
Article

Implementation of NAO robot maze navigation based on
computer vision and collaborative learning

Daniela Magallán-Ramírez1,‡, Areli Rodriguez-Tirado1,‡, Jorge David Martínez-Aguilar1,‡, Carlos Francisco
Moreno-García2,* , David Balderas1 , Edgar Omar López-Caudana1

Citation: Magallán, D.;Rodriguez,

A.; Martínez, J.D.; Moreno-García, C.

F.; Balderas, D.; López-Caudana, E.O.

Implementation of NAO robot maze

navigation based on computer

vision and collaborative learning.

Sensors 2021, 1, 0.

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors.

Submitted to Sensors for possible

open access publication under the

terms and conditions of the Cre-

ative Commons Attribution (CC

BY) license (https://creativecom-

mons.org/licenses/by/ 4.0/).

1 Tecnologico de Monterrey, School of Engineering and Sciences. Calle Puente 222, Coapa, Arboledas del
Sur, Tlalpan, 14380 Ciudad de México, CDMX

2 Robert Gordon University, School of Computing. Garthdee House, Garthdee Rd, Aberdeen AB10 7GJ, UK
* Corresponding author: c.moreno-garcia@rgu.ac.uk; Tel.: (+44) 1224 262790
‡ These authors contributed equally to this work.

Abstract: Maze navigation using one or more robots has become a recurring challenge in scientific1

literature and real life practice, with fleets having to find faster and better ways to navigate2

environments such as a travel hub (e.g. airports) or to evacuate a disaster zone. Many methods3

have been used to solve this issue, including the implementation of a variety of sensors and other4

signal receiving systems. Most interestingly, camera-based techniques have increasingly become5

more popular in this kind of applications, given their robustness and scalability. In this paper, we6

have implemented an end-to-end strategy to address this scenario, allowing a robot to solve a maze7

in an autonomous way, by using computer vision and path planning. In addition, this robot shares8

the generated knowledge to another by means of communication protocols, having to adapt its9

mechanical characteristics to be able to solve the same challenge. The paper presents experimental10

validation of the four components of this solution, namely camera calibration, maze mapping,11

path planning and robot communication. Finally, we present the integration and functionality of12

these methods applied in a pair of NAO robots.13

Keywords: robot navigation, computer vision, camera calibration, mapping, path planning,14

communication, NAO robot, educational innovation, higher education.15

1. Introduction16

An autonomous system for maze navigation must be able to take real-time decisions for17

different and sometimes unexpected problems that may occur. For instance, the robot18

might be aware of its environment by using different sensors, data processing algorithms19

or other methods. Recently, one of the most widely used methodologies consists of20

collecting the information that the robot needs by means of the embedded cameras.21

This kind of technique have been implemented no just in competitions [1], but also in22

practical applications, such as airport navigation by a fleet of robots [2]. The problem23

of using other sensors (e.g. sonar or infrared lights) is that they require conditional24

programming, which particularizes each solution to a specific type and version of robot.25

Therefore, academia and industry work hard to find methods that can be applied to26

different robotic platforms and that would allow real-life applications in areas such as27

education, industry 4.0, health, etc.28

This paper presents the test and comparison of different methods that will conform29

an autonomous maze solution system for a pair of NAO1 robots. This will enable them30

to navigate a maze in an autonomous way by means of four main parts: (1) camera31

calibration, which allows the acquired images from the first robot to be pre-processed32

and cleaned prior to their use; (2) mapping, which consist in vision algorithms to analyze33

1 https://www.softbankrobotics.com/emea/en/nao

Version June 1, 2021 submitted to Sensors https://www.mdpi.com/journal/sensors

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0001-7218-9023
https://orcid.org/0000-0001-7630-8608
https://orcid.org/0000-0002-1216-4219
https://doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.softbankrobotics.com/emea/en/nao
https://www.mdpi.com/journal/sensors
https://doi.org/10.20944/preprints202106.0037.v1
http://creativecommons.org/licenses/by/4.0/

Version June 1, 2021 submitted to Sensors 2 of 24

the images and generate an internal map; (3) path planning, which allows the first34

robot to make decisions about the navigation to get out in the most optimal way and;35

(4) communication, which will allow to transmit the generated knowledge to allow a36

second robot to solve the considering its mechanical characteristics. We have selected37

this particular robots since they can be programmed using a multi-platform environment38

called Choregraphe, which will allow us to integrate script from languages such as C++,39

YAML and Python. Moreover, NAO robots possess a variety of sensors which could40

be integrated to our solution in future work, such as touch sensors, omni-directional41

microphones and ultrasonic sensors2. We will be using the 6th generation of these robots,42

which are used mainly in education and research.43

This is an extension on the paper presented by Rodriguez-Tirado et al. [3], where44

we introduced an initial proposal which would allow the navigation of robot into a maze45

by means of the aforementioned pipeline framework. Nonetheless, in this paper we will46

thoroughly review and validate each step, explaining why certain methods were selected47

in each step. The modifications implemented in each step have as final objective to fully48

integrate the system. Finally, this paper presents the migration of this final integration49

into a real environment.50

After the introduction in Section 1, this paper is organized as follows. Section 251

contains a literature review of the existing investigations and applications of similar52

methodologies in various scenarios. Section 3 describes how to interconnect the four53

modules proposed to solve robot navigation and introduces the methods used in each54

module. Section 4 presents bot the results of all tests in each step, and the integration of55

such modules. Afterwards, Section 5 analyses these results. Finally, Section 6 is reserved56

for conclusions and future directions.57

2. Related Work58

2.1. Camera calibration in NAO robots59

To improve the response time of a fleet of NAO robots playing football soccer, Kastner et60

al. [4] implemented a kinematic calibration within the robots. They used a calibration61

method originally proposed by Zhang et al. [5], which will also be considered in our62

work. This method is based on a chess pattern, and the calibration result was helpful to63

compensate the errors of the NAO robots legs, which allowed these robots to be able to64

better kick the ball. Another objective of such work was to perform a fast calibration65

before a match, thus resulting on an elapsed time of about 590 seconds. According to66

that paper, in a ten minute match without the calibration, the robots fell an approximate67

of 11 times per match, and after the calibration, this was reduced to six times.68

NAO robots use camera calibration for other applications, such as portrait sketching69

as shown by Singh et al. [6]. In this implementation, it was necessary to change the70

plane from 3D to 2D by transforming the effector position into the NAO, so that the71

robot, instead of having to compute the coordinates of a tri-dimensional plane, could just72

perceive the x and y coordinates to sketch a portrait. Authors evaluated three solutions73

for the 3D-2D transformation, which were: (1) fundamental matrix; (2) 4-point calibration74

and an; (3) an artificial neural network (ANN) based regression analysis. Comparing the75

experimental results of the three solutions, the third option was the best since it derived76

on less square error. Conversely, the method with the lowest computational time was77

the 4-point calibration.78

2.2. Path Planning79

One of the most widely used solutions used in this domain the Tremaux algorithm, which80

has been subsequently applied in literature by different authors. For instance, Li et al.81

[7] implemented this approach with the purpose of having a mobile robot in a virtual82

environment be able to navigate and find the minimum cost in the shortest time. As a83

2 http://doc.aldebaran.com/2-1/family/index.html

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

http://doc.aldebaran.com/2-1/family/index.html
https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 3 of 24

result, the robot was able to indicate the shortest path, without actually being able to84

navigate it or to communicate the solution to a second robot. An important feature of85

this work is that the robot was given the location of the exit; something that may not86

necessarily be our case.87

Kumar et al. [8] used path planning and other algorithms aimed at avoiding88

obstacles to solve maze routes, by means of a linear regression method. The robot was89

trained with 500 different scenarios. In a second part of the work, a second robot with90

the same algorithm was introduced to the same route. The main purpose was that both91

robots could solve the puzzle simultaneously without any collisions. The obstacles92

consisted of cylinders, and the robots had to follow an establish path. Therefore, robots93

just had to get from one point to another with a given trajectory that would be adjusted94

depending of physical obstructions. Although this holds similarity to our proposal,95

authors do not specify whether the communicated knowledge to the second robot96

considered different mechanical properties of that robot.97

Wikström et al. [9] worked on how a robot can process its environment to map and98

navigate through a maze. Using an infrared light sensor, the robot was able to obtain99

information from its surroundings. Python 2 was used to program the mapping and100

path planning modules. In this thesis, the efficiency between the Wall Followers and the101

Tremaux algorithm were compared. It was concluded that the latter was more effective to102

solve the task at hand. This work has some similarities with our proposal, nonetheless103

no computer vision algorithms were implemented in that case, which effectively showed104

a reduction in reliability and accuracy of the obtained solution.105

2.3. Communication Protocols106

Simoens et al. [10] defined and explained the potential benefits of the Internet of107

Robotic Things (IoRT). Some of the key benefits of this area of knowledge are perception,108

motion, manipulation, interaction, adaptability, configuration and decision autonomy.109

In particular, the latter has the ability of determine the best action for a fleet of robots to110

undertake. In our work, we propose to connect the NAO robots by means of commercial111

platforms such as Ubidots, in which the data recall, such as the instruction for the robot,112

can be download and transfer easily. This in effect has some relation to the IoRT concept.113

Bechon et al. [11] implemented a swarm code to coordinate the actions of eight NAO114

robots. As a result of this work, the fleet was able to communicate among them by using115

a global variable to synchronize the whole NAO robot group in a dance choreography.116

The robots were synchronized using the Network Time Protocol (NTP), getting all NAO117

robots synchronized. Distance between the robots was an important factor; while it118

increases, also the time to detect and correct the next position does. Because of that, it119

was necessary to implement a mesh network where all robots had access to each other,120

so that each robot was able to communicate with their closest neighbor. This type of121

architectures are interesting for a future implementation of this work, provided that we122

need to synchronize multiple robots simultaneously.123

2.4. Other systems124

Needless to say, maze navigation can be applied to multiple other robotic standards in125

the industry. For instance, Gul et al. [12] explained how different navigation techniques126

can be applied into a mobile robot to follow a dynamic path. The robot had to go from127

the start to the end by avoiding obstacles between the points and analyzing a 2D plane.128

Some of the algorithms used were the Dijkstra method (which will be explored in this129

paper). This was found to be a simple, effective and less time and computational complex130

method with a very high efficiency for the task.131

Delfin et al. [13] aimed at localizing and helping a NAO robot to navigate into132

an environment by using a visual memory which consisted on a set of key images.133

First, the NAO got into the environment and tried to solve by mimicking a human. In134

parallel, images were acquired and used to generate a graph in which a path planning135

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 4 of 24

method was applied to help the robot optimize it trajectory in the environment. To our136

knowledge this is the closest work in literature to our proposal. Nonetheless, we have137

the added complexity of a second robot which has to solve the same challenge based on138

a shared knowledge and considering different mechanical characteristics.139

3. Methodology140

As mentioned in Section 1, we developed this work in four main parts. Each of the steps141

in the pipeline was developed separately; however, the flow chart in Figure 1 shows the142

interconnection of these modules. In this section, we describe the technologies used for143

each stage. Communication sessions are colored in orange, camera calibration in red,144

mapping are the blue and finally, path planning tasks are in green.145

Figure 1. Pipeline of the proposed system.

The system starts by establishing the communication between the robot and the146

computer to control the robot. Then, camera calibration is applied before the robot gets147

into the maze, as the robot must use the cameras to solve the maze. Afterwards, the148

robot is ready to start the maze. Thus, the NAO will take and process an image to begin149

generating a section of the maze map. That section of the map will then be used in path150

planning related tasks to tell the robot what step to take in order to exit the maze. When151

the robot finishes its movement, it will continue acquiring these images to create the152

internal map and advance according to the process that was mentioned before. This153

process will repeat until the image that the robot detected depicts the exit. When the154

robot exits, it will then know a route to exit the maze, and will also have acquired an155

internal map of the part of the maze where it passed. This information will be used to156

select the best path according to the robot’s experience, and transmit this to the second157

one. Due to the nature of this process, we will present the four main parts in order of158

usage. In the following subsections, we will describe the integration process of these159

four modules.160

3.1. Camera calibration161

Camera calibration is a process that helps minimize image imperfections caused by of162

intrinsic and extrinsic camera parameters. This pre-processing step is used to accurately163

establish a relationship between 3D point (in the real world) and its projection in a 2D164

plane (image pixel). Moreover, the camera must be calibrated so that it captures images165

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 5 of 24

that are not distorted, and that the results obtained from the computer vision algorithms166

are less prone to errors. Furthermore, the robot will collect information such as the167

distances between the images, and thus the importance of this stage.168

To achieve this, we implemented the method presented by Zhang et al. [5] which169

generates a calibration matrix to correct these distortions by taking multiple images of a170

well-defined object, in this case, a checkerboard. Some parameters such as brightness,171

saturation, and focal length must be manually adjusted to get the best possible image.172

Then, we generate the matrix by taking the corner patterns of the checkerboard which173

has dimensions of 6× 5. Afterwards, we detect the corner and get the camera matrix and174

its distortion coefficients using modules contained in the OpenCV framework3. Finally,175

with the obtained information we generate a new matrix that will be used to un-distort176

the images.177

3.2. Mapping178

Robotic mapping refers to the ability of an autonomous robot to construct a map while179

being able to position itself within it. Navigation and mapping are closely related,180

and these concepts rely on different algorithms. However, while investigating the181

existing approaches, we found that most of them use different sensors (e.g. infrared182

sensors, odometers, GPS, etc.) which contrasts from our proposed scenario and therefore,183

adapting existing solutions is not an affordable task. As a result, we will be presenting a184

proprietary solution in this paper based on computer vision as the input.185

Moreover, due to the COVID-19 worldwide pandemic, access to the NAO robots186

and the material for building up a test environment was restricted at the beginning of187

this project. From that perspective, the best solution was to take advantage of existing188

software tools to start the mapping module development. To this end, we used Coppelia189

Sim software4, which is a 3D model of a maze which was deployed virtually to record a190

video simulating the first robot traversing the maze. Then, that video was used to try191

out the map reconstruction with the proprietary code. To simulate the navigation a robot192

model that comes by default in Coppelia (called Ackerman), steering car having ease of193

control with the keyboard arrows was used. Additionally, a camera was attached to an194

Ackerman robot, and using OBS Studio video editing software, the video was recorded.195

Figure 2 shows the simulation environment including the Ackerman model and the196

resulting view from the camera.197

Figure 2. Simulation environment.

To achieve the mapping, the first step consists on applying the Canny algorithm198

[14] to divide the image into different areas which allow to better control what the robot199

3 https://opencv.org/
4 https://www.coppeliarobotics.com/helpFiles/index.html

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://opencv.org/
https://www.coppeliarobotics.com/helpFiles/index.html
https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 6 of 24

detects and maps, as shown in Figure 3. Three zones are obtained: (1) the top zone (i.e.200

the farthest); (2) the middle zone and; (3) the bottom zone (i.e. the closest). The robot201

uses just the middle zone to sketch the maze, and anything above or beyond zones 1202

and 3 is discarded. To make the distinction between zones, the Canny edges of each203

section are stored in different arrays. This way, we can manage them individually as204

appropriate. Afterwards, the probabilistic Hough transform [15], [16], followed by a205

merge algorithm 5, is applied to each zone to find the lines which define the maze. This206

merging algorithm was considered since it makes the resulting array of probabilistic207

Hough lines smaller, thus making then easier to manipulate it frame by frame.208

Figure 3. The three areas obtained by the robot, divided by green and red lines.

At this point, wall detection is carried out by changing the state of the two flags209

within the code, depending on whether the left or right wall is detected. If there is no210

wall, the Hough algorithm returns an empty array for the analyzed region, causing211

the flag to be deactivated within the code. Otherwise, if the array has elements, the212

flag is activated (provided that there is a wall). Then, the obtained middle lines (if any)213

are superimposed over a black image using a transform algorithm 6 which allows a214

better perspective of the space in front the robot, allowing it to determine approximate215

distances from the surrounding environment. For the estimation of distances, we used216

the Euclidean distances based on the pixels.217

Subsequently, in a new black image, like Figure 4 , the map sketching takes place by218

using a previously defined starting point, and then taking the distances to a 10 : 1 ratio,219

so that the entire map fits into a single image. The lateral lines that the robot visualizes220

in each frame are drawn from the starting point and when the sketching for this frame221

ends, the starting point is updated, taking as the new starting point the last coordinate222

of the drawn lines. In this way, the next segment of the map will be sketched just after223

what has already been plotted.224

As the tests were conducted, it was decided that during the orientation changes, the225

mapping would stop drawing the maximum possible number of useless lines as possible;226

the rationale behind this will be explained in more detail in Section 4.2. Moreover, as the227

tests were made by means of a video, and there was no way of knowing when the robot228

was positioned, we had to define in advance when to stop mapping. This sketching229

process resumes once the presence of both walls is detected, as this indicates that it is230

rejoined into a corridor.231

5 https://stackoverflow.com/questions/45531074/how-to-merge-lines-after-houghlinesp
6 https://github.com/ndrplz/self-driving-car

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://stackoverflow.com/questions/45531074/how-to-merge-lines-after-houghlinesp
https://github.com/ndrplz/self-driving-car
https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 7 of 24

(a) Middle zone superimposed. (b) Middle zone transformed.
Figure 4. Perspective Transform.

3.3. Path planning232

For this stage, we require a method which allows the robot to navigate the maze without233

having a notion of where the exit is, while simultaneously intending to calculate the best234

possible route. To this end, the first option we contemplated was the Dijkstra Shortest235

Path algorithm presented by Ably et al. [17]. This method generates a tree of shortest236

paths from the starting point to all other points in the plane. Each possible step is a237

node that consists of two values, the distance to the start point and the last neighbor to238

get to that point with the least cost. There is a queue while it is not empty, as there are239

unknown possible nodes to visit. Also, there is a list that contains all the visited nodes240

with its characteristics. This method is based on discovering the new areas by extending241

a circular trajectory, and it is necessary to go back to the beginning to calculate distances.242

In this way, it ensures that the entity traversing the route will discover each possible step243

in all directions until the exit is found.244

The second option we considered was the Trémaux algorithm, which is widely245

known as an efficient method to get out of a maze [18]. It mark all the steps and the246

direction were the robot comes from. In this method, the navigator avoids traversing247

the same path twice by means of two lists. The first list contains all visited nodes in the248

order that they were found. The second list stores the path towards the exit. In principle,249

this second list will be a copy of the first one, but each time that the robot comes back to250

a node, all preceding nodes will be erased. For the actual implementation in the robot,251

we set priorities to four possible moves in the following order: (1) front step; (2) left step;252

(3) right step and; (4) back step. Figure 5 shows a schematic depicting these four options.253

Figure 5. Priority of the steps that a robot can take when traversing the maze.

There are some reasons behind this order. Firstly, taking a step back is something254

that usually has to be avoided, because it means that the navigator will go back to a node255

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 8 of 24

that it has already visited. With that logic in mind, the back step has the last priority. For256

the other steps (i.e. front, left and right) this rule is not applicable, and it does not really257

make any different whether one has a highest or lowest priority between them. Figure 6258

shows values for each node representing the number of times that the robot has passed.259

The black parts represent the walls. The robot is in the green node, so it can go through260

the four possible steps. According to our approach, the robot should avoid the back step261

because it has already been there. Still, the robot does not have any clue about where is262

the exit, thus the other steps have a 33.33% of leading to the correct path.263

Figure 6. Priority of steps within a maze.

We made an exception to the Tremaux´s algorithm rule of never having to go back264

to a node twice because this could get the robot caught in some situations like the one265

shown in Figure 7. In that case, the node marked in red has been crossed more than once,266

however we allow the robot to cross again to find the exit, even when there is a priority267

to go to the nodes with less visits.268

Figure 7. An image representing why a robot could pass 3 times in the same node while looking
for an exit.

3.4. Communication269

The NAO robot can communicate with a computer via Ethernet and Wi-Fi to be pro-270

grammed. In our case, Wi-Fi was selected because the NAO robot will be in constant271

motion as it traverses the maze. Evidently, it would not be comfortable walking behind272

the NAO robot with the Ethernet cable connected to a computer. The connection via273

Wi-Fi has the advantage of connecting with other web services, and any data can be274

transmitted and received directly between the computer and the NAO robot, such as275

temperature measure of some motor. This communication architecture is similar to276

Ad-hoc, but in this case, there is an access point that works as an intermediary. As277

mentioned before, Choregraphe is the official software developed by Aldebaran Robotics278

for the programming of the NAO robot, which uses the NAOqi framework so that it279

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 9 of 24

can be programmed in different programming languages, such as C ++, Python, Java,280

Matlab, Urbi and .Net, amongst others. To establish the wireless communication, the281

robot uses the registered port 9559. Note that registered ports are only used by some282

specific application or service7.283

4. Test Bench284

4.1. Camera calibration285

By taking several pictures of a checkerboard in different angles and under different286

lighting conditions, we generate an image database for the calibration. This calibration287

focuses on a ROI, which is the checkerboard itself. Evidently, the more images that are288

obtained, the better results that can be achieved. Nonetheless, we decided to stop at289

51 images, since the matrix calibration parameter adjusted well to the image ones, as290

shown in Table 1. The dimension of the images are 680 × 420 and the calibration matrix291

use the center of the image, i.e. cx and cy, so base on those we calculate the error (%cx292

and %cy) between the real centers and the ones of the matrix. We can see that the error293

of both centers at 51 images is of less than 0.05.294

Images cx cy %cx %cy
10 170.003 42.4261 0.469 0.823
20 159.479 28.9455 0.502 0.879
30 248.704 222.34 0.223 0.074
35 349.239 222.55 0.091 0.073
40 377.333 205.08 0.179 0.146
45 331 233 0.033 0.028
47 394 130 0.232 0.459
49 357 198 0.117 0.177
51 320.229 236.477 0.001 0.015

Table 1: Comparative table between the centers of the real image and those of the matrix
(the best results achieved are highlighted in red).

Moreover, Figures 8a and 8b show how the calibration works with different number295

of samples.296

(a) Undistort image with 10 samples. (b) Undistort image with 20 samples.
Figure 8. Calibration examples.

7 https://www.iana.org/form/ports-services

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://www.iana.org/form/ports-services
https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 10 of 24

4.2. Mapping297

The Canny edge detection function contained in Python’s skimage package8 requires the298

configuration of three main parameter: two thresholds (one upper and one lower) and299

the aperture size for the Sobel operator. Therefore, the performance of this function was300

tested with different values to find the ideal configuration for this application. The first301

parameter that was experimented was the size of the Sobel operator, since this is used302

on the second step of the Canny algorithm after smoothing the image and so, it is the303

most significant parameter. This operator allows to acquire the orientation that each304

pixel is pointing at, by returning the value of the first derivative for the horizontal and305

vertical direction. We initialized the parameter with a value of 3, given that during our306

literature research we found that this is the standard size used; however, tests were run307

with aperture sizes of 5 and 7 as well. Ultimately, we confirmed that an aperture of 3308

would yield the best performance. The results obtained are shown in Figure 9.309

(a) Sobel aperture size= 3. (b) Sobel aperture size= 5

(c) Sobel aperture size= 7
Figure 9. Tests for the Sobel operator aperture size.

To determine the upper threshold, we decided to start the tests with a threshold310

equal to 200, which was arbitrarily assigned. We noticed that its performance was311

not poor; however, the image returned showed many lines on both the walls and the312

floor. The threshold value was increased in steps of 10 until the optimal value was313

achieved. As seen in Figure 10, at a value of 250 the number of lines detected diminished.314

Furthermore, when reaching a threshold of 300 we observed that the images of the315

walls were significantly cleaner, and only one line was detected on the floor. From that316

threshold onward, the changes began to be less significant; when the threshold reached317

400 we observed that a few lines were cleaned on the walls, but there was no significant318

changes. Finally, at a threshold of 500 no improvement was noticed, and thus this value319

(and any further) were discarded.320

8 https://scikit-image.org/docs/dev/auto_examples/edges/plot_canny.html

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://scikit-image.org/docs/dev/auto_examples/edges/plot_canny.html
https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 11 of 24

(a) Maximum Threshold Value= 200. (b) Maximum Threshold Value= 250.

(c) Maximum Threshold Value= 300. (d) Maximum Threshold Value= 400.

(e) Maximum Threshold Value= 500.
Figure 10. Testing of different upper threshold values.

Therefore, it can be concluded that an acceptable value for the upper threshold321

could be found at the range of 250 to 400. It was then decided to use a value of 300 for322

this threshold, leaving it at an arbitrary but at the same time optimal value. On the other323

hand, in order to clean the image more and achieve better results, the lower threshold324

was adjusted as well. Figure 11 shows that the best image is obtained with a value of 150325

since, if we using a filter of 200, certain empty spaces in the image begin to appear as full.326

This can cause problems in the lines detection, hence it was decided that it was better327

to leave the threshold at a 150; however, it is observed that the image is not completely328

cleaned.329

As mentioned before, with thresholds 150 and 300 the walls were not completely330

clean; this raised concerns regarding whether to use an additional Gaussian filter to331

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 12 of 24

(a) Minimum Threshold Value= 10. (b) Minimum Threshold Value= 50.

(c) Minimum Threshold Value= 70. (d) Minimum Threshold Value= 100.

(e) Minimum Threshold Value= 150. (f) Minimum Threshold Value= 200.

Figure 11. Testing of different lower threshold values.

remove these imperfections to prevent that they would not affect the line detection.332

Figure 12 shows a comparison of performance with a second filter and without it, some333

improvement can be seen. However, recall from Section 3.2 that, in order to limit of the334

robot’s vision to make processing easier, only a part of the image is being taken, which335

can be seen in Figures 12d and 12c. Therefore, the second filter has no effect on the final336

image, and thus er decided not to include it for the simulation.337

In spite of the simulation results, the second filter was not discarded as an option338

for real time tests since, as can be seen on Figure 13, on a real environment the floor339

actually presents many lines that could affect the performance of the algorithm.340

On the testing phase, the possibility of using a corner detection algorithm instead341

of a line detection algorithm was considered; however, corner detection had a reduced342

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 13 of 24

(a) Canny without filter. (b) Canny with filter.

(c) Cropped image without filter. (d) Cropped image with filter.

Figure 12. Testing of different Gaussian filter values.

Figure 13. The Canny algorithm deployed on a real-world environment without Gaussian filtering.

performance on detecting corners of the rendered image, and thus, in a real situation343

with smoother images, those characteristics would not be present. A comparative of344

both algorithms implemented in the simulation environment is shown in Figure 14 and345

Figure 15, we can see line detection seems to be more precise. Also, we did not want to346

limit the functionality of the system to a maze with corners, as we expect that this project347

can be implemented in different tasks and scenarios. For those reasons, this option was348

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 14 of 24

discarded and wee worked with lines detection using probabilistic Hough transform, as349

mentioned in Section 3.2.350

Figure 14. Corner detection algorithm performance.

Figure 15. Line detection algorithm performance.

For the sketching part, many tests were carried out and therefore, as considered351

this to be one of the most challenging stages. Firstly, as mentioned in Section 3.2 we had352

to stop mapping during turns because the sequence of the hallways was lost at these353

points. Figure 16a shows the precision of the sketching before the decision was taken;354

whereas Figure 16b shows the improvement achieved by changing the condition of the355

adjustment for the new center, and stopped mapping during the laps.356

Finally, it was found that, when a wall was not being detected, the distance was357

computed from the center to the first pixel of the image, which caused again useless358

line traces. This gave us yet another reason to keep using the flags which indicates the359

presence or absence of walls. Figure 17 shows some further visual errors found.360

4.3. Path planning361

When running the Dijkstra algorithm, a circle search is initiated as shown in Figure362

18, It can be seen that the maze navigator covers all possible areas of the maze. The363

color intensity of the each pixel creates circles, depending on the cost of that point to364

the starting point. The colors of the circles repeat given the limitations of the available365

colors; therefore, this does not mean that such pixels have the same cost.366

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 15 of 24

(a) First experiment. (b) Experiments after mapping correction.
Figure 16. Corners mapping.

(a) Before wall detection flags. Perspective
Transform.

(b) Before wall detection flags. Maze map.

(c) After wall detection flags. Perspective
Transform.

(d) After wall detection flags. Maze map.

Figure 17. Wall detection correction.

Conversely, when we applied the Trémaux algorithm on the original maze, some367

loops are obtained in the trajectories, as shown in Figure 19.368

Thus, we adjusted the map that means we left each row and wall with the size of369

one pixel, which resulted in a bigger difference as shown in Figure 20. Notice how the370

route of this maze seems more natural than the previous one. Most importantly, the371

robot does not have to walk everywhere in the maze, because the walls and paths are372

better defined. The intensity of each pixel represents how many times the robot has373

visited that node of the maze.374

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 16 of 24

Figure 18. Circular pattern of the Dijkstra algorithm.

Figure 19. The Trémaux algorithm running in the original maze.

Figure 20. The Trémaux algorithm running in the adjustment maze.

4.4. Communication375

Libraries that only work with Python 3.6 or higher were used in the camera calibra-376

tion, mapping, and path planning modules, so the programming codes could not be377

executed locally, as the NAO is only programmable with some sub-version of Python378

2.7. This would cause a delay in the development, because modules would have to be379

reprogrammed with some sub-version of Python 2.7, and even some libraries would not380

work due to incompatibility, for example, OpenCV. The solution to this paradigm was to381

run two Python scripts, one compiling with Python 2.7.17 and the other with Python382

3.7.7. We opted to work using a master-slave architecture, where the computer is the383

master and the NAO robot (called Curie) is the slave, as shown in Figure 21.384

Curie receives a script in Python 2.7.17 attending two tasks: (1) acquisition and385

storage of an image from the robot’s upper camera, and (2) its control i.e. moving or386

lifting the arms. In parallel, a Python 3.7.7 script was executed in another terminal on387

the same computer, which retrieved the stored images, processing them with one of the388

computational vision algorithms i.e. Canny. This approach solved the Python library389

compatibility issue.390

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 17 of 24

Figure 21. Communication module diagram.

4.5. Integration391

Once all previous algorithms were selected and optimized, the integration of the four392

modules into a single system took place. Prior to this, it was decided to merge the393

mapping and path planning modules and validate them in the simulation environment.394

To do so, we had to consider as priority to draw the map lines completely straight (as395

in Figure 22b, in contrast to Figure 22a); always respecting the calculated distances396

discussed above. It was found that, by implementing this small change, the resulting397

algorithm was able to make more accurate decisions.398

(a) Map before adjustment. (b) Adjusted map.
Figure 22. Sketch adjustment.

Figure ?? shows an example of these modules working together. It can be observed399

that, when using an image of a clear hallway as the one depicted in Figure ??, the robot400

detects no obstacle and moves forward. Figure ?? illustrates the sketch of the stretch401

seen by the robot and the output obtained on the console, confirming that the system is402

working correctly.403

Figure 24 presents another scenario where it can be seen that the robot is recognizing404

a corner as an obstacle, while at same time identifying that there is no wall to the left. As405

a result, the robot decides that the next action should be to turn left.406

Once the integration of the path planning and mapping modules was achieved, the407

camera calibration was embedded into the NAO robot. Figure 25 shows samples of the408

camera calibration, which was evaluated with 24 photographs captured by Curie, where409

the center of the image is: (160px, 120px).410

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 18 of 24

(a) What the robot sees. (b) Algorithms output
Figure 23. Mapping and path planning integration. First demo.

(a) What the robot sees. (b) Algorithms output
Figure 24. Mapping and path planning integration. Second demo.

Figure 26a and Figure 26b show a photograph captured by Curie and the calibrated411

camera respectively. In general, it can be observed that the photograph has deformations,412

both on the ROI (i.e. the chessboard) and the corners. The effects of these image413

deformations in the performance of the system will be detailed in the Section 5.414

A third integration took place during this phase, again with the path planning and415

mapping modules. This time, an adjustment had to be made to these modules to change416

the path from where it was retrieving the images. This means that images from the417

simulation were no longer in use, in favor of those taken by Curie. As all the modules418

were already integrated, a small labyrinth hall was built with foamy blocks and a yoga419

mat was placed as a floor, as shown in Figure 27, so that there was a greater contrast420

between the walls and the floor.421

Figure 28a shows a photograph captured by Curie with the path planning, mapping422

and communication modules and on the right side the image captured by adding the423

calibration module. In contrast, Figure 28b shows how the image looked after the424

integration of all modules. Notice the distortion on the bottom of the image; this issue425

will be discussed in the next section.426

5. Analysis of results and discussion427

5.1. Camera calibration428

As mentioned before, the calibration module was evaluated with 24 photographs cap-429

tured by Curie, where the center of the image is: (160px, 120px) and the results obtained430

are shown in Table 2. It was observed that with 21 photographs, the lowest percentage431

of error was obtained when the center of the image was located with errors of 3.67% for432

the x axis and 5.6% for the y axis. As the number of photographs increased, so did the433

error, as evidenced by the results of using 24 photographs, where the errors obtained434

were 12.38% and 22.91% for the x and y coordinates respectively. Notice that the pho-435

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 19 of 24

(a) Photo #1 (b) Photo #2

(c) Photo #13 (d) Photo #18

Figure 25. Photos used for the calibration module.

(a) Photo original captured by Curie (b) Photo after applying Calibration Mod-
ule

Figure 26. Photos used for Calibration Module.

tographs presented considerable distortions as shown in Figure 28, which affected the436

performance of the mapping and path planning modules considerably, given that the437

edges of the hall could not be correctly detected. This led to a higher contrast with the438

wall, even when using the yoga mat as the floor surface. We experimented removing439

the calibration module so that the mapping and path planning modules would directly440

process the photograph captured by Curie. Interestingly, this benefited the performance441

of the entire system, obtaining more acceptable performance. We suspect that this is442

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 20 of 24

Figure 27. Maze hall with Curie

(a) Photo original captured by Curie in the
maze.

(b) Photo captured by Curie after the inte-
gration.

Figure 28. Photos used for calibration module.

due to the fact that the NAO robot already contains a calibration module embedded,443

and thus, this step is not required in this architecture. Nonetheless, it is important to444

realize that in other applications such as autonomous vehicles [19], this module must be445

considered.446

Images X % Error X Y % Error Y
3 75.725 0.52671875 5.43 0.95475
6 92.115 0.42428125 14.55 0.87875
9 102.7 0.358125 24.59 0.795083333

12 117.375 0.26640625 39.815 0.668208333
15 128.21 0.1986875 62.8 0.476666667
18 148.915 0.06928125 82.9 0.309166667
21 154.125 0.03671875 113.18 0.056833333
24 179.81 0.1238125 147.5 0.229166667

Table 2: Comparative table between the centers of the real image retrieved from Curie
and those of the matrix (best values highlighted in green).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 21 of 24

5.2. Mapping447

As mentioned in previous sections, three fundamental solutions had to be implemented448

in order to improve mapping. First, we had to stop mapping while orientation changes449

occurred to prevent the disruption of the sketch. Second, wall detection flags were450

required with two main purposes: (1) to avoid the computing of distances when a wall451

was not being detected, and; (2) to re enable the sketching after a turn took place. Finally,452

also in orientation changes, the center had to be adjusted to avoid overlapping the corner453

walls. The final result can be observed in Figure 29.454

Figure 29. Sketched maze.

5.3. Path planning455

We discarded the Dijkstra algorithm because even if it is able to find the best path, there456

is still a need to traverse the whole maze, which is not a scalable solution, despite being457

an algorithm that does not need to know the endpoint and always finds an option for458

each position. Furthermore, It would be counterproductive to implement this solution in459

a robot, because it would force it to return to the beginning every time that the optimal460

distance has to be calculated. Therefore, the Trémaux algorithm, which demonstrated461

to be the fastest and most efficient method, was embedded into the model. Figure 30462

shows that, even when the robot get into a dead end (as some situations depicted with463

gray pixels), it is also able to keep looking for the optimal path to the exit (white line).464

Figure 30. Trémaux algorithm: Path to the endpoint.

5.4. Communication465

In this module, we encountered no problems regarding loss of connection between Curie466

and the computer, or high latency in transmitting the flag generated by the mapping and467

path planning modules to Curie. Table 3 shows the possible values of the flag based on468

the analysis carried out by the path planning and mapping modules, and Table shows the469

latency in transmitting this value to Curie, being on average 333.12ms. The path planning470

and mapping modules take approximately 10 seconds to perform all the processing of471

the photograph captured by Curie to throw the previously mentioned flag. Efforts were472

put to optimize the programming codes for both modules, unfortunately the time could473

not reduced.474

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 22 of 24

Movement to execute Curie Flag value
Walk 1

Turn left 2
Turn right 3

Stop 4

Table 3: Equivalence of flag values and movement to be executed (Curie).

Latency to send flag
0.35641644
0.31901984
0.30859224
0.39965194
0.33136234
0.37186354
0.33310064
0.33050654
0.24758604

Average (seconds) 0.33312217

Table 4: Latency (in seconds) to send the movement flag from the computer to Curie.

5.5. Modules Integration475

We ran the three following tests for our integrated system: (1) with a straight path as476

shown in Figure 31; (2) with a turn to the left as in Figure 32 and; (3) with a turn to the477

right as in Figure 33. All of these images show the robot traversing the path and how478

the maze is being sketch. In all three cases, the robot detected the walls and corners of479

the maze, which allowed it to follow the correct instruction. Also with our experimental480

results, we calculated that the time response between each robot action was about 10481

seconds.482

Figure 31. Test: straight path.

Figure 32. Test: left turn.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 23 of 24

Figure 33. Test: right turn.

6. Conclusion483

In this paper, we presented our latest findings towards implementing a NAO robot maze484

navigation solution based on different algorithms, which range from computer vision,485

camera calibration, path planning, mapping, and communication protocols. With this,486

we aim at deploying a robot that is not only capable of solving a maze, but to share that487

knowledge with a second robot which will be also able to solve the maze considering its488

own mechanical characteristics. Several algorithms were tested and validated for each489

stage, showing the viability of this project.490

The calibration module needs a second check, because at the moment, it is actually491

affecting the performance of the path planning and mapping instead of improve it. Nev-492

ertheless, base on the results of the test, we can infer that the NAO cameras are already493

sufficiently calibrated for the purpose of this task. Conversely, path planning, mapping494

and communication work really well together, but could be enhance by improving495

the response time of the robot to make it more continuous. Finally, we realized that496

uploading and retrieving information from Ubidots was what was causing the biggest497

delay on the performance. Once fixed, the NAO robot was capable of follow instructions498

based on its environment.499

In future work, other path planning algorithms will be tested to further improve the500

time to solve the maze. We also need to do more tests with different maze structures and501

surfaces to see how the performance can be enhanced. Finally, at the communication502

stage, we will implement the aspect of sharing the generated knowledge with another503

robot, to take advantage of first robot’s experience.504

7. Acknowledgments505

The authors would like to acknowledge the financial and technical support of506

Writing Lab, TecLabs, Tecnologico de Monterrey, Mexico, for the support of this work.507

8. Bibliography508

509

1. Horn, B.K.P. Robot vision; MIT electrical engineering and computer science series, MIT Press,510

1986.511

2. Cortés, X.; Serratosa, F.; Moreno-García, C.F. Semi-automatic pose estimation of a fleet of512

robots with embedded stereoscopic cameras. Emerging Technologies and Factory Automation513

(ETFA) 2016.514

3. Rodriguez-Tirado, A.; Magallán-Ramírez, D.; Martínez-Aguilar, J.D.; Moreno-García, C.F.;515

Balderas, D.; López-Caudana, E.O. A pipeline framework for robot maze navigation using516

computer vision, path planning and communication protocols. 13th International Conference517

on Developments in eSystems Engineering (DeSE) 2020.518

4. Kastne, T.; Rofer, T.; Laue, T. Automatic robot calibration for the NAO. RoboCup 2014, LNAI519

8892, 233–244.520

5. Zhang, Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern521

Analysis and Machine Intelligence 2000, 22, 1330–1334.522

6. Singh, A.K.; Nandi, G.C. NAO humanoid robot: Analysis of calibration techniques for523

robotsketch drawing. Robotics and Autonomous Systems 2016, 79, 108–121.524

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 24 of 24

7. Li, L.K.; Annaz, F. Implementation of the Trémaux maze solving algorithm to an omnidirec-525

tional mobile robot. 13th International Conference on Electronics, Information, and Communication526

(ICEIC) 2014.527

8. Kumar, A.; Kumar, P.B.; Parhi, D.R. Intelligent navigation of humanoids in cluttered envi-528

ronments using regression analysis and genetic algorithm. Arabian Journal for Science and529

Engineering 2018, 43, 7655–7678.530

9. Wikström, R.; Sjögren, M. Amazeobot: The construction of a maze mapping robot. Inom531

Examensarbete Teknik, Grundniva (Bachelor Thesis) 2016.532

10. Simoens, P.; Dragone, M.; Saffiotti, A. The internet of rbotic things: A review of con-533

cept, added value and applications. International Journal of Advanced Robotic Systems 2018,534

15, 172988141875942.535

11. Bechon, P.; Slotine, J.J. Synchronization and quorum sensing in a swarm of humanoid robots.536

arXiv 2013.537

12. Gul, F.; Rahiman, W.; Alhady, S.S.N. A comprehensive study for robot navigation techniques.538

Cogent Engineering 2019, 6.539

13. Delfin, J.; Becerra, H.M.; Arechavaleta, G. Humanoid localization and navigation using540

a visual memory. 2016 IEEE-RAS 16th International Conference on Humanoid Robots541

(Humanoids), 2016, pp. 725–731.542

14. Canny, J. A computational approach to edge detection. Readings in Computer Vision 1986, p.543

679–698.544

15. Hough, P.V. Method and means for recognizing complex patterns.545

16. Matas, J.; Galambos, C.; Kittler, J. Progressive probabilistic Hough transform. 1998.546

17. Ably, T.; Pang, H.; Williams, C.; Klim, J.; Ross, E. Dijkstra’s shortest path algorithm. Bril-547

liant.org 2016, Retrieved from:.548

18. Wilkins, J.S.; Nelson, G. Tremaux on species: A theory of alopatric speciation (and punctuated549

equilibrium) before Wagner. History Philosophy of the Life Sciences 2008, 30, 179–205.550

19. Cortés Gallardo Medina, E.; Velazquez Espitia, V.; Chípuli Silva, D.; Fernández Ruiz de las551

Cuevas, S.; Palacios Hirata, M.; Zhu Chen, A.; González González, J.; Bustamante-Bello, R.;552

Moreno-García, C.F. Object Detection, Distributed Cloud Computing and Parallelization553

Techniques for Autonomous Driving Systems. Applied Sciences 2021, 11, 2925.554

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 25 of 24

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

Version June 1, 2021 submitted to Sensors 26 of 24

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2021 doi:10.20944/preprints202106.0037.v1

https://doi.org/10.20944/preprints202106.0037.v1

	Introduction
	Related Work
	Camera calibration in NAO robots
	Path Planning
	Communication Protocols
	Other systems

	Methodology
	Camera calibration
	Mapping
	Path planning
	Communication

	Test Bench
	Camera calibration
	Mapping
	Path planning
	Communication
	Integration

	Analysis of results and discussion
	Camera calibration
	Mapping
	Path planning
	Communication
	Modules Integration

	Conclusion
	Acknowledgments
	Bibliography
	References

