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Abstract

In this article, the connections amid matroid and other notions have been studied. The 
structure of matroid could be a reflection of some other structure in lattice theory, group 
theory, other algebraic structure, graph theory, combinatorics and enumeration theory.
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1 Preliminary On The Concept 1

I’m going to refer to some books which are cited to the necessary and sufficient material 2

which are covering the introduction and the preliminary of this outlet so look [Ref. [1], 3

Ref. [2], Ref. [3], Ref. [4]] where Ref. [1] is about the textbook, Ref. [2] is common, 4

Ref. [3] has good ideas and Ref. [4] is kind of disciplinary approaches in the good ways. 5

Further references could be referred and could be addressed in Refs. [5–11]. 6

2 Definition And Its Clarification 7

Definition 2.1. (Matroid) 8

Let E is a given set and B is an arbitrary set is including the some subsets of E. If 9

there’s three conditions for these two sets, then there’s matroid which is corresponded 10

to (E,B). So (E,B) is the characteristic of the matroid. Three conditions are the 11

following: 12

• The set which has no member, is belonging to B. 13

• If b ∈ B, then any of subset of b, is belonging to B. 14

• If b1, b2 ∈ B and b1 has more members than b2 then there’s the member of b1, 15

when it’s added to b2, it makes the new member of B. 16

3 Relationships And Its illustrations 17

Theorem 3.1. Let (E,B) be a matroid. Then there is a 18

(i) corresponded poset. 19
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(ii) decreasing property. 20

(iii) power set. 21

(iv) chain. 22

(v) totally ordered set. 23

(vi) meet-lattice. 24

Proof. (i) There is a corresponded poset (B,⊆). 25

(ii) By second principle in the Definition (2.1), every member of a matroid has 26

the decreasing property when (B,⊆). Because All subsets of a member is the 27

member so (B,⊆) has the decreasing property on its members with the 28

relation of ⊆. 29

(iii) If E ∈ B, then B is power set of E. 30

(iv) Every member of B makes the chain. 31

(v) If E ∈ B, then B is power set of E. (B,⊆) is totally ordered set in the way 32

that, all members are comparable. 33

(vi) Every subsets of members have the minimum in B which is ∅. 34

35

4 Results And Its Beyond 36

Theorem 4.1. Let (E,B) be a matroid and I is the maximum independent set in the 37

term of order ⊆. Then 38

(i) cardinality of I equals with components of its graph. 39

(ii) I has representatives which are the partitions for B. 40

(iii) I is the maximum minimal set. 41

(iv) I is neither poset nor totally ordered set. 42

(v) ⊆ on I is only reflexive. 43

(vi) I isn’t ∅. 44

Proof. Obvious. 45

Theorem 4.2. Let (E,B) be a matroid and B is one chain. Then E ∈ B so B is 46

power set of E. 47

Proof. Obvious. 48

Theorem 4.3. Let (E,B) be a matroid and |E| = n. Then 1 ≤ |B| ≤ 2n. 49

Proof. Obvious. 50

Theorem 4.4. Let (E,B) be a matroid and |B| = 2n. Then B is power set of E. 51

Proof. Obvious. 52

Theorem 4.5. Let (E,B) be a matroid and |B| = 1. Then B is power set of ∅. 53

Proof. Obvious. 54
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Theorem 4.6. Let (E,B) be a matroid. Then (B,max,min) is an algebraic structure. 55

Proof. Obvious. 56

Theorem 4.7. Let (E,B) be a matroid. Then (B,max) is an abelian group. 57

Proof. Obvious. 58

Theorem 4.8. Let (E,B) be a matroid. Then (B,min) is an abelian semi-group. 59

Proof. Obvious. 60

Theorem 4.9. Let (E,B) be a matroid. If B = E, then (B,min) is an abelian monoid. 61

Proof. Obvious. 62

Theorem 4.10. Let (E,B1) and (E,B2) be matroids. Then (E,B1 ∪B2) and 63

(E,B1 ∩B2) are matroids. 64

Proof. Obvious. 65

Theorem 4.11. Let (E,B1) and (E,B2) be matroids. If B1 ⊆ B2, then (E,B2 −B1) 66

is matroid. 67

Proof. Obvious. 68

Theorem 4.12. Let (E,B1) be matroid. then (E,Bc) is matroid when Bc is 69

complement of B in the matter of power set of E. 70

Proof. Obvious. 71

Theorem 4.13. Let B be a set of all subsets of E which they construct matroid on E. 72

If E1 ⊆ E, then B1 ⊆ B. 73

Proof. Obvious. 74

Theorem 4.14. Let B be a set of all B of E which they construct matroid on E. Then 75

P (E) ∈ B where P (E) is the power set of E. 76

Proof. Obvious. 77

Theorem 4.15. Let B be a set of all B of E which they construct matroid on E. If 78

|E| = n, then |B| = nn. 79

Proof. Obvious. 80
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