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Abstract

In this article, the connections amid matroid and other notions have been studied. The
structure of matroid could be a reflection of some other structure in lattice theory, group
theory, other algebraic structure, graph theory, combinatorics and enumeration theory.
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1 Preliminary On The Concept .

I'm going to refer to some books which are cited to the necessary and sufficient material — »
which are covering the introduction and the preliminary of this outlet so look [Ref. [1], s
Ref. [2], Ref. [3], Ref. [4]] where Ref. [1] is about the textbook, Ref. [2] is common, 4
Ref. [3] has good ideas and Ref. [4] is kind of disciplinary approaches in the good ways. s

Further references could be referred and could be addressed in Refs. [5-11]. 6
2 Definition And Its Clarification :
Definition 2.1. (Matroid) 8
Let F is a given set and B is an arbitrary set is including the some subsets of E. If 0
there’s three conditions for these two sets, then there’s matroid which is corresponded 10
o (E,B). So (E, B) is the characteristic of the matroid. Three conditions are the u
following: 12
e The set which has no member, is belonging to B. 13
e If b € B, then any of subset of b, is belonging to B. "
e If by,by € B and by has more members than by then there’s the member of b, 15
when it’s added to bs, it makes the new member of B. 16
3 Relationships And Its illustrations 1
Theorem 3.1. Let (E, B) be a matroid. Then there is a 18
(#) corresponded poset. 19
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(i1) decreasing property. 20

(i4i) power set. 2

(iv) chain. 2

(v) totally ordered set. 2

(vi) meet-lattice. 24

Proof. (i) There is a corresponded poset (B, C). 2

(i) By second principle in the Definition (2.1), every member of a matroid has 2

the decreasing property when (B, C). Because All subsets of a member is the 2

member so (B, C) has the decreasing property on its members with the 2

relation of C. 29

(791) If E € B, then B is power set of E. 30

(iv) Every member of B makes the chain. a

(v) If E € B, then B is power set of E. (B, C) is totally ordered set in the way =

that, all members are comparable. 33

(vi) Every subsets of members have the minimum in B which is . 3

O s

4 Results And Its Beyond »

Theorem 4.1. Let (E, B) be a matroid and I is the mazimum independent set in the =

term of order C. Then 38

(1) cardinality of I equals with components of its graph. 30

(#4) I has representatives which are the partitions for B. 40

(#i1) I is the maxzimum minimal set. n

(iv) I is neither poset nor totally ordered set. 2

(v) C on I is only reflexive. 2

('UZ) I iSTL;t @. 44

Proof. Obvious. O

Theorem 4.2. Let (E, B) be a matroid and B is one chain. Then E € B so B is 46

power set of E. a7

Proof. Obvious. O

Theorem 4.3. Let (E, B) be a matroid and |E| =n. Then 1 < |B| < 2™, 1

Proof. Obvious. O s

Theorem 4.4. Let (E, B) be a matroid and |B| = 2™. Then B is power set of E. 51

Proof. Obvious. O =

Theorem 4.5. Let (E, B) be a matroid and |B| = 1. Then B is power set of {). 53

Proof. Obvious. O s
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Theorem 4.6. Let (E, B) be a matroid. Then (B, max, min) is an algebraic structure.  ss

Proof. Obvious. O s
Theorem 4.7. Let (E, B) be a matroid. Then (B, max) is an abelian group. 57
Proof. Obvious. O s
Theorem 4.8. Let (E, B) be a matroid. Then (B, min) is an abelian semi-group. 59
Proof. Obvious. O e

Theorem 4.9. Let (E, B) be a matroid. If B = E, then (B, min) is an abelian monoid. «

Proof. Obvious. O e
Theorem 4.10. Let (E, B1) and (E, B2) be matroids. Then (E, By U Bs) and 63
(E, B1 N By) are matroids. 64
Proof. Obvious. O e
Theorem 4.11. Let (E, By) and (E, B) be matroids. If By C B, then (E, By — By) 66
is matroid. 67
Proof. Obvious. O e
Theorem 4.12. Let (E, By) be matroid. then (E, B¢) is matroid when B€ is 69
complement of B in the matter of power set of E. 70
Proof. Obvious. O =
Theorem 4.13. Let B be a set of all subsets of E which they construct matroid on E.
IfEl QE, then Bl QB 73
Proof. Obvious. O =«
Theorem 4.14. Let B be a set of all B of E which they construct matroid on E. Then 1
P(E) € B where P(E) is the power set of E. 76
Proof. Obvious. O =
Theorem 4.15. Let B be a set of all B of E which they construct matroid on E. If 78
|E| = n, then |B| = n™. 79
Proof. Obvious. O
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