse response (RIR). The multiple reflections can be estimated
from this RIR with the use of /;-regularization and least-squares (LS) minimization, and
a room geometry can be inferred, achieving a range resolution of about 1 m. A random
and sparse array of receivers is proposed by Steckel et al. [27] for an indoor sonar system.
In addition to that, the authors use wideband emission techniques to derive accurate
three-dimensional (3-D) location estimates. This system is then enhanced with an emitter
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array to improve the signal-to-noise-ratio (SNR) [28]. Another approach, implementing
a binaural sonar sensor, is proposed by Rajai ef al. [29]. A sensor was used to detect the
wall within a working distance of one meter. In a recent work by Zhou et al. [30], it is
shown that a single smartphone with the help of a gyroscope and an accelerometer can
be used to derive indoor maps by acoustic probing.

2.5. Algorithms

The first set of methods, which are broadly applied are triangulation algorithms
as described by Kundu [31]. In this work we focus on two Maximum-Likelihood ap-
proaches, similar to the one proposed by Liu et al. [32]. The first one, Direct intersection
(DI), uses a Look-up-Table (LUT) and Spheres inferred from the sensors delay measure-
ments with error margin. While the other one, the sonogram method, populates a 3-D
intensity map with probabilities to find likely positions of the asset. These the approach
of the two methods are different, is it likely to expect different outcomes in accuracy,
precision, computational complexity as well as memory requirements.

3. System Overview

The system consists of a single acoustic transmitter, a multi-channel receiver, a
power distribution board, and a central computer to analyze the recorded signals. Four
microphones are placed equidistantly around the speaker and connected to the receiver
board. The set-up is shown in Fig. 1, as it is used for the experiment reported below.

3.1. Signal Waveform

Due to their auto-correlation properties and the ability to maximize the Signal-to-
Noise-Ratio (SNR) without incrementing the acoustic amplitude, swept-frequency cosine,
i.e. frequency modulated chirp signals, perfectly fit our case-study. Auto-correlated
frequency modulated chirps are able to provide compressed pulses at the correlator
output, which width in time space is defined as follows [33]

Py = =. (1)

The frequency modulated signal employed in our experiments, x7y(t), is mathematically
defined as follows

A 2 t fi <t<T,.
slt) = { Aos@me®), for0<t<To )
0, otherwise
¢(t> = fendz}fstart tz +fstarttr (3)
S

where A denotes the signal amplitude, fsart is the start frequency, fonq the end fre-
quency, B = feng — fstart the frequency bandwidth, T is the pulse duration and ¢(t) the
instantaneous phase. The chirp instantaneous frequency is defined as follows

f(t) = fstart + fend ;fstart t/ 0 S t S Ts- (4)
S

Taking into account the hardware characteristics of our setup, we selected a linear up-
chirp pulse with amplitude A = 1, Ts = 5 ms, fstart = 16 kHz, foqg = 22 kHz, which
result in a time-bandwidth product of T B = 30. The frequency response of a chirp signal
directly depends on the Time-Bandwidth (T B) product. For chirps with T B > 100,
the pulse frequency response is almost rectangular [34]. However, due to the hardware
limitation of our setup, which do not allow to have high (T B) product, the frequency
response will be characterized by ripples. In order to mitigate the spectrum disturbances,

we window in time domain the transmitted chirp pulse with a raised cosine window
[34].
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3.2. Hardware overview
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Figure 1. Schematic representation of the system.

To obtain 3-D coordinates with static arrangement, a four-element microphone
array is sampled, as well as a feedback signal. This array records the incoming echo
wave with different time of arrival, depending on the incoming signal direction. Since
unsuitable hardware can affect the system’s performance [35], both, microphones and
speaker were tested for correct signal generation and reception in an an-echoic box.

3.3. Data acquisition

Each microphone’s signal is preconditioned before the digitization by the multi-
channel analog-to-digital converter, which was chosen to provide each channel with the
identical sample-and-hold trigger flank before conversion. Each frame consist of the
signal from each microphone and a feedback, that is recorded as an additional input
to estimate and mitigate play-back jitter. The first layer of digital signal processing is
to compress the signal, extracting the reverberated acoustic amplitude over time and
removing the empty room impulse response (RIR).

3.3.1. Channel phase synchronization

Initially, we calculate the convolution of the feedback channel signal sg, with our
known reference signal s,¢ in its analytic form to obtain the RIR and retrieve the time
of transmission from the compressed signal yg,, as shown in eq. 5, where j denotes the
imaginary unit.

Yib = |(Sfb®sref) +j'H(Sfb®Sref)| ®)

This compressed analytic form yg, of the feedback signal sg, (see Fig. 1 ideally holds only
a single pulse from the transmitted signal, if the output stage is impedance matched.
Searching for the global maximum returns both, time of transmission, as well as the
output amplitude.

Gout = max Y (t) (6)

In the following, we refer to the start time of a transmission as ty, all other channels’ time
scales are regarded relative to ¢y. Therefore, the signals of the microphone channels are
truncated to remove information prior to the transmission. The ring-down of small office
rooms is in the order of 100 ms, so the repetition interval of consecutive transmissions is
chosen accordingly larger. This prevents leakage of late echos into the following interval,
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that would result in peaks to be recorded after the following interval’s line-of-sight. The
remaining signal frames from all microphones is compressed with the same approach
as the feedback channel, shown in eq. 5 and eq. 6 to extract each channel’s compressed
analytic signal y; and line-of-sight detection time t;.

3.3.2. Baseline removal

In the following we refer to the acoustic channel response after the line-of-sight as
the echo profile. An example of such echo profiles is shown in Fig. 2. While the line-
of-sight signal ideally provides the fastest and strongest response, large hard surfaces,
like desks, walls, and floors return high amplitudes, that are orders of magnitude above
a person’s echo. For a linear and stable channel, we can reduce this interference from
the environment by subtracting the empty room echo profile from each measurement.
This profile looses its validity if the temperature changes, the air is moving or objects in
the room are moved, e. g. an office chair is slightly displaced. A dynamic approach to
create the empty room profile is updating an estimation, when no change is observed for
an extended time or alternatively using a very low weight exponential filter to update
the room estimation. In this work, the empty office room was sounded N times directly
before each test and averaged into an empty room echo profile 77 for each channel i
as denoted in eq. 7, to assure unchanged conditions and reduce the complexity of the
measurements. The removal itself is then, as mentioned above, the subtracting of the
baseline from each measurement, as in eq. 8 under the assumption of coherence.

g = mean(y;) @)

i=yi— 7 8)
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Figure 2. Exemplary magnitude plot of the compressed analytic signal with (top) the baseline
drawn from an previous recording of the empty room, (middle) the room with a person in it, and
(bottom) the difference of the two above. The red highlighted line in the center marks the area of
interest due to geometric constraints. Note the changed scale of the ordinate in the bottom plot.
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3.3.3. Time-gating

For our approach we assume some features of the person being closer to the observ-
ing system, compared to distant environment objects, like chairs, tables and monitors,
while another area of reverberations is in the close lateral vicinity of the system, consist-
ing e. g. of lamps and the ceiling. This is exploited by introducing a time gate, that only
allows for non-zeros values in the interval of interest as in eq. 9 (also compare Fig. 2).

Jugi = {yl, for tmm‘ < t < tmax ©)
0, otherwise

Another assumption is that of a small reverberation area on the person. We assume
the points of observation from each microphone to be sufficiently close on a person
to overlap. The latter assumption introduces an error, that limits the precision of the
system in the order of 10 cm [36], which we deem sufficient for presence detection, as a
person’s dimension is considerably larger in all directions. This estimation is based on
the approximate size of a person’s skull and its curvature with respect to the distance
to the microphones and their spacing. The closer the microphones and the further
the distance between head and device, the more the reflection points will approach
each other. If we regard a simplified 2-D projection, where a person with a spherical
head of radius rg &~ 10 cm moves in the y-plane only, the position of a reflection point
R = (xR, zr) on the head can be calculated by

XR = Xc — rgsin (ag), and

(10)
ZR = ZC — rygcos ([XR),

where xc and z¢ are the lateral and vertical center coordinates of the head and ag is the
reflection angle. The latter is calculated through

dm
aR = tan ! etz , (11)
e

with the distance d) between the microphone and sender. The origin is set to the speaker
position. By geometric addition the distance between two such reflection points can
be calculated and reach the maximum value if the head moves towards the center. In
this case the reflection points would be on the opposing sides of the head and result in
a mismatch of 2 ry,. The other extreme is laterally moving to a infinite distance, which
increases the magnitude of xc, while the distance between microphone and speaker
stays constant, therefore the reflection points converge to a single point of reflection. In
this work the distance between head center and speaker remained above 120 cm, with a
projected error distance of about 1.3 cm.

3.3.4. Echo profile

During the experiment, the reflected signals from the floor, walls, tables and chairs
have a very high amplitude. This interference can lead to masking the echo from the
target object. To reduce the effect of the interference, the empty room profile is used to
subtract the target impulse response from the input impulse response. If we define the
reflection from objects other than the target object as noise, we can increase the signal to
noise ratio with this method. The empty room impulse response is also called empty
room echo profile in this work. In Fig. 2, the upper plot is the empty room impulse
response, where the experiment room is cleared of most clutter. The middle plot is the
room with single static object as target, shown in Fig. 3. The lower plot shows the result
of subtraction between the the second and first plot, the scale is adjusted for clarity
purpose.
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3.3.5. Distance maps

Look-up tables are calculated before the experiment to estimate the travel distance of
a signal from the speaker to each microphone under the assumption of a direct reverbera-
tion from a point at position ¥ in the room and linear beam-like signal propagation. This
grid is formed by setting the center speaker as origin and spanning up a 3-dimensional
Cartesian coordinate system of points ¥ through the room in discrete steps. We limit
the grid to the intervals Xj to X3 in steps of 1 cm to decrease the calculational effort and
multipath content under the prior knowledge of the rooms geometry as follows:

X = (xq,x2,x3) € X, where

(12)
X = {X; x Xp x X3} C R%.

The look-up table approach serves to minimize the processing time during execution.
The distance maps provide pointers to convert from binary sampling points to distance
points. Each sub-matrix contains the sum of distance between each point in the room to
the corresponding i*" microphone at the position #;; and to the speaker at position ¥s,
which cover the flight path of the echoes, as in eq. 13:

M;(X) = [|X = Zs|| + [ Xni — X]]- (13)

Therefore, the resultant entries in matrices M depend on the geometric arrangement of
speaker and microphones, and the matrix size corresponds to the area of detection, as in
eq. 12.

3.4. Data processing
3.4.1. Direct Intersection

The main assumption for this approach is, that the highest signal peak in the
observation window of each channel is indicating the position of interest, as visualized
in Fig. 2. Each channels’ peak index defines the radius r; of a sphere around each
microphone, which is contained in the point cloud L;. While ideally those spheres
overlap in exactly the point of reverberation, in practical application, where noise,
interference and jitters are present, this is not the case. To compensate this error, we pad
the sphere by Ar additional points in radius until all spheres overlap and the unity of
valid estimation points Up, is not empty. The sphere radius widening Ar can be used
as an indication of each measurements quality, as a low error case will require little
to no padding, while in high error cases, the required padding will be large. Another
approach is to use a fixed and small padding, which will ensure only measurements of
high quality to be successful, but will fail for high error scenarios.

3.4.2. Sonogram

The Sonogram approach leverages available memory and processing power to build
a 3-D intensity map. This approach utilizes the entire echo profile difference shown in
Fig. 2 (bottom) and map them into the 3-D distance map explained in section 3.3.5, with
the assumption that the highest peak correspond to the source of reverberation. The
multiplication of impulse amplitude that correspond to the same coordinates are used
as an indication of possible reverberation source. Therefore, the maximum result would
have the highest likelihood of being the reverberation source location.


https://doi.org/10.20944/preprints202106.0096.v1

d0i:10.20944/preprints202106.0096.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2021

8 of 20

Algorithm 1: Direct Intersection Estimation

Input :#i, observed intensity data frames,

M,;, distance maps,
K, number of channels,

Atmax, maximum radius spreading distance.

Output: X, estimated 3D-position.
begin

Ar <0

Nor + 0

fori =1to Kdo

Ti < MaXy—p, gtg

L Ri < {ri}

Ar++
fori =1to Kdo

L L; < isMember(M;, R;)
U, + (Ll & ... & LK)
XoL « ind2sub(size(Uy),
Nor, < min(length(Xor))

Xest = mean(Xor)

R; + {T’i —Ar, R, ri + AT’}

find (Ll ))

// initial estimation tolerance

// number of overlapping points

// get index of peak

while (Nop, =0) & (Ar < Armax) do

// recursively add width
// select points by radius [37]

// wrap into 3-D coordinates [38]

Algorithm 2: Sonogram Estimation

Input :#ig, observed intensity data frames,

M;, distance maps,
K, number of channels,

A¥max, maximum radius spreading distance.

Output: ¥est, estimated 3D-position.
begin
U+  {ftg > 0}
forall ¥ do

| I(®) < T 7+0(Mi(3))
Ay 4+ maxy, ex, (I)
o < MaXy,cx,(Ax)
X3,est < MaXy;eX, (smOOth(aXZ))
X2est < ﬁnd(ﬁxb x3,est)
X1est € ﬁnd(Axlr {xZ,estr x3,est})

Xest < (xl,est/ X2 ests x3,est)

// remove negative intensities

// 2D matrix
// 1D vector

// scalar, moving average smoothed [39]

// select first matching value [40]
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4. Experiments
4.1. Set-up

In the experiment, we use a mock-up representing a person’s head as the experiment
target. The hard and smooth surface of the object is intentional for the sake of usability
and to remove unintended movements from our measurements at this early stage. In the
set-up shown in Fig. 3 the central speaker emits the well-known signal six, the reflected
echoes from the target s; to s4 are recorded by the microphone array around the speaker.
The depiction in Fig. 3 is exaggerated for clarity.

Figure 3. Experimental Set-up for K = 4 receivers spaced by dyp ~ 0.2m. The transmitted signal
stx is observed as reflected signals s; by the system located near the ceiling of the room.

Table 1 shows the spherical coordinates of the target inside the room, with the
center of the device as the reference point. The device is positioned on the ceiling,
oriented downward. For each position we measure the distance for the assumed acoustic
path with a laser distance meter Leica DISTO™ D3a BT for reference. As mentioned
above, the coordinate system’s point of origin is set to the center of the device, the x-axis
is set perpendicular to the entrance door’s wall (bottom of Fig. 5) and increasing towards
the right, the y-axis is parallel to the line of sight from the door and increasing towards
the rear end of the room, and the z-axis is zero in the plane of the device (upper ceiling
lamp level) and decreasing towards the floor. The measured reference positions of the
measurement dummy are listed in Tab. 1 and indicated by the green diamond in Fig. 5,
5,9, and Fig. 9. The two dimensional depictions are shown in Cartesian coordinates to
provide clarity, while the detection results are done in spherical coordinates.
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Table 1. Reference Positions

Pos. 7 (m) 6 (°) ¢ ()
© 1.58 77 59
© 1.70 92 57
® 1.23 -35 54
@ 1.26 169 54

Channel 1

Channel 2

Channel 3

Channel 4

0 4 8 12 16 20
Time (ms)

Figure 4. Response of the empty room for all 4 channels s; to s4. The red line indicates the mean
response over 100 measurements, the grey envelope the +3¢ region. The first peak marks the
line-of-sight arrival time and is used for time synchronization.

Similar to the later experiments we sound the room 100 times as described in Ch.
3.3.2 to record the baseline profiles shown in Fig. 4. This recordings are taken one time
and serve for reference for all later experiment runs. During the recordings the room
was left closed and undisturbed. The recordings still show significant variances in each
channel at varying positions, e.g., as shown in the uppermost subplot of Fig. 4 from 15
to 16 ms. Below 8 ms this intervals with increased variances do not occur, indicating a
stable channel. The signals’ interval close to zero contains strong wall and ceiling echos.
Note the very strong reverberation peak at 12.5 to 13.5ms that is caused by the floor. As
our area of interest does not fall in this distance, we omit it for analysis as well. Hence
the time-gate limits as introduced in Ch.3.3.3 are fy,i, = 3 ms and tmax = 8 ms.

4.3. Results
4.3.1. Direct Intersection

The localization by Direct Intersection from all 100 runs is shown for each of the
4 reference positions in Fig. 5 and 5. While the statistical evaluation is performed in
spherical coordinates due to the geometric construction during the estimation, this
overview plots, as well as those for the Sonogram localization are drawn in Cartesian
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coordinates that allow for easier verification and intuitive interpretation. The lateral
spread of the estimation point cloud in Fig. 5a is misleading as the points are situated
on a sphere around the origin. The projected lateral extend is almost entirely due to the

angular errors.
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Figure 5. 2D-Projection of 100 estimations of 3D-positions @ (a), @ (b) @ (c) and @ (d) by Direct Intersection. The
single estimations are indicated by the black circled markers, the red cross marks the Carthesian averaged position and
is highlighted by the red line to the origin, and the green diamond indicates the reference position. The points’ infill is
proportional to the observed intensity relative to the radius spreading (darker is higher).

Positions (1) and (2) show a distance estimation deviation of o; ~ 10cm, as well
as azimuth and elevation angle errors of o oE < 5° for both, Direct Intersection
and Sonogram localization (compare Tab. 2 and 3. For positions (3) and (4), which are
situated closer to the desks, the deviation increases to almost 40 cm in distance and
almost arbitrary azimuth angles with a o~ ~ 120° and more, but a far less affected
elevation angle estimation with a o~ < 10°. The deviations are calculated around the

~
~
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mean estimator for each value. For simplicity of interpretation, the mean error for each
dimension is shown in Tab. 4.

Table 2. Direct Intersection Estimated Positions

Pos. 7 (m) 6 (°) ¢ (©)
@ 1.83+0.14 81+4 61+1
@ 2.0140.11 —100+3 61+1
©) 1.92+£0.37 4496 59 +4
@ 2.12+0.25 ~58 +£135 60 +3

The error distributions for each dimension are shown in Fig. 6, where each column
depicts one of the spherical dimensions (radius, azimuth angle and elevation angle),
while each row represents the results from the reference position indicated to the left
of the plot. For the first two positions the distributions are almost unimodal, but for
the latter two this does not hold true, making the mean value and standard deviation
unsuitable estimators.

102
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102

& 10!

10°

Figure 6. Histograms of the error in estimation compared to the reference over 100 localization
repetitions at each position by DI (blue) and Sonogram (red) estimation. Each row depicts the
3 degrees of freedom for each position.

The distribution of the error in the absolute distance between the estimated positions
and reference positions (see Fig. 7) is likewise a few dozen centimeters for the first two
cases, but around 1 m for the latter two. If we recall the reference positions from Tab. 1,
the true distances are between 1 m to 2m, which puts the error in the same order as the
expected value.

The Direct Intersection method allows for an investigation into the time variance
of the detected maximum peak which is depicted in Fig. 8. In the first two cases we
observe unimodal distributions of around 10 samples in width, while the latter cases
show detected peaks all over the interval.
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Figure 7. Histograms of the absolute distance error in estimation compared to the reference over
100 localization repetitions at each position by DI (blue) and Sonogram (red). Each row depicts the
3 degrees of freedom for each position.
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Figure 8. Histograms of the highest peak position of each microphone’s channel over 100 local-
ization repetitions at each position by DI. Each row depicts the 3 degrees of freedom for each
position.
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4.3.2. Sonogram

The Sonogram localization on the same data as before in Ch. 4.3.1 is shown in Fig. 9
and 9 for all 4 cases. The lateral distribution of the estimated locations is not following
the spherical shape as closely as is the case for those by Direct Intersection estimations
(compare e.g., Fig. 5a).
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Figure 9. The same plot as in Fig. 5 for positions @ (a), @ (b), @ (c) and @ (d) but by Sonogram. The point’s infill is
proportional to the observed intensity.

Similar to before, the method performs well in the first two cases, exhibiting small
deviations (see Tab. 3), but far less precise with the largest deviation increase in the
azimuth angle, too. The corresponding mean errors to the reference positions are listed
in Tab. 4.
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Table 3. Sonogram Estimated Positions

Pos. r (m) 0 (°) ¢ ()

@D 1.85+£0.10 80 +4 58 +£2
@ 2.03 +£0.11 —100 +3 60 + 2
3 1.77 £0.26 —41£69 47 +£7
@ 1.96 +0.34 31 +£119 51+9

Table 4. Mean Error for Direct Intersection and Sonogram

Direct Intersection Sonogram
Pos. r (m) 6 (°) ¢ () r (m) 6 (°) ¢ ()
@ 0.25 3 2 0.27 2 1
@ 0.31 8 4 0.34 8 3
©) 0.69 39 5 0.53 6 7
@ 0.87 47 6 0.70 138 3

The cases (3) and (4) display two larger clusters of estimated positions, which leads
to the bimodal error distributions in Fig. 6.

The absolute error is similarly distributed around lower values for the former
two cases and widely spread for the two latter cases (see Fig. 7). Note that the error
distribution plots for the Sonogram are of slightly different horizontal scale, as no errors
below 20 cm were observed, while the observed maximal error exceeds 200 cm.

Lastly, the performance of both algorithms with regard to execution time is listed
in Tab. 5 and mean required memory in Tab. 6. The distribution of those measures is
shown in Fig. 10 and Fig. 11. The Direct Intersection method requires roughly 2.4 less
memory than the Sonogram localization. With a best case mean execution time of 0.66 s
the former algorithm is almost 1.7 x faster than the best case mean of the latter method,
while the worst case mean - almost unchanged for the Sonogram approach - is with a
factor of 7.1 for the Direct Intersection by far slower than the worst case mean execution
time of the Sonogram method.

Table 5. Runtime Performance: Time

Direct Intersection Sonogram
Pos. Time (s) Time (s)
@) 094 +£0.17 1.14 £0.07
@ 0.66 +0.13 1.20 £0.02
@ 6.38 = 6.60 1.10£0.01
@ 8.58 £7.12 1.10£0.01

Table 6. Runtime Performance: Memory

Direct Intersection Sonogram

Memory (x10® bit) Memory (x10®bit)

1.600 £ 0.004 3.840 £ 0.002
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The Direct Intersection execution time varies strongly, as we observe it anywhere
between 0.25s and 25.0s, thus, without further limitations, does not allow for a well
confined prediction of the localization algorithm’s execution time.
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Figure 10. Histograms of the execution time of 100 localization repetitions at each position by DI
(blue) and Sonogram (red).
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Figure 11. Histograms of the memory allocation during 100 localization repetitions at each position
by DI (blue) and Sonogram (red).
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5. Discussion
5.1. Localization

The Direct Intersection method provides throughout all cases distance estimations,
that are too short, while the Sonogram based localization returns distance estimations
that are longer than the reference (compare Fig. 6). Regarding the absolute error distribu-
tion, we observe that the Direct Intersection method performs more accurate, especially
in the better cases (1) and (2), as well more precise in the first three of the four observed
cases, as drawn from Fig. 7. Possible cause of the degradation of both methods perfor-
mance for cases (3) and (4) is in the peak detection algorithm, as Fig. 8 shows a wide
error range of detected possible peaks. While this was observed specifically for the Direct
Intersection method, this also implies the low signal-to-noise ratio of the underlying
echo profile, and consequently also affects the Sonogram estimation. Interestingly, the
lower estimation errors for cases (1) and (2) implicate a better performance for the larger
distances than the closer ones, which is counter-intuitive from a power perspective, but
if we recall the empty room impulse responses shown in Fig. 4, where noise is included
as the curves’ variance and compare it to the magnitudes of a person’s signal in Fig.
2, the difference in magnitude is in the same order. For higher distances the variance
increases, as fluctuations in the speed of sound cause phase distortions, but for lower
distances interference effects dominate. The frequency band of the chirp between 16 kHz
to 22 kHz sets the wavelength range to approximately 2.2 cm to 1.6 cm, which is close to
the distance between reflection points on a person’s head, as shown above in Sec. 3.3.3.
Proximity to objects increases interference as well, which explains the lower performance
in the closer positions (3) and (4), where the projected distance onto the sensor system’s
aperture between the person and the wall, screen and desk is reduced. If we regard the
error distributions of each position in Fig. 6 again, the angles and distances roughly fit
non-line-of-sight paths, especially for the Sonogram method.

5.2. Performance

The Direct Intersection method requires less than half the memory for its computa-
tions compared to the Sonogram method, as the information is very early condensed
in the peak selection part of the algorithm. The index look-up is in itself a cheap opera-
tion, but due to the sphere spreading loop to decrease the probability of the algorithm
not returning any valid position at all, comes at higher execution duration. The ob-
served worst case for Direct Intersection is with 25 s so high, that no real-time tracking
is possible anymore. If we regard Fig. 5c closer, the estimation point gray scale infill is
proportional to the inverse spreading factor, so darker colors mean less radial spread
before intersecting points could be found. The notion that including strong outliers by
allowing the sphere thickness to be spread so far is not confirmed if we consider Fig. 5d.

6. Conclusion

The Sonogram Estimation allows for analysis of room response in more detail
and the results are more accurate (i.e. average error) in 3 of 4 observed cases, but
inversely the precision (i.e. error variance) of the Direct Intersection is higher in 3 of
the cases. The Direct Intersection method allows for less expensive computation by
reducing maximum radius spreading, while the Sonogram method’s cost can be reduced
effectively by limiting the vertical search interval, e.g., to the clutter free area above
the desks. For a full range sounding of the room we observed that the locations close
to the clutter area are estimated worse regarding, both, accuracy and precision. For a
pragmatic operation on hardware with higher memory limitations the Direct Intersection
method will perform faster and with similar precision and accuracy, and can be limited
in execution time by restricting the sphere radius spreading at the cost of not being
able to estimate the position for several intervals. We esteem further investigation into
limiting the degradation of the estimation process by single unreliable channels as most
promising for improving passive acoustic indoor localization.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI  Multidisciplinary Digital Publishing Institute
DI Direct Intersection

DoA Direction of Arrival

FMCW  Frequency-Modulated Continuous-Wave

LS Least-Squares
RF Radio-Frequency
RIR Room Impulse Response

RSSI Received Signal Strength Indicator
SONO  Sonogram

SNR Signal-to-Noise Ratio

TDoA Time Difference of Arrival

ToF Time of Flight

References

1.  Zafari, F; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Communications Surveys &
Tutorials 2019, 21, 2568-2599. do0i:10.1109/COMST.2019.2911558.

2. Rahman, A.BM.M,; Li, T.; Wang, Y. Recent Advances in Indoor Localization via Visible Lights: A Survey. Sensors 2020, 20, 1382.
doi:10.3390/s20051382.

3. Hoflinger, F; Saphala, A.; Schott, D.J.; Reindl, L.M.; Schindelhauer, C. Passive Indoor-Localization using Echoes of
Ultrasound Signals. 2019 International Conference on Advanced Information Technologies (ICAIT), 2019, pp. 60-65.
doi:10.1109/AITC.2019.8921282.

4. Pirzada, N.; Nayan, M.Y,; Subhan, F.; Hassan, M.F,; Khan, M.A. Comparative analysis of active and passive indoor localization
systems. AASRI Procedia 2013, 5, 92-97.

5. Caicedo, D.; Pandharipande, A. Distributed Ultrasonic Zoned Presence Sensing System. IEEE Sensors Journal 2014, 14, 234-243.
doi:10.1109/jsen.2013.2282958.

6. Pandharipande, A.; Caicedo, D. User localization using ultrasonic presence sensing systems. 2012 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). IEEE, 2012, pp. 3191-3196. d0i:10.1109/icsmc.2012.6378282.

7.  Caicedo, D.; Pandharipande, A. Transmission slot allocation and synchronization protocol for ultrasonic sensor sys-
tems. 2013 10th IEEE International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2013, pp. 288-293.
doi:10.1109 /icnsc.2013.6548752.

8.  Carotenuto, R.; Merenda, M.; Iero, D.; Della Corte, F.G. An Indoor Ultrasonic System for Autonomous 3-D Positioning. IEEE
Transactions on Instrumentation and Measurement 2019, 68, 2507-2518. do0i:10.1109/TIM.2018.2866358.

9. Kosba, A.E.; Saeed, A.; Youssef, M. RASID: A robust WLAN device-free passive motion detection system. 2012 IEEE International

Conference on Pervasive Computing and Communications. IEEE, 2012. doi:10.1109/percom.2012.6199865.


https://doi.org/10.1109/COMST.2019.2911558
https://doi.org/10.3390/s20051382
https://doi.org/10.1109/AITC.2019.8921282
https://doi.org/10.1109/jsen.2013.2282958
https://doi.org/10.1109/icsmc.2012.6378282
https://doi.org/10.1109/icnsc.2013.6548752
https://doi.org/10.1109/TIM.2018.2866358
https://doi.org/10.1109/percom.2012.6199865
https://doi.org/10.20944/preprints202106.0096.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2021 d0i:10.20944/preprints202106.0096.v1

19 of 20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Wang, G.; Gu, C.; Inoue, T,; Li, C. A Hybrid FMCW-Interferometry Radar for Indoor Precise Positioning and Versatile Life
Activity Monitoring. IEEE Transactions on Microwave Theory and Techniques 2014, 62, 2812-2822. doi:10.1109/tmtt.2014.2358572.
Bordoy, J.; Schott, D.J.; Xie, J.; Bannoura, A.; Klein, P; Striet, L.; Hoflinger, F.; Haring, I.; Reindl, L.; Schindelhauer, C. Acoustic
Indoor Localization Augmentation by Self-Calibration and Machine Learning. Sensors 2020, 20, 1177. doi:10.3390/520041177.
Pullano, S.A.; Bianco, M.G.; Critello, D.C.; Menniti, M.; La Gatta, A.; Fiorillo, A.S. A Recursive Algorithm for Indoor Positioning
Using Pulse-Echo Ultrasonic Signals. Sensors 2020, 20. doi:10.3390/s20185042.

Schott, D.J.; Faisal, M.; Hoflinger, F.; Reindl, L.M.; Bordoy Andred, J.; Schindelhauer, C. Underwater localization utilizing a
modified acoustic indoor tracking system. 2017 IEEE 7th International Conference on Underwater System Technology: Theory
and Applications (USYS). IEEE, 2017. doi:10.1109/usys.2017.8309451.

Chang, S.; Li, Y,; He, Y.; Wang, H. Target Localization in Underwater Acoustic Sensor Networks Using RSS Measurements.
Applied Sciences 2018, 8. d0i:10.3390/app8020225.

Mrazovac, B.; Bjelica, M.; Kukolj, D.; Todorovic, B.; Samardzija, D. A human detection method for residential smart energy
systems based on Zigbee RSSI changes. IEEE Transactions on Consumer Electronics 2012, 58, 819-824. doi:10.1109/tce.2012.6311323.
Retscher, G.; Leb, A. Development of a Smartphone-Based University Library Navigation and Information Service Employing
Wi-Fi Location Fingerprinting. Sensors 2021, 21. doi:10.3390/s21020432.

Kaltiokallio, O.; Bocca, M. Real-Time Intrusion Detection and Tracking in Indoor Environment through Distributed RSSI
Processing. 2011 IEEE 17th International Conference on Embedded and Real-Time Computing Systems and Applications. IEEE,
2011. doi:10.1109/rtcsa.2011.38.

Yigitler, H.; Jantti, R.; Kaltiokallio, O.; Patwari, N. Detector Based Radio Tomographic Imaging. IEEE Transactions on Mobile
Computing 2018, 17, 58-71. d0i:10.1109/TMC.2017.2699634.

Hillyard, P.; Patwari, N.; Daruki, S.; Venkatasubramanian, S. You're crossing the line: Localizing border crossings using wireless
RF links. 2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE). IEEE, 2015. doi:10.1109/dsp-
spe.2015.7369561.

Suijker, E.M.; Bolt, R.J.; van Wanum, M.; van Heijningen, M.; Maas, A.PM.; van Vliet, EE. Low cost low power 24 GHz
FMCW radar transceiver for indoor presence detection. 2014 44th European Microwave Conference, 2014, pp. 1758-1761.
d0i:10.1109/EuMC.2014.6986797.

Hnat, T.W.; Griffiths, E.; Dawson, R.; Whitehouse, K. Doorjamb: unobtrusive room-level tracking of people in homes using
doorway sensors. Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems - SenSys '12. ACM Press,
2012. doi:10.1145/2426656.2426687.

Caicedo, D.; Pandharipande, A. Ultrasonic array sensor for indoor presence detection. Proc. 20th European Signal Processing
Conf. (EUSIPCO) 2012, 2012, pp. 175-179.

Nishida, Y.; Murakami, S.; Hori, T.; Mizoguchi, H. Minimally privacy-violative human location sensor by ultrasonic radar
embedded on ceiling. Proceedings of IEEE Sensors, 2004. IEEE, 2004. do0i:10.1109/icsens.2004.1426192.

Bordoy, J.; Wendeberg, J.; Schindelhauer, C.; Reindl, L.M. Single transceiver device-free indoor localization using ultrasound
body reflections and walls. 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2015.
doi:10.1109/ipin.2015.7346965.

Mokhtari, G.; Zhang, Q.; Nourbakhsh, G.; Ball, S.; Karunanithi, M. BLUESOUND: A New Resident Identification Sen-
sor—Using Ultrasound Array and BLE Technology for Smart Home Platform. IEEE Sensors Journal 2017, 17, 1503-1512.
doi:10.1109/jsen.2017.2647960.

Ribeiro, F; Florencio, D.; Ba, D.; Zhang, C. Geometrically Constrained Room Modeling With Compact Microphone Arrays. IEEE
Transactions on Audio, Speech, and Language Processing 2012, 20, 1449-1460. do0i:10.1109/tas].2011.2180897.

Steckel, J.; Boen, A.; Peremans, H. Broadband 3-D Sonar System Using a Sparse Array for Indoor Navigation. IEEE Transactions
on Robotics 2013, 29, 161-171. doi:10.1109/tro0.2012.2221313.

Steckel, ]. Sonar System Combining an Emitter Array With a Sparse Receiver Array for Air-Coupled Applications. IEEE Sensors
Journal 2015, 15, 3446-3452. doi:10.1109/jsen.2015.2391290.

Rajai, P.; Straeten, M.; Alirezaee, S.; Ahamed, M.]. Binaural Sonar System for Simultaneous Sensing of Distance and Direction of
Extended Barriers. IEEE Sensors Journal 2019, 19, 12040-12049. doi:10.1109/jsen.2019.2938971.

Zhou, B; Elbadry, M.; Gao, R.; Ye, F. Towards Scalable Indoor Map Construction and Refinement using Acoustics on Smartphones.
IEEE Transactions on Mobile Computing 2020, 19, 217-230. d0i:10.1109/tmc.2019.2892091.

Kundu, T. Acoustic source localization. Ultrasonics 2014, 54, 25-38. doi:10.1016/j.ultras.2013.06.009.

Liu, C.; Wu, K.; He, T. Sensor localization with Ring Overlapping based on Comparison of Received Signal Strength In-
dicator. 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE Cat. No.04EX975). IEEE, 2004.
doi:10.1109 /mahss.2004.1392193.

Springer, A.; Gugler, W.; Huemer, M.; Reindl, L.; Ruppel, C.C.W.; Weigel, R. Spread spectrum communications using chirp
signals. IEEE/AFCEA EUROCOMM 2000. Information Systems for Enhanced Public Safety and Security, 2000, pp. 166-170.
doi:10.1109/EURCOM.2000.874794.

Milewski, A.; Sedek, E.; Gawor, S. Amplitude Weighting of Linear Frequency Modulated Chirp Signals. Proc. EUROCON 2007
Int. Conf. Comput. Tools, 2007, pp. 383-386. d0i:10.1109/EURCON.2007.4400554.


https://doi.org/10.1109/tmtt.2014.2358572
https://doi.org/10.3390/s20041177
https://doi.org/10.3390/s20185042
https://doi.org/10.1109/usys.2017.8309451
https://doi.org/10.3390/app8020225
https://doi.org/10.1109/tce.2012.6311323
https://doi.org/10.3390/s21020432
https://doi.org/10.1109/rtcsa.2011.38
https://doi.org/10.1109/TMC.2017.2699634
https://doi.org/10.1109/dsp-spe.2015.7369561
https://doi.org/10.1109/dsp-spe.2015.7369561
https://doi.org/10.1109/EuMC.2014.6986797
https://doi.org/10.1145/2426656.2426687
https://doi.org/10.1109/icsens.2004.1426192
https://doi.org/10.1109/ipin.2015.7346965
https://doi.org/10.1109/jsen.2017.2647960
https://doi.org/10.1109/tasl.2011.2180897
https://doi.org/10.1109/tro.2012.2221313
https://doi.org/10.1109/jsen.2015.2391290
https://doi.org/10.1109/jsen.2019.2938971
https://doi.org/10.1109/tmc.2019.2892091
https://doi.org/10.1016/j.ultras.2013.06.009
https://doi.org/10.1109/mahss.2004.1392193
https://doi.org/10.1109/EURCOM.2000.874794
https://doi.org/10.1109/EURCON.2007.4400554
https://doi.org/10.20944/preprints202106.0096.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 June 2021 d0i:10.20944/preprints202106.0096.v1

20 of 20

35.

36.

37.
38.
39.
40.

Carotenuto, R.; Merenda, M.; Iero, D.; G. Della Corte, F. Simulating Signal Aberration and Ranging Error for Ultrasonic Indoor
Positioning. Sensors 2020, 20. do0i:10.3390/s20123548.

Saphala, A. Design and Implementation of Acoustic Phased Array for In-Air Presence Detection. Master’s thesis, Faculty of
Engineering, University of Freiburg, Freiburg, Germany, 2019.

MathWorks. ismember. https://de.mathworks.com/help/matlab/ref/double.ismember.html, accessed on 2021-05-27.
MathWorks. ind2sub. https://www.mathworks.com/help/matlab/ref/ind2sub.html, accessed on 2021-05-27.

MathWorks. smooth. https://de.mathworks.com/help/curvefit/smooth.html, accessed on 2021-05-27.

MathWorks. find. https://de.mathworks.com/help/matlab/ref/find.html, accessed on 2021-05-27.


https://doi.org/10.3390/s20123548
https://de.mathworks.com/help/matlab/ref/double.ismember.html
https://www.mathworks.com/help/matlab/ref/ind2sub.html
https://de.mathworks.com/help/curvefit/smooth.html
https://de.mathworks.com/help/matlab/ref/find.html
https://doi.org/10.20944/preprints202106.0096.v1

	Introduction
	Related Work
	RF-RSSI
	RF-RADAR
	Ultrasonic presence detection and localization
	Ultrasonic indoor mapping
	Algorithms

	System Overview
	Signal Waveform
	Hardware overview
	Data acquisition
	Channel phase synchronization
	Baseline removal
	Time-gating
	Echo profile
	Distance maps

	Data processing
	Direct Intersection
	Sonogram


	Experiments
	Set-up
	Empty room profile
	Results
	Direct Intersection
	Sonogram


	Discussion
	Localization
	Performance

	Conclusion
	References

