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Abstract: Far too often, one meets patients who went for years or even decades 

from doctor to doctor, without getting a valid diagnosis. This brings pain to millions of 

patients and their families, not to speak of the enormous costs. Often patients cannot tell 

precisely enough which factors (or combinations thereof) trigger their problems. If 

conventional methods fail, we propose the use of statistics and algebra to give doctors 

much more useful inputs from patients. We use statistical regression for triggering 

factors of medical problems, and in particular “balanced incomplete block designs” for 

factors detection. These methods can supply doctors with much more valuable inputs, 

and can also find combinations of multiple factors by incredibly few tests. In order to 

show that these methods do work, we briefly describe a case in which these methods 

helped to solve a 60 year old problem in a patient, and give some more examples where 

these methods might be very useful. As a conclusion, while regression is used in clinical 

medicine, it seems to be widely unknown in diagnosing. Statistics and algebra can save 

the health systems much money, and the patients also a lot of pain. 
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 1. Introduction 
In medicine, a diagnosis of a problem of a patient is usually generated by medical 

knowledge and experience, often using results of labs and other tests. The success rate for 
correct diagnoses is high if the inputs tell a clear message, like in case of a broken bone. In 
other cases, however, like for heavy headache, extreme weakness, etc., the situation is not 
so simple, and might require a much deeper search. Often enough, a satisfactory diag-
nosis is not found. 

In fact, the number of patients without a valid and correct diagnosis is 

frighteningly high in areas, where a diagnosis is non-trivial, e.g., in cases of rare diseases,  

if there is a huge number of possible triggers, or if decisive parameters are hardly 

measurable (like stress). A center for rare diseases in Germany presently has a backlog of 

more than 9,500 desperate requests; a quick and informal search among an organized 
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group of patients for a special rare disease revealed that more than 85% of them had no 

valid diagnosis.  

A rare disease is defined by a prevalence of ≤ 1 to 2.000 inhabitants (see, e.g.,  

https://www.orpha.net/consor/cgi-bin/Education_AboutRareDiseases.php?lng=EN). 

However, due to the fact that there is an estimated number of more than 8.000 different 

rare diseases, the total number of patients with rare diseases is rather high (at about 5% 

of the European population). So one might estimate that more than 300 million people on 

earth suffer from a rare disease. Even much more patients are afflicted with “incomplete” 

diagnoses due to hardly measurable or subjective (but wrong) inputs of patients. 

This dramatic situation might be improved by an increasingly expensive medical 

machinery, but also by the use of statistical regression, which tells patients (and their 

doctors) much more about their triggering factors than they are aware of. Surprisingly 

little was done so far in this direction, except in clinical research. A rather new book (see 

[2]) gives a first systematic account on regression in medicine, but with no emphasis on 

diagnosing, and block designs for dependent factors are not covered there at all. 

Here are some examples where a traditional medical search might be too slow, too 

complicated, or too expensive, but where mathematics and statistics can give reliable 

results is a very short time: 

 Some (especially elderly) people often take a large number of drugs. Often enough, 

some of these drugs (or combinations of them) can be the reason for further severe 

problems. Far not all of these interactions are known well enough. Simply think that 

for the 1,000 most frequent drugs, there are half a million possible interactions, which 

also differ from patient to patient. Statistics provides an almost incredible tool to test 

many of these interactions at the same time, using sophisticated mathematical 

methods, such as block designs and matrix calculus. Please observe that it is useless 

to find drug interactions for a large number of patients; they have an individual 

character. For instance, “dizziness” is on almost all package inserts, hence useless. 

We describe this method in more detail in Section 3.1 below. Note that this applica-

tion does not concern rare diseases, but remarkably frequent cases in treating pa-

tients! 

 Reactions to the intake of food (components) can give valuable hints for the diagno-

sis. But one cannot expect patients to know that, for instance, they react to an imbal-

ance of magnesium intake. In the section “Statistics Works” below, we describe a 

case where problems through the intake of too much potassium, but too few sodium 

caused severe and frequents attacks of paralysis for more than 50 years. This lead 

doctors to investigate a gene which was before not considered as a cause of paralysis 

(see [6]), and to find the defect. The solution of this case and the fact that that this 
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defect seems to be unique world-wide shows the power of the statistical approach. 

This case was described in detail in [7]. 

 Combinations of allergens can be tricky. [8] describes cases in which one allergen is 

neutral for the patient, another one positive, but the combination is a real disaster! 

Our methods can detect cases like this without problems. 

 

The situation is intensified by the fact that a small change in the input might result 

in a big change of the output (=diagnosis), no matter whether the search for the 

diagnosis is computer-aided or not. In mathematical language, the output does not 

depend continuously on the input. Hence, in crucial situations, it might be highly 

desirable to improve the quality of the inputs. The statistical approach usually does 

need the assistance of a statistician (in the near future maybe simplified by an app) 

and the cooperation of the patient, but nevertheless it is far less expensive than a 

complicated medical machinery. Or a wrong diagnosis. 
 

2. Materials and Methods 

STATISTICAL METHODS, I: REGRESSION ANALYSIS 

 

The role of statistics in life sciences is ubiquitous, simply think of the millions of 

statistical tests for the efficiency of medications or medical treatments, or trials on 

(sometimes many thousands of) patients (see, e.g., Cleophas et al. [1]). Less common is 

the use of statistics to identify one or more of a large number of factors which might 

trigger pain or discomfort in a single patient („Precision Medicine“); an account was only 

given recently by Cleophas and colleagues [2]).  And very rarely, a search is done to 

find positive or negative synergy effects (interactions) between these factors which go far 

beyond a mere addition of these factors. The reason for that is, of course, the huge 

number of possible combinations of two or more factors. For the sake of the patients, 

however, the number of tests should be as small as possible. We present a solution to this 

dilemma. The identification of these „suspicious“ factors can be very valuable in getting 

a diagnosis when this turns out to be difficult. 

Our statistical method, as already briefly described, is that of (statistical) regression. 

First, the patient and the doctor together try to find out, which parameters (“factors”, say 

x1, x2, …) might improve or worsen the patient’s situation. These must be in some way 

“measurable”, and they also must find a numerical indicator y which describes the 

patient’s situation. The “degree of stress” or “pain on a scale from 0 to 10” are OK, but 

parameters like “blood pressure” would be better, of course. The number of parameters 

should not be “too low” (danger of missing the most useful parameters), and not “too 

large” (resulting in a huge number of tests); usually, a size between 5 and 15 might do 
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the job. Of course, if the situation of the patient stays at the same level all the time, 

statistics is of no use. 

 

Then a statistician selects an efficient experimental design, telling which factors 

(like pills or food components) the patient should try on – say – day 1, which factors 

should be tested on day 2, etc. The patient notes the resulting state y of his situation after 

each test. The “protocol” might then look like 

 Day 1: I tried x1, x3, x4, x7, the result was 23 

 Day 2: I tried x2, x3, x5, x9, the result was 19 

And so on. Usually one wants a design in which all factors are tested an approximately 

equal number of times. In statistics, this is usually called a “screening experiment”.  

The patient sends this protocol to the statistician (or doctor). The statistician, using 

regression, finds those factors (or combinations thereof) which are very likely to improve 

the patient’s situation, and the “bad” factors which worsen it. Irrelevant factors are 

detected automatically. 

In medical statistics, regression analysis is usually used to analyze large samples, 

e.g., stroke risk as a function of age, hypertension, smoking habits etc. Up to now, the use 

to find a diagnosis, however, is very rare. Here we show that statistical regression can be 

very useful in the diagnosis of an individual case by detecting unknown connections 

between a number of „suspicious“ factors.  

Of course, this method is much more conspicuous than a usual diagnosis, and so it 

will only be used in cases where conventional methods have failed. But doctor’s waiting 

rooms often contain patients who have run through an unsuccessful series of many tests 

generating numerous diagnoses. This can be very frustrating and sometimes also 

dangerous for them and usually takes much longer than the method we are 

demonstrating here. Especially the diagnostic path in patients with rare diseases may be 

troublesome. Often, the patient can undertake the tests and measure the results by 

himself. 

The method used can perhaps be seen best via an example. Take a patient with 

unknown factors which trigger an allergy, where the usual diagnostic measures did not 

yield a satisfactory result. Suppose that the patient and the doctor suspect that n more 

factors x1, x2,…, xn might explain the allergy, e.g.,  

 x1 = exhaust air of the vacuum cleaner (measured in minutes of exposure) 

 x2 = intake of certain candies (measured in pieces), … 

and so on. Then a test plan might ask the patient for an exposure to x1, x4, and x9, and to 

rank the degree y1 of allergy on – say – a scale of ten degrees of severeness. The second 

test might involve x2, x4, and x6, with a result of y2, and so on. 
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Then well-known statistical algorithms (see, e.g., Morris [3]) will yield a „formula“ of the 

type 

y = β0 + β1x1 + β2x2 + … + βnxn             (*) 

 

where β0 is a constant (the „intercept“) and βi estimates the “true” influence bi of xi to the 

overall allergy level. Usually, one also determines confidence intervals  [βi-ci, β i+ci] so 

that they cover bi with a confidence level of – say - 95%. If this interval covers 0, like for 

example in [-0.4, 0.7], one usually reacts in the way that the influence of the 

corresponding factor xi is to be doubted (not statistically significant) and so xi is 

eliminated from the list of interesting factors. This usually happens for many factors, 

such that eventually a small list of suspicious factors remains, and the doctors will pay 

their attention to these few factors. This reduction is often essential, because it makes a 

huge difference whether 100 or 3 factors have to be medically investigated. The patient 

might already be dead when the doctors come to explore factor # 50…  

If the tests conducted do not give results which are significant enough, one should 

continue the tests (for instance, by repetition). Then the software will “learn” more and 

more about the case of investigation, which is the principal of Artificial Intelligence (AI). 

 

STATISTICAL METHODS; II: EXPERIMENTAL DESIGNS 

Up to now, we applied a known algorithm to a rather new situation. Things 

become less simple if the important factors cannot be accounted for additively, but 

interactions („synergy effects“) are possible. Then one usually adds terms like xixj to 

x1,x2,…,xn in the analyzed model. In medicine and biology, often two substances 

(substance and antidote,…) work together to produce an effect. For more examples, see 

below. 

But much more care must then be taken to the design of the experiments. It might 

be that xi and xj are never (or only once) tested together, and so no clarification of a 

synergy is possible.  

The fairest way would be to test every xi the same number of times, and also to test 

every pair xi and xj the same number of times. A new problem now comes from the quick 

rise of binomial coefficients. With 5 factors, we have 10 possible pairs, but with 20 factors, 

we already have 190 pairs. So a clever trick is needed: we utilize some particular 

experimental designs: 

 

Definition: A Balanced Incomplete Block Design (BIB-design), see, e.g., Lidl & Pilz [4],  

consists of a set P = {p1, p2, … , pv} of v „points“ and a collection B of b subsets B1, B2, … , Bb  

of P (called „blocks“), such that 

(i) Each point in P belongs to the same number r of blocks  
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(ii) Each Bi has the same number k of elements  

(iii) Each pair pi, pj of points belongs to the same number λ of blocks. 

The pair (P, B) is then called a (v,b,r,k,λ)-design. The design is complete if B is just the 

collection of all k-element subsets, otherwise incomplete. 

 

For an experiment like the one above (concerning allergies), a BIB-design can be 

turned into an experimental design as follows.  

 The points are the factors (e.g.,  possible triggers for an allergy); 

 Every block lists the factors which will be tested simultaneously in a test. 

So a (v,b,r,k,λ)-design will test v suspected triggering factors; each test requires k 

suspected factor (at the same time), and one will need b tests. Number (i) above assures 

that every possible triggering factor will be tested the same number (namely r) of times, 

and every pair of possible factors will be tested together in exactly λ tests. So a 

BIB-design gives an experiment which is “fair” both to the factors and the tests.     

It is not trivial at all to get such a design. Constructions usually come from areas 

„far away“, like from finite geometries or abstract algebra (structures like groups or 

near-rings). 

 

Example: From mathematical considerations (see Ke-Pilz [5]) we might get the following 

design (which comes “out of the blue” now, but we will not give the long mathematical 

derivations): 

P = {1, 2, 3, 4, 5, 6, 7}  and  B  consists of the 14 collections  

B1={2,4,5}, B2={1,3,7}, B3={1,2,6}, B4={1,5,7}, B5={1,3,4}, B6={2,3,7}, B7={4,5,7},  

B8={1,2,4}, B9={2,6,7}, B10={2,3,5}, B11={3,4,6}, B12={3,5,6}, B13={1,5,6}, B14={4,6,7} 

This gives a (7,14,6,3,2)-design. Suppose we have 7 factors x1, x2, … , x7. For the first test, 

we try the factors x2,x4, and x5, since B1 = {2,4,5}, and so on: 

 

 

 

 

 

   

Fact.\Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x1 ● ● ● ● ●        ●   

x2 ●  ●   ●  ● ● ●      

x3  ●   ● ●    ● ● ●    

x4 ●    ●  ● ●   ●   ●  
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x5    ●   ● ●  ●  ● ●   

x6   ●      ●  ● ● ● ●  

x7  ●  ●  ● ●  ●     ●  

Results 49 -2 -28 3 54 -1 51 98 -31 69 18 -35 -25 22 3 

  

Table 1: An experimental design for testing 7 factors, each of them 6 times 

 

So we have v=14 tests, plus a „zero test“ for „technical reasons“ (the information matrix 

would otherwise not have full rank). One sees: 

 Every test (except #15) involves b=3 factors (3 dots in every column) 

 Each factor is tested in r=6 tests (6 dots in each row) 

 Each pair of factors is tested together in λ=2 tests. 

Observe that we have tested the 21 possible pairs xi and xj twice in only 15 rather 

than 2*21=42 tests! This „magic reduction“ to only ⅓  of the tests can be attributed to the 

fact that in each test three synergies are considered simultaneously (in terms of 

experimental designs: we allow certain interactions to be aliased). 

In the last row, we have supplemented some (fictitious) results of the tests. Linear 

regression gives the best estimates according to (*) in the section “Statistical Methods, I” 

as 

y = 3 + 51x4 + 19x5 -41x6     …. Model 1 

If one also uses interaction terms („synergies“), one gets instead 

y = 2 + 47x4 – 31x6 +58x2x5   …. Model 2 

Now we can compare the actual results with the predicted ones using these two models: 

 

Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

real 49 -2 -28 3 54 -1 51 98 -31 69 18 -35 -25 22 3 

Mod.1 54 3 -38 22 54 3 73 73 -38 22 13 -19 -19 13 3 

Mod.2 49 2 -29 2 49 2 49 107 -29 60 18 -29 -29 18 2 

 

Table 2: Comparing two test results with reality 

 

One easily sees that Model 2 describes „the reality“ considerably better than Model 1. 

Let us remark that estimating possible product terms creates a problem because of 

the very small number of tests. We first look at the „main effects“ xi, remove the 

irrelevant ones, and always add one if the xixj to check which of them seemed to be 

statistically relevant. These are then added to the relevant main effects (thereby following 

the so-called hereditary principle). The final result might depend on these choices and 
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their ordering, but doing the calculations several times with different choices and 

orderings may yield a robust choice. And for patients it does make a big difference if 

they have to undergo many more tests. Of course, repetitions of these 15 tests would also 

give much sharper results. 

3. Results 

3.1. Statistic works … 

We will now use the described method in “real” situations. First, as already 

addressed in the introduction, we describe the search for a diagnosis in a patient. His 

problems started at the age of 15 years with unusual tiredness attacks, always in the late 

afternoon. In the following 50 years the tiredness worsened to complete paralysis attacks, 

in which the patient was fully conscious, but could not move any part of his body. There 

was no way to communicate with the world around him. Despite the consultation of 

more than 120 doctors and hospitals over decades, no reason was found. Since the 

patient reported an association of the paralysis attacks with a low intake of 

carbohydrates, the doctors first thought that a low blood sugar level might be the reason. 

This did not turn out to be true in this form, so doctors specialized for rare diseases 

considered the possibility of a periodic paralysis due to a defect in ion channels. But the 

ion-levels within the blood were normal during the attacks, which is typical in patients 

suffering on normokalemic periodic paralysis. Thus it was tricky to identify the 

intracellular mechanism, namely too high or too low levels of sodium or potassium, 

respectively. The doctors mentioned that it might take a long time to check all these 

channels. 

The patient (a mathematician) tried to support the research team by speeding up 

the search process. He noted each of his meals and how much calcium, sodium, 

potassium, protein, etc. he had eaten. He checked his body strength by pressing a 

bathroom scale, right after the meals, and again one hour later. The differences came up 

to about ±10 kilograms. So he first used statistics (model 1) above to identify the few most 

probable intake components which explain the differences, using the software package 

Mathematica®. After a period of about 5 weeks of carefully documented eating, he had the 

result 

y = y(p,s) = -0·5 – 0·0048p + 0·0085s 

with the interpretation that 1 hour after the intake of p mg of potassium and s mg of 

sodium, the patient could press the scale (on average)  y(p,s)  kg harder. The signs of 

the coefficients for p and s were significant on the 99% level, which means that potassium 

hurts the patient, while sodium helps him. The exact values of these coefficients are not 

so important, except that the patient now knows in advance, that, for examples, a typical 
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burger will strengthen him by approximately y(420,1000) = 6.0 kg, while 100 g of  

bananas will weaken him by y(390,1) = -2.4 kg. 

Then the patient ran another test, this time with a BIB-design similar to the example 

above to check, if possibly a combination of other substances might overthrow this result. 

But no relevant combination was found, so the above result was accepted. In this case, 

however, no test strictly according to the BIB-plan was possible, since no food contains 

only potassium, calcium, and sodium, and no other substances. We will return to this 

point later. 

After this finding, the doctors knew that they had to search for a defect in a potassium 
channel and, more importantly, that lowering potassium should be beneficial in this 
special patient. The subsequent analysis of various ion channels revealed a so far unre-
ported gain of function by increased expression of the inward rectifier potassium channel 
Kir2.6, due to highly increased promotor activity of the gene KCNJ18. Interestingly 
enough, this gene was considered so far as a less likely candidate for paralysis and was 
no target candidate in well-established screening panels (see Kuhn and colleagues [6]). 
The study and results were reported recently elsewhere in Soufi and colleagues [7]. Note 
that without the doctor’s hint to consider ion channels, the patient would never have 
conducted these experiments. And without medical competence, the results of the ex-
periments could not have been properly interpreted. So this case might be considered as 
a fine and successful interplay between medicine, statistics, and abstract algebra. 

3.1. More Examples 

(1) Side effects of combinations of drugs: This was also mentioned in the introduction. 

We had a case of a person (age 75) who developed a strong and permanent dizziness 

which did not allow him to drive a car any more. He took 10 types of drugs per day, 

and we added the consumption of a standardized amount of alcohol as “drug # 11”. 

So we used the following (11,22,5,10,4)- block design like in Table 1, and added an-

other “test”, this time the usual drug consumption of the patient: 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

● ●   ● ●     ● ●     ● ● ● ●   ● 

   ●  ● ●  ●  ●  ●   ●  ● ●  ●  ● 

   ● ●   ● ●  ●   ● ●    ● ●  ● ● 

●  ● ●     ● ●  ● ● ●    ●  ●   ● 

 ● ●        ●  ● ●  ● ●   ● ● ● ● 

 ● ● ● ● ● ● ●    ● ●         ● ● 

 ●     ●   ●  ●  ● ●   ● ●  ● ● ● 

●  ●    ● ● ●  ● ●   ●  ●    ●  ● 

● ●  ●  ●  ●  ●     ● ●    ● ●  ● 

●    ●  ● ●  ●   ● ●  ● ●  ●    ● 
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  ●  ● ●   ● ●     ● ● ● ●    ● ● 

  

Table 3: A (11,22,5,10,4)- block design 

 

So in the 1st test we gave drugs no. 1, 4, 7, 8, 9, and so on. If we exclude “test” 23, 

every drug was tested 10 times, and each pair of drugs was tested 4 times together. If 

one used single tests, it would have needed 10*11+4*55=330 tests. If the physicians 

(and not the statistician!) say that each test needs 1, 2, or 3 days, this program needs 

22, 33, or 44 weeks. With single tests, this would be almost 1, 2, or 3 years! No patient 

would agree. 

Let us mention that such a design greatly reduces placebo- and nocebo-effects (which 

are typical and critical for tests with single medications), since the patients will be 

“confused” by the relatively large numbers of drugs prescribed / not prescribed per 

day. 

Here we found, by the way, that we could exclude (on the 95% level) any side effect 

coming from the drugs. This is much more than to say “We did not find any side ef-

fect”. 

(1) Food-dependent exercise-induced anaphylaxis: The contact with some allergens 

might be harmless, physical exercise can help a lot, while the combination can be 

disastrous. So one factor is neutral for the patient, the other one positive, but the 

combination is really negative! See Romano et al. [8]. 

(2) Phototoxic Dermatosis: We usually tolerate sunlight at a usual dose very well since 

it is essential for our survival.  Frequently used medications such as certain antibi-

otics, non-steroidal  anti-inflammatory   drugs   (NSAIDs), diuretic and anti-

arrhythmic drugs have usually no direct side effects at the skin. However, these 

drugs are known to enhance photosensitivity. In combination with usually 

well-tolerated sunlight,  these drugs can create severe sunburn like skin reactions 

(see [9] and [10]). 

(3) Hyperkalemic Periodic Paralysis: In a mild form, this disease can usually be toler-

ated, but in combination with a pathogenic gene mutation, it can create severe paral-

ysis. 

(4) Stomach Problems: A patient complains about stomach pains after some meals. His 

doctor suspects that seafood might be a reason, but this can hardly explain the pains. 

And he can exclude a large number of food components which do not hurt the pa-

tient. But 15 “suspicious” factors remain. The following might be a typical progres-

sion of the statistical investigation. A simple regression test like in “Statistical Meth-

ods, I” excludes quickly 8 of them. For the remaining 7 components, this test does not 

give satisfactory results. So we might use the test in “Statistical Methods, II”. Sup-
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pose that   the remaining 7 factors are sugar (=S), apples (=A), lactose (=L), walnut 

(=W), pepper (=P), crabs (=C), and mustard (=M). So, according to the experimental 

design in “Statistical Methods, II”, the first test would be a meal with S, A, and W. 

Then a statistician quickly finds out that C does hurt a bit (as single factor), but the 

combination A & P is the main reason for the pains, while A and P alone do not real-

ly hurt. 

4. Discussion 

Many statisticians might be unhappy with several parts of the statistics used above. 

Metric and ranked data were mixed, the number of tests (especially in model 2) can be 

dangerously low, the BIB-plan above should be filled with 0-1-data and not with real 

numbers, the ranking of pain by patients is highly subjective, and so on.   

An important point concerns the kinds of “dependences” involved. Dependent 

factors for a regression can be treated using BIB-designs, as we have seen. The tests 

suggested are by no means independent of the particular patient (see the next paragraph), 

as we are making no patient-to-patient comparisons. We do not aim at general results  

when they do not exist. Also, there might be a time-dependence between the tests. For 

mastering that, physicians (and not statisticians) have to decide on the optimal time 

distance between the tests, to guarantee independent observations as we assumed. 

Should one want to relax those assumptions one might have to employ more complex 

design strategies, such as, e.g., given in Kiefer & Wynn, [11]. Also, almost all statistical 

investigations on patients lack an important feature: they are not reproducible, like 

statistics in technical sciences. See, for instance, the brilliant article by Homes [12].  

However, medicine is not pure natural science and it might be better to use a partly 

„dirty“ statistics than to do nothing. And – most of all – the statistical results are NOT the 

diagnosis, but just suggestions giving process for an appropriate medical investigation. 

Still the medical part of getting the diagnosis is by far the most important one. But – as 

can be seen in our case report - statistics can be very helpful.  

In fact, the statistician plays an important role: (s)he has to identify, together with 

the doctors and the patient, which of the hundreds of possible factors might be relevant. 

A careful selection is necessary. Hence the statistician must be good in “model building”. 

Let us note that the statistical models mentioned above are also useful (and have been 

employed) in many other areas, cf. the survey on spatial applications by Mueller [13]). In 

agriculture, the factors xi might be fertilizers, irrigation, etc., in paint manufacturing, they 

might be additives against weather attacks, and so on.  

 

5. Conclusion 
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We presented a seemingly unknown and inexpensive tool for obtaining valid 

diagnoses in difficult cases, especially for rare diseases, but also for every-day-problems. 

The basic idea is to employ statistical regression in order to get much more precise inputs 

from patients. They often do not know exactly which substances, actions, and 

circumstances (or combinations thereof) trigger their problems. Statistics can often easily 

explain which of these factors contribute to the worsening of the patient’s problems. We 

found that this precise information often leads the way to the correct diagnosis. 

Typically, the patients can gather the necessary data by themselves, in measuring 

parameters like blood pressure, intake of food and drugs, physical strength, degrees of 

the pains, and so on. We plan to develop an app to facilitate the collection for the patients. 

Since more and more medical information will be gathered be so-called “wearable 

sensors”, we can expect a rapid increase of data. These data must be well-organized to be 

useful for the physicians.  

There is a vast literature on the use of statistics in medicine, where the data are 

collected by patients (see, e.g., Saunders and colleagues [14]), but they have a completely 

different approach.  

So we believe that the use of statistics can help physicians to resolve difficult cases, 

for instance in cases of rare diseases, when the usual methods seem to fail. This, for sure, 

will greatly relieve many deeply unhappy people among the large number of 

undiagnosed patients. 
 

6. List of Tables 
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