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Abstract

The relativistic quantum motion of a scalar particle under the ef-
fects of violation of the Lorentz symmetry in the presence of a linear
confining potential is investigated. We see that the solution of the
bound state to the modified Klein-Gordon equation can be obtained
and a quantum effect characterized by the dependence of the magnetic
field on the quantum numbers of the system is observed.
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1 Introduction

The Standard Model extension (SME) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] is the

framework for investigating signals of Lorentz violation and studying prop-

erties of physical systems as it includes Lorentz violating terms in all sectors

of the minimal Standard Model. The Lorentz-violating terms are generated

as vacuum expectation values of tensors quantities, keeping the coordinate

invariance of the extended theory [11].
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In this paper, we study motion of a relativistic scalar particle under

Lorentz symmetry breaking defined by a tensor (KF )µναβ out of the Stan-

dard Model Extension (SME) in the presence of a linear confining non-

electromagnetic potential. We analyze the effects of a linear central po-

tential induced by the violation of the Lorentz symmetry and the solution

of the bound state to the modified Klein-Gordon equation can be achieved.

The relativistic scalar particle under the influence of non-electromagnetic

potential has been of growing interest. Several authors have been studied

the relativistic quantum systems in the presence of various kinds of elec-

tromagnetic and non-electromagnetic potential under the effects of Lorentz

symmetry violation [12, 13, 14, 15, 16, 17, 18, 19]. Noted that the gauge

sector of Standard Model Extension consists of two classes that modifies the

transport properties of space-time. These two classes are called the CPT-odd

sector [1] and the CPT-even sector [20, 21, 22, 23, 24, 25].

The quantum dynamics of spin-0 scalar particle under the effects of

Lorentz symmetry violation with a scalar potential S(r) introduced via trans-

formation M →M +S in the wave equation is given by [1, 2, 12, 13, 14, 15,

16, 17, 18, 19, 22, 23, 25, 26, 27, 28, 29, 30]

pµ pµ Ψ +
α

4
(KF )µναβ F

µν(x)Fαβ(x) Ψ = (M + S)2 Ψ, (1)

where α is a constant, Fµν(x) is the electromagnetic field tensor, (KF )µναβ is

a dimensionless tensor that governs the Lorentz symmetry violation out of

the Standard Model Extension. Note that linear confinement of a relativistic

scalar particle with linear central potential induced by the Lorentz symmetry

violation effects hasn’t yet been investigated which is our aim in this paper.

2 Relativistic Scalar particle under LSV ef-

fects with a Linear Confining Potential

The Klein-Gordon equation under the effects of Lorentz symmetry violation

defined by the Eq. (1) in the background of the Minkowski space-time is
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given by[
− ∂2

∂t2
+

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+

1

r2
∂2

∂φ2

]
Ψ +

α

4
(KF )µναβ F

µν(x)Fαβ(x) Ψ

= (M + S)2 Ψ. (2)

Using the properties of the tensor (KF )µναβ [1, 3, 4, 8, 22, 23, 25, 12, 13,

14, 26, 27], we can rewrite (2) in the following form :[
− ∂2

∂t2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+

∂2

∂z2

]
Ψ

+
[
−α

2
(κDE)ij E

iEj +
α

2
(κHB)jk B

iBj − α (κDB)jk E
iBj

]
Ψ

= (M + S)2 Ψ. (3)

We choose the scenario of the Lorentz symmetry violation determined by

the non-null components (κDE)11 = const = κ1, (κHB)33 = const = κ2 and

(κDB)13 = const = κ3 with the following field configuration [12, 13, 14, 26,

27, 15, 16, 28, 29, 30]:

~B = B0 ẑ , ~E =
λ

2
r r̂ (4)

where B0 > 0, ẑ is a unit vector in the z-direction, λ is a constant associated

with a linear charge density of electric charges along the axial direction, and

r̂ is the unit vector in the radial direction.

Hence, equation (3) using the configuration (4) becomes[
− ∂2

∂t2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+

∂2

∂z2

]
Ψ

+

[
−ακ1 λ

2

8
r2 +

ακ2B
2
0

2
− αλB0 κ3

2
r

]
Ψ = (M + S)2 Ψ. (5)

Since the metric is independent of (t, φ, z), let the solution to the Eq. (6)

is

Ψ(t, r, φ, z) = ei (−E t+l φ+k z) ψ(r), (6)

where E, l have their usual meaning, and k is a constant.
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In this work, we are mainly interested in a linear confining potential

S(r) = ηL r. This type of potential has been used in the relativistic quantum

mechanics. Therefore, using the linear confining potential into the Eq. (5)

and using the solution (6), we obtain the following radial wave equation for

ψ(r):

ψ′′(r) +
1

r
ψ′(r) +

[
Σ− l2

r2
− ω2 r2 − β r

]
ψ(r) = 0, (7)

where

Σ = E2 −M2 − k2 +
1

2
ακ2B

2
0 ,

ω =

√
1

8
ακ1 λ2 + η2L,

β = 2M ηL +
1

2
αλB0 κ3. (8)

Transforming ξ =
√
ω r in the above equation (7), we have[

d2

dξ2
+

1

ξ

d

dξ
+ ζ − ξ2 − l2

ξ2
− θ ξ

]
ψ(ξ) = 0, (9)

where

ζ =
Σ

ω
, θ =

β

ω
3
2

. (10)

Now we impose the requirement that the wave-function ψ(x) is finite both

at the origin x→ 0 and at x→∞. Suppose the possible solution to the Eq.

(9) is

ψ(ξ) = ξ|l| e−
1
2
(ξ+θ) ξH(ξ). (11)

Substituting the solution (11) into the Eq. (9), we obtain the following

equation

H ′′(ξ) +

[
1 + 2 |l|

ξ
− 2 ξ − θ

]
H ′(ξ) +

[
−

θ
2

(1 + 2 |l|)
ξ

+ Θ

]
H(ξ) = 0, (12)

where

Θ = ζ +
θ2

4
− 2 (1 + |l|). (13)
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Equation (12) is the biconfluent Heun’s differential equation [15, 31, 32] with

H(ξ) is the Heun polynomials function.

The above equation (12) can be solved by the Frobenius method. Writing

the solution as a power series expansion around the origin [33]:

H(ξ) =
∞∑
i=0

di ξ
i. (14)

Substituting the power series solution into the Eq. (14), we obtain the fol-

lowing recurrence relation

dn+2 =
1

(n+ 2)(n+ 2 + 2 |l|)

[{
η + θ (n+

3

2
+ |l|)

}
dn+1 − (Θ− 2n) dn

]
.

(15)

With the few coefficients are

d1 =
θ

2
d0,

d2 =
1

4 (1 + |l|)
[θ

(
|l|+ 3

2

)
d1 −Θ d0]. (16)

The power series expansion H(ξ) becomes a polynomial of degree n by

imposing the following two conditions [12, 13, 14, 15]

Θ = 2n, (n = 1, 2, ...)

dn+1 = 0. (17)

By analyzing the first condition, we obtain following equation of the en-

ergy eigenvalue En,l:

En,l = ±
√
M2 + k2 + 2ω (n+ 1 + |l|)− 1

2
αB2

0 κ2 −
β2

4ω2
. (18)

It is worth mentioning that we have adjusted the parameters such that

(M2 + k2 + 2ω (n+ 1 + |l|)) >
(

1
2
αB2

0 κ2 + β2

4ω2

)
and thus, the energy eigen-

value is real. Note that the Eq. (18) is not the general expression of energy

eigenvalue of a relativistic scalar particle. One can obtain the individual
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energy level and the eigenfunction one by one by imposing the additional

recurrence condition dn+1 = 0 on the eigenvalue problem.

The corresponding wave-functions are given by

ψn,l(ξ) = ξ|l| e
− 1

2

[
ξ+ β

ω
3
2

]
ξ
H(ξ). (19)

Now, we evaluate the individual energy levels and the eigenfunctions one

by one as done in [15]. For example, n = 1, we have Θ = 2 and d2 = 0 which

implies

⇒ 2

θ (3
2

+ |l|)
d0 =

θ

2
d0

⇒ θ2 =
4

3
2

+ |l|
⇒ β2

ω3
=

4
3
2

+ |l|
⇒ β1,l =

√
4ω3

3
2

+ |l|
(20)

a constraint on the parameter β1,l, that is, on the magnetic field. We can

see from Eq. (20), that the allowed values of the magnetic field depends

on the quantum numbers of the system {n, l}, the parameters associated

with the background of the Lorentz Symmetry Violation, and the potential

parameters.

The allowed values of the magnetic field for the radial mode n = 1 is

B1,l
0 =

(β1,l − 2M ηL)
1
2
αλκ3

. (21)

Therefore, the ground state energy level for the radial mode n = 1 is

given by

E1,l = ±

√
M2 + k2 +

√
1

2
ακ1 λ2 + 4 η2L

{
(2 + |l|)− 1

(3 + 2 |l|)

}
− 1

2
α
(
B1,l

0

)2
κ2.

(22)

And the ground state eigenfunction is

ψ1,l(ξ) = ξ
√
l2+η2c e−

1
2
(ξ+2 d1) ξ (1 + d1 ξ), (23)
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where we have chosen d0 = 1 and

d1 =
1√

3
2

+ |l|
. (24)

We can see that the lowest energy state (22) plus the ground state wave

function (23)–(24) is defined for the radial mode n = 1, instead of n = 0.

This effect arises due to the presence of linear confining potential and the

Lorentz symmetry violation in the relativistic quantum system.

3 Conclusions

We have investigated the effects of a linear central potential induced by the

violation of the Lorentz symmetry background on a relativistic scalar particle

under a linear confining potential. After solving the wave equation, we have

obtained the non-compact expression of the energy eigenvalues (18) and the

wave function (19). By imposing the recurrence condition dn+1 = 0, one can

obtain the individual energy levels and the wave function, for example, the

lowest state energy level (21) and the corresponding wave function (22)–(23)

with the restriction on the magnetic field (20) for the radial mode n = 1.

We have seen a quantum effect due to the dependence of the magnetic field

B0 on the quantum numbers {n, l} of the system as well as on the Lorentz

symmetry breaking parameters.
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