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Abstract: Quadruplex-interactive small molecules have a wide potential application, not only as 

drugs but also as sensors of quadruplexes structures. The purpose of this work is the synthesis of 

analogues of the bis-methylquinolinium-pyridine-2,6-dicarboxamide G4 ligand 360A, to identify 

relevant structure-activity relationships to apply to the design of other G4-interactive small mole-

cules bearing bis-quinoline or bis-isoquinoline moieties. Thermal denaturation experiments re-

vealed that non-methylated derivatives with a relative 1,4 position between the amide linker and 

the nitrogen of the quinoline ring are moderate G4 stabilizers, with a preference for the hybrid h-

Telo G4. Insertion of a positive charge upon methylation of quinoline/isoquinoline nitrogen in-

creases compounds capacity to selectively stabilize G4s compared to duplex DNA, with a preference 

for parallel structures. Among these, compounds having a relative 1,3-position between the charged 

methylquinolinium/isoquinolinium nitrogen and the amide linker are the best G4 stabilizers. More 

interestingly, these ligands showed different capacities to selectively block DNA polymerization in 

a PCR-stop assay and to induce G4 conformation switches of hybrid h-Telo G4. Molecular dynamic 

simulations with the parallel k-RAS G4 structure showed that the relative spatial orientation of the 

two methylated quinoline/isoquinoline rings determines the ligands mode and strength of binding 

to G4s. 
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1. Introduction 

With the crescent trend in incidence of cancer [1], it is becoming more and more 

important the need of developing effective and specific drugs to target cancer cells, for a 

less toxic and invasive therapy. One discussed solution can be to modulate gene expres-

sion, supported by the evidence of the role in oncogenesis played by specific proto-onco-

genes. In fact, the mutations and translocations occurring within precise proto-onco-

genes such as c-MYC[2,3], k-RAS[4,5], c-KIT[6], have been frequently reported as primary 

cause of cancer onset in several malignancies and for this reason they have been widely 

explored as potential targets [6–8]. 

It was demonstrated that the promoter regions of these cited genes, notably rich in 

guanine residues, are prone in folding into G-Quadruplexes (G4s)[9–12].These non-
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canonical structures arise when four guanines of a G-rich tract are bound together via 

Hoogsteen hydrogen-bonding, forming the so-called G-quartet or G-tetrad. The G4s are 

formed when 2 or more tetrads are stacked on top of each other, stabilized by the pres-

ence of a coordinating cation, generally potassium [13]. Beside in proto-oncogenes, sev-

eral G-forming sequences have been discovered in various areas of genome, particularly 

the telomeric region [14]. The formation of telomeric G4 could also constitute an obstacle 

to the action of telomerase, the enzyme which re-synthesize the terminal part of the 

chromosomes and has a central role on the aging process and the developing of cancer 

[15,16]. The high abundance of G4-forming sequences at promoter level of genes in-

volved in carcinogenesis, their prevalence in telomeric DNA regions, and their presence 

in RNA transcripts, suggests an important role of the G4 in regulation of gene expres-

sion[17–19] as well as post-transcriptional and epigenetic modulation [20], justifying the 

research efforts in small-molecules and oligonucleotide derivatives [21] able to induce 

and stabilize G4-formation, to be used as therapeutics [19,22–25]. This is of utmost im-

portance, considering the numerous evidences that highlights G4-formation in vivo that  

suggests a concrete physiological role of these structures in cell development [26–28]. 

Among the small-molecule binders, an established family of ligands consist of the 

bis-quinolinyl derivatives, which display a high affinity and selectivity for G4 struc-

tures[24]. The use of a pyridine or a naphthyridine as central module, combined with a 

carboxamide with bond rotation impairment, forcing the ligand into a V-shape confor-

mation, showed high benefits, maximizing the interaction with the target G4 [29–32]. A 

paradigmatic model of this scaffold is given by the ligand 360A (2a), a N-methylbisquin-

olinium-pyridine-2,6-dicarboxamide, which was shown to be a potent and selective G4-

stabilizer, to bind preferentially to telomeres, in vitro and in human cells, and to display 

antiproliferative effects at low micromolar concentration in telomerase-positive human 

cancer cell lines [29,33]. The well-established nature as G4-binding ligand, its synthesis 

simplicity and affordability, led to the realization of a wide range of applications featuring 

this ligand or its derivatives, for instance, as alkylating and cross-linking agents for cova-

lent targeting of G4-DNA [34,35] and G4-binding proteins [36], or the development of 

fluorophore-ligand conjugates for fluorescence sensing of G4-DNA [37]. Circular dichro-

ism studies with 2a showed that the V-shaped structure, suggested to be maintained by 

the formation of intramolecular hydrogen bonds between the pyridine nitrogen and the 

NH- carboxamide linkers, can vary in relation to the type of cations and anions present in 

solution [30,38]. Additionally, it was shown how the ligand is able to kick-off potassium 

from the telomeric G4, inducing a conformational change of the secondary structure from 

a hybrid structure to antiparallel [39].  

Despite the numerous bis-quinoline derivatives reported as G4 ligands (reviewed in 

[24]), a systematic study elucidating the structure-activity relationship of the pyridine-2,6-

dicarboxamide family of ligands, is still missing. In this work, we aimed to shed light on 

the SAR of various bis-(iso)quinolinyl-pyridine-2,6-dicarboxamides, testing their ability 

to efficiently stabilize G4-DNA sequences of relevant human genome regions (k-RAS, c-

MYC, h-Telo) over double-stranded DNA sequences. Thermal denaturation experiments 

of the targeted sequences in presence of ligands, circular dichroism (CD)-titration experi-

ments, biochemical assays (PCR-stop assay), as well as molecular modelling studies were 

used to study the influence of the carboxamide linker position in the quinoline/isoquino-

line skeleton on the binding of the ligand to different G4 structures. 

2. Results and discussion 

2.1 Synthesis of pyridine-2,6-dicarboxamide derivatives 

In a first step, a library of simple pyridine-2,6-dicarboxamides (1b – 1h) were pre-

pared by reacting 2,6-pyridinedicarbonyl dichloride with the respective aminoquinoline 

or amino-isoquinoline in toluene, at reflux temperature (Scheme 1, A), according to 
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previous literature reports [40,41]. Compound 1a was prepared reacting 2-aminoquino-

line with the dichloride using THF (dry) as solvent, in presence of DIPEA as a proton 

scavenger. The compounds were obtained pure with a yield of 50- 94%. As a following 

step, the N-methylated dicarboxamides (2a – 2d) were obtained making 1a-h react with 

CH3I at room temperature, from 1 to 5 days, in a solvent mixture of acetone:DMF 1:1 

(Scheme 1, B). The pure quinolinium iodide salts were obtained as yellow precipitates 

upon filtration and washing  with ice-cold MeOH [41], with a yield of 51-62%. The syn-

thesis of compounds 2b-d are here reported for the first time.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 May 2021                   doi:10.20944/preprints202105.0784.v1

https://doi.org/10.20944/preprints202105.0784.v1


 

 

 

Scheme 1. Synthetic route for pyridine-2,6-dicarboxamide derivatives. A. Toluene, 110°C in reflux, 

overnight. B. CH3I, DMF:acetone (1:1), 1-5 days, RT. * For compound 1a, another synthetic route 

was followed, refluxing the mixture in THF as solvent in presence of DIPEA (please refer to mate-

rial and methods section). 
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2.2 G4 thermal stabilization induced by compounds 

As a first step to evaluate the interaction of the synthesized molecules to G4-DNA and to 

have an idea of the stabilization effect of these molecules, a Fluorescence Resonance En-

ergy Transfer (FRET) melting assay was initially performed on TAMRA/FAM-labelled ol-

igonucleotides (Please refer to Table S1 in supplementary information for the sequences). 

Although methylated compounds generally performed better in terms of stabilization, we 

found that derivatives with amide linker in positions 6 and 4 of quinoline moiety (com-

pounds 1d and 1e, respectively) showed a modest stabilizing activity of promoter k-RAS 

G4 (ΔTm = 8.0 °C) and h-Telo (ΔTm = 18.0 and 11.8 °C, respectively) at a concentration of 5 

M (Table 1). It should be noted that these compounds share the same relative 1,4 position 

between the amide linker and the nitrogen of the quinoline ring, which may contribute to 

increase binding to the G4-DNA as a result of the increased basicity of quinoline nitrogen 

and its consequent increased protonation at pH 7.4. 

 

Table 1. FRET-Melting ΔTm values for k-RAS G4 and h-Telo G4 at 0.2 µM FAM/TAMRA-labelled DNA concentration, in presence of 

the non-methylated dicarboxamide derivatives.  

  FRET ΔTm (°C)a 

 Ligand [ 5.0 M] 1a 1b 1c 1d 1e 1f 1g 1h 

Sequence 
k-RAS < 0.5  1.0 ± 0.2 3.0 ± 0.5 8.0 ± 0.2 8.0 ± 0.1 1.8 ± 0.2 < 0.5 < 0.5 

h-Telo < 0.5 1.8 ± 0.2 2.8 ± 0.4 18.0 ± 0.3 11.8 ± 0.2 4.0 ± 0.3 < 0.5 < 0.5 
aExperiments performed in cacodylate buffer 100 mM K+, pH 7.4. DNA G4 melting: k-RAS= 49.0 ± 0.2 °C; h-Telo = 56.9 ± 0.2 °C 

 

Upon insertion of a positive charge, the N-methylquinolinium derivatives tested (2a-2d), 

all displayed preferred stabilization of the G4 sequences compared to duplex DNA (T-

loop), starting from a concentration of 1 M, with the exception of 2a which showed a 

good G4 stabilization starting at 0.1 µM, as already reported [15] (Table 2). This result 

suggests an increased interaction of the ligand with the negatively-charged DNA back-

bone, as it was reported by Pradeepkumar and co-workers for a naphtydrine-bisquinolin-

ium derivative [31]. 

 

To further validate the stabilization induced by 2a-2d, CD-melting assays were performed 

by following the G4 denaturation at the maximum CD wavelength, confirming the results 

previously obtained in FRET-melting assay (Table 2). Overall a concentration-dependent 

effect on the stabilization was observed for most ligands as higher concentrations led to a 

greater thermal stabilization of the G4 structure. In general, methylated compounds dis-

play a higher affinity for parallel G4, as it is shown by the higher ΔTm values obtained in 

presence of c-MYC and k-RAS sequences as compared to h-Telo.  

Regarding c-MYC parallel G4, all ligands beside 2b stabilized the structure for more than 

20 °C, even at low concentration as is the case of 2a. In the case of k-RAS parallel G4, 

similar results were obtained, being 2b the less potent stabilizer, and the remaining lig-

ands presenting ∆Tm values greater than 20 °C. k-RAS was indeed the most stabilized G4 

structure when compared to c-MYC and h-Telo, being the latter the structure for which the 

ligand-induced thermal stabilization was less evident.  
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 1 

Table 2. Melting temperature variations (ΔTm ) values for the tested sequences, obtained via FRET-melting assay (top) and CD-melting assay (bottom), for the methylated 2 

dicarboxamide derivatives.   3 

FRET ΔTm (°C)a 

Ligand 

C (M) 

2a 2b 2c 2d 

0.1 0.3 0.5 1.0 3.0 5.0 1.0 3.0 5.0 1.0 3.0 5.0 

S
eq

u
en

ce
 k-RAS 14.0 ±0.3 32.8 ±0.2 35.6±0.3 4.0 ±0.2 9.0 ±0.1 11.1 ±0.2 11.8 ±0.2 16.6 ±0.2 18.2 ±0.2 15.0 ±0.2 23.1 ±0.1 26.1 ±0.2 

h-Telo 1.1 ±0.2 13.2 ±0.2 18.8 ±0.3 2.3 ±0.1 8.0 ±0.3 10.1 ±0.1 9.8 ±0.2 13.1 ±0.1 14.7 ±0.1 15.1 ±0.1 20.1 ±0.2 22.7 ±0.2 

t-Loop 2.0 ±0.1 5.6 ±0.1 6.5 ±0.1 < 0.5 < 0.5 1.8 ±0.2 <0.5 0.7 ±0.1 1.2 ±0.1 <0.5 1.5 ±0.1 2.5 ±0.1 

aExperiments performed in cacodylate buffer 100 mM K+, pH 7.4. G4 DNA melting: k-RAS= 49.0 ± 0.2 °C; h-Telo = 56.9 ± 0.2 °C; t-Loop = 53.2 ± 1.0 °C.  4 
 5 

CD ΔTm (°C)b 

Ligand 

(eq) 

2a 2b 2c 2d 

1.0 5.0 10 25 1.0 5.0 10 25 1.0 5.0 10 25 1.0 5.0 10 25 

S
eq

u
en

ce
 k-RAS >40 >40 >40 P 3.0 ± 0.2 12.2 ± 0.2 15.1 ± 0.2 P 13.8 ± 0.3 35.9 ± 0.1 37.1 ± 0.1 >40 12.6 ± 0.4 >40 >40 >40 

h-Telo 3.5 ± 0.1 12.2 ± 0.3 Topology Change 1.7 ± 0.2 4.4 ± 0.2 6.9 ± 0.2 9.2 ± 0.2 3.3 ± 0.1 9.0 ± 0.1 9.0 ± 0.2 10.8 ± 0.3 6.8 ± 0.2 14.9 ± 0.2 19.8 ± 0.4 27.0 ± 1.3 

c-MYC 35.7 ± 1.3 >40 >40 >40 2.7 ± 0.2 5.3 ± 0.1 7.0 ± 0.2 9.7 ± 0.2 8.0 ± 0.2 24.1 ± 0.1 25.0 ± 0.1 29.4 ± 0.1 11.8 ± 0.2 31.2 ± 0.2 34.4 ± 0.2 >40 

bExperiments performed in 20 mM potassium phosphate, pH 7.2, following the CD λmax for each sequence: 265nm (k-RAS and c-MYC); 290 nm (h-Telo); 264 nm. DNA melting: k-RAS= 6 

48.3 ± 0.2 °C; h-Telo = 59.6 ± 0.9 °C; c-MYC = 50.4 ± 1.9 °C. P= DNA precipitation. 7 
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Overall, both techniques indicate for all G4-DNA structures, an induced thermal stabili-

zation activity trend of 2a > 2d > 2c > 2b. Also, the relative position of the quinoline nitro-

gen and the amide -NH, seems to play a role in quadruplex stabilization. The two most 

active compounds (2a and 2d) show the common structural feature of having a relative 

1,3-position between the charged methyl-quinolinium/isoquinolinium nitrogen and the 

amide linker. 

 

Finally, the selectivity of methylated compounds for G4-DNA over double-stranded (ds) 

DNA, was assessed. For doing so, Tm of the FAM/TAMRA-labelled G4 sequence of k-RAS 

complexed with the ligands, was recorded in presence of increasing concentrations of 

competing dsDNA, up to 125-fold. For all the tested compounds, the presence of the com-

peting DNA showed neglectable destabilization of the G4-ligand complex, thus confirm-

ing the high selectivity of the compounds for G4-DNA (Figure 1). 
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Figure 1. FRET-melting competition assay results for compounds 2a-d at 0.5 M (2a) and 5 M 

(2b-d) complexed with k-RAS (0.2 M), challenged with increasing concentrations of non-labeled 

26ds DNA (dsDNA)(0.4 to 25 M) competitor. Experiment performed in cacodylate buffer (100 

mM K+, pH 7.4). 

 

2.3. G4 conformational changes induced by G4 ligands 2a-2d 

To retrieve additional information about the binding of the best ligands to G4s, we de-

cided to perform CD-titration experiments. Sequence h-Telo folds into a hybrid-type G4 

structure in K+ solution as suggested by its characteristic CD signature containing a posi-

tive band at 290 nm, a shoulder peak at 265 nm and a weak negative at around 240 nm 

(Figure 2). CD-titration experiments on h-Telo suggest that ligand 2a is able to induce con-

formational switch upon binding to the target, switching from a hybrid (3+1) topology to 

a parallel topology (appearance of the typical signature λmax = 264 nm) (Figure 2A). These 

results contrast with what has been reported previously by Marchand and colleagues [39] 

where 2a was suggested to convert h-Telo from a hybrid-type to an antiparallel topology 

in K+ solution. However, the sequence used was longer (24 bp) than that used in our study 

(21 bp) and the potassium concentration was lower (1 mM K+). It is well known that se-

quence composition and length, and salt concentration strongly affect the G4 topology of 

telomeric G4s [42–44]. Surprisingly, this behavior was not preserved by the other methyl-

ated derivatives, as even in large ligand excess, the characteristic signature of hybrid G4 

(λmax = 290 nm) is maintained. Ligands 2b and 2c seem to interact with h-Telo as suggested 

by the slight ellipticity alteration, particularly around 260 nm, but the overall topology 

seems to be maintained (Figures 2B and 2C). In the case of ligand 2d (Figure 2D), the G4 
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topology seems to be interconverted into an antiparallel structure as suggested by the 

strong negative band at 260 nm and a weak positive at around 240 nm following ligand 

titration. 

In the case of c-MYC, it folds into a typical parallel G4 as shown by the positive band at 

260 nm and negative band at 240 nm (Figure S1). Upon titration with the ligands, only a 

minor ellipticity variation was observed, suggesting ligand binding without affecting or 

interconverting the G4 structure. Indeed, c-MYC parallel G4 structure is very stable in the 

K+ conditions used and one of the most stable G4s studied [45]. k-RAS on its hand, folds 

into a parallel-stranded G4 structure similarly to c-MYC (Figure S2), but upon titration 

with the ligands, a significant decrease in the ellipticity could be observed, particularly in 

the case of 2b, 2c and 2d (Figures S2B, S2C and S2D). This signal decrease was accompa-

nied by the appearance of a CD band around 295 nm that suggests structural interconver-

sion and possibly the formation of a hybrid G4 topology. 

 

 

 
Figure 2. CD titration of h-Telo in presence of increasing equivalents (0-25) of compound 

2a (A), 2b (B), 2c (C), 2d (D), at a concentration of 10 µM, performed in 20 mM lithium 

cacodylate containing 10 mM KCl and 90 mM LiCl. 

 

 

2.4 Taq polymerase inhibition by G4-ligands. 

To evaluate the ability of the compounds in blocking DNA replication upon G4-stabiliza-

tion, a polymerase chain reaction (PCR)-stop assay using the G4-forming 27-nucleotide 

sequence (Pu27) present in the wild-type promoter region of the c-MYC oncogene  (see 

sequences in Table S3) was performed according with the methodology previously re-

ported [46]. The test is commonly used to evaluate the concentration of ligand necessary 

to induce the more stable loop-isomer involving G-tracts 2-3-4-5 and block DNA polymer-

ase activity by inhibiting DNA hybridization at G-tract 5 [46]. Consistently with FRET-

melting experiments, the non-methylated compounds did not show a significant activity 

up to 50 M concentration, even in case of the best stabilizers of the series, 1d and 1e, 

(Figure S3A). On the other hand, and further confirming the results obtained with FRET 
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and CD-melting analyses, the two more potent methylated compounds, 2a and 2d, proved 

to be able to block polymerase activity at a concentration of 5 and 10 µM, respectively 

(Figure 3A). In contrast, the least stabilizing ligands 2b and 2c, inducing a low/moderate 

∆Tm in both FRET and CD melting assays, did not display any activity up to a concentra-

tion of 50 µM, in line to what was obtained for the non-methylated 1d-1e. When a mutated 

sequence at G-tract 3 is used in place of native Pu27 (G13,14→ A mutation), the primer 

elongation is maintained in the presence of 2d, even at high excess of ligand (Figure 3B) 

similarly to that observed for the related compound 307A [47], thus confirming that the 

polymerase blockade mechanism is ascribed to G4-stabilization rather than to non-specific 

interactions of the ligand with the DNA primer or with the enzyme, as it seems to be the 

case of ligand 2a (Figure 3B and S3B).  Another possibility to justify these results is the 

ligand 2a to be also able to induce the formation of the less stable G4 loop isomer involving 

G-tracts 1-2-4-5 and in this way block hybridization of primers and subsequent replication 

by polymerase.  

 

 
 

Figure 3. Polyacrylamide gels stained with ethidium bromide showing the effect of compounds on 

polymerization of DNA constructs A) containing the c-MYC promoter wild-type sequence (Pu27) 

or B) with a mutated c-MYC promoter sequence (Pu27mut). In absence of compound (0 µM), the 

43 bp PCR product is formed. M: PCR molecular weight marker. 

2.4 Molecular Dynamics 

To structurally characterize the interaction of 2a, 2b, 2c and 2d ligands with the k-RAS 

molecule, we have performed long replicate MD simulations on a 1:1 ratio. In each repli-

cate simulation, the compounds were randomly placed around the k-RAS parallel struc-

ture (PDB ID: PDB 5i2v). This was done to assure that each simulation was unbiased from 

any other replicate simulation. The initial 250 ns were not considered for the data analysis 

of the simulations, since only after this simulation time the complexes reached an equilib-

rium conformational state (Figure S4). 

 

To evaluate the convergence of the conformational space sampled by the ligand:k-RAS 

complex during the MD simulations of each system, we built root mean square deviation 

(RMSD) histograms calculated from the production trajectories. As can be seen in Figure 

4, where we have the probability density of the conformations visited during the MD sim-

ulations for each compound, compound 2a adopts a lower range of conformations, when 

compared to all the other compounds. While for compound 2a we can observe one single 

peak, indicating a highly populated conformation, in compounds 2b, 2c and 2d at least 

two highly populated peaks of conformations can be identified. This observation clearly 

indicates that the convergence of the interaction conformations adopted by compound 2a 

is much higher, when compared to all the other compounds. 
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Figure 4. Probability density of the RMSD calculated for all replicate simulations of the 

different ligands+k-RAS complexes. RMSD values were calculated taking as reference, the 

initial conformation of the complex of the first replicate for each simulated system.  

 

To identify the preferred interaction configurations between the different compounds and 

k-RAS G4, the number of contacts between the two partners was calculated. Results are 

presented in Figure 5 and S6-S9, where k-RAS residues were colored accordingly. Regard-

ing compound 2a, we can see that both the top and bottom regions of the k-RAS molecule, 

close to its 3’ and 5’ terminal, respectively, are the regions showing highest number of 

contacts. By visually inspecting the MD trajectories of the different replicates for this com-

pound, we could verify that in replicates 1, 2, 4 and 5, compound 2a binds the k-RAS at its 

top, closer to the 3’ terminal, while in replicate 3, the most prevalent configuration shows 

an interaction of the ligand at the bottom surface, close to the 5’ terminal. Overall, adenine 

1, guanine 6 and 11 and adenine 17 showed to be the preferred spots of interaction for this 

compound. Regarding compound 2b, we can also clearly identify that the region of k-RAS 

with more interactions was the side loop groove close to adenine 14 and 15. The visual 

inspection of the trajectories of the different replicate MD simulations indicates that in 

replicates 2, 3 and 4, compound 2b interacts preferably with this region of the DNA mol-

ecule. This interaction configuration is quite distinct from what was observed in replicate 

1 and 5, where the compound 2b binds respectively the top and bottom of the quadruplex, 

with the compounds establishing contacts with the guanine tetrad of k-RAS. In what con-

cerns compound 2c, both the top and the bottom regions of k-RAS G4 are the regions with 

a higher number of contacts. The visual inspection of the different replicate MD simula-

tions indicates that in replicates 1 and 2, compound 2c binds to the bottom of the G4, while 

in replicates 4 and 5, the ligand preferably binds at its top. In replicate 3, we could observe 

that compound 2c binds also at the side region of the G4 close to residues 12 and 17. Fi-

nally, regarding compound 2d, we clearly see that the preferred region of interaction with 

k-RAS G4 is the bottom region close to the 5’ terminal. The visual inspection of the differ-

ent trajectories indicates that in replicates 3 and 5 compound 2d preferably binds the side 

region of k-RAS (between residues 15 and 19), in replicates 2 and 4 the interaction is mostly 
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done at the bottom region close to the 5’ terminal, while in replicate 1 the preference for 

interactions is observed at the top of k-RAS G4, close to the 3’ terminal. Overall, these 

results confirm the conclusions previously taken from the analysis of the RMSD histo-

grams, where compound 2a shows a higher convergence of pose interactions to k-RAS 

when compared to all the other tested compounds.  

 

 
Figure 5. Cartoon representation of the structure of k-RAS (top-view on left and side-view 

on the right) colored according to the normalized number of contacts determined from all 

the MD simulations (red to dark blue representing the highest number of contacts to the 

lowest number of contacts). 

 

From the previous analysis it is however difficult to identify a specific binding pose that 

could be seen as a representative of interaction between each one of the compounds and 

k-RAS G4. Therefore, we have analyzed the binding free energy of each compound 

throughout all the replicate simulations to identify a representative lowest binding affin-

ity pose. To achieve this goal, we performed MM/PBSA calculations every 5 nanoseconds 

of simulation for all replicates and systems and identified the part of the trajectory of the 

replicate where a lower value for the interaction of the compound and the k-RAS G4 was 

observed. Ultimately, from these sets of conformations we selected a representative of the 

interaction between k-RAS and each compound (Figure 6 and S5).  

In the selected lowest binding energy representative conformation of compound 2a with 

k-RAS G4 we can see that the compound stacks in a planar configuration at the bottom 

region of the G4, close to the 5’ terminal. A perfect stack between the pyridine, the two 

quinoline groups and the guanine rich core of the parallel G4 is achieved. Interestingly, 

both the positively charged N-methylated groups in the two quinolines are facing the out-

ward region of the core of the G4, directed to the negatively charged phosphate groups, 

evidencing a strong electrostatic attractive effect (see Table 3). Additionally, it is also pos-

sible to observe that one of the quinolines is double stabilized by the aromatic rings of 

guanine 20 and adenine 21, in an intercalating aromatic configuration that restrains the 

movements of this group, and consequently stabilizes the entire molecule on this confor-

mation.  

The previously described interaction observed in compound 2a is completely distinct 

from the interaction observed in the representative lowest binding affinity conformation 

of compound 2b with k-RAS. As can be seen in figure 6, compound 2b directly interacts 

on a side groove of k-RAS between adenine 15 and guanine 19. In this conformation, the 

pyridine group of the compound stacks with adenine 15, with both the quinolines show-

ing a 90º rotation of the aromatic groups in respect to the plane of the pyridine group. This 
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configuration allows for one of the quinolines to stack with the aromatic region of adenine 

14 and with the N-methylated group facing the phosphorus of guanine 20. The other quin-

oline faces the solvent, exposing the N-methylated group to the environment water mol-

ecules. This configuration, although showing a good binding free energy to k-RAS (see 

Table I), is in a completely different interaction configuration when compared to com-

pound 2a. Moreover, it is also possible to find interaction configurations of compound 2b 

in a similar configuration to the one previously described for compound 2a (stacked at the 

top and bottom regions of k-RAS). However, these configurations are of much higher 

binding free energy, which could be correlated with its lower ability to stabilize k-RAS.  

Regarding the representative lowest binding affinity configuration for compound 2c (fig-

ure 6) we can see that, similarly to compound 2a, this compound stacks at the bottom of 

the k-RAS G4. Both the pyridine and quinoline groups of this compound are stacked with 

the central guanine tetrads. Additionally, the positive N-methylated groups in quinolines 

are also facing the phosphate backbone of G4, establishing strong favorable electrostatic 

interactions (Table 3). However, while compound 2a shows a full planar interaction con-

figuration at top of the G4 molecule, in compound 2c only one quinoline is fully stacked 

with adenine 21, while the other quinoline evidences a twisted conformation which ulti-

mately results in a less stable configuration when compared to compound 2a. 

Finally, in what concerns compound 2d, similarly to what was observed for compounds 

2a and 2c, the lowest binding affinity representative conformation is found stacking on 

the top of the k-RAS G4 in a very similar configuration as the one adopted by compound 

2c. The major difference observed from these two compounds comes from the more planar 

conformation with the guanine-rich core of k-RAS, which is further stabilized by stacking 

with adenine 17. Additionally, both the N-methylated groups seem to adjust in order to 

assure that a favorable electrostatic interaction with the negatively charged phosphate 

groups of the DNA backbone is achieved. This interaction configuration seems to allow 

compound 2d to interact and stabilize k-RAS to a higher extent when compared to com-

pound 2c. 

 

 

 
Figure 6. Snapshots of the representative lowest binding energy pose of each compound 

to parallel k-RAS G4 (top or bottom views on the left and side views on the right). The 

backbone of k-RAS G4 molecule is represented as black cartoon, and all the side-chains of 

the pairs of bases are differently colored with filled lines and sticks: guanines are colored 

in green, adenines in orange, thymines in blue and cytosines in red. 

 

To try to correlate the binding free energies of the representative configurations of the 

different compounds with the experimental melting temperature assay results, we have 
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calculated the average binding free energy of the different compounds with the 50 more 

similar configurations to the previously analyzed representative solutions (based on 

RMSD differences). As can be seen in Table 3, compound 2b stands out as the one showing 

a higher binding free energy to the k-RAS G4. However, one should mention that the in-

teraction configurations showing these binding free energy values correspond to quite 

different configurations in respect to the ones observed for all the other compounds.  

Another fact that is possible to identify from the analysis of Table 3, is that the electrostatic 

energies are the forces that most contribute to the overall binding free energies, which 

most probably come from the previously described electrostatic interactions observed be-

tween the N-methylated groups of the quinolines and the backbone phosphates of the 

DNA. Overall, the representative interaction configurations identified from the MD sim-

ulations for compounds 2a, 2c, and 2d show a clear stacking of the pyridine and quinoline 

groups with the guanine tetrad at the core of k-RAS G4, with the positive N-methylated 

groups of the quinolines interacting with the negative G4-DNA phosphates. The small 

conformational differences observed between the different compounds with G4, which 

consequently are responsible for the determined differences in the binding free energies, 

seem to come from the degree of achieved planarity between the aromatic groups. Except 

for compound 2b, the binding results obtained can directly be correlated with the results 

from the melting temperature assays previously described, reporting compound 2a as the 

one with a higher ability to stabilize k-RAS G4 when compared to compounds 2d and 2c, 

respectively. However, one should recall that binding free energies only evaluate the 

binding and should not be directly correlated with the stabilization effect of the different 

compounds on the full G4. Therefore, despite we were able to get a good correlation be-

tween the binding affinities and the melting temperature assays for compounds 2a, 2c and 

2d, the results obtained for compound 2b evidence the need for a careful analysis between 

the determined binding affinity results and the overall stabilization of the G4 determined 

by the temperature melting assays. 

 

Table 3. Average binding free energy of the representative configurations of the different compounds with the k-RAS G4. 50 

snapshots were used in the calculations. 

Ligand 
Average Binding 

Free energy (kj/mol) 

Van der Waals en-

ergy (kj/mol) 

Electrostatic energy 

(kj/mol) 

Polar solvation en-

ergy (kj/mol) 

SASA energy 

(kj/mol) 

2a -207 ± 8 -240 ± 6 -560 ± 4 612 ± 13 -19 ± 1 

2b -215 ± 14 -220 ± 5 -518 ± 4 543 ± 17 -19 ± 1 

2c -171 ± 8 -248 ± 8 -553 ± 4 649 ± 9 -19 ± 1 

2d -203 ± 7 -217 ± 7 -521 ± 5 551 ± 14 -17± 1 

 

 

3. Conclusions 

Bis-quinoline dicarboxamides, particularly those N-methylated, are known to be potent 

G4 stabilizers. In the past, the influence of the central module on compounds capacity to 

bind and stabilize DNA G4s was well studied [24], but in all these studies only three link-

ing positions of carboxamide group to quinoline ring were explored: positions 2 (pyri-

dostatin and analogs) ,[48] 3 (e.g. 360A) and 6 (e.g. 307A). [15]. In this work we synthesized 

new bis-quinolinyl/isoquinolinyl-2,6-pyridine dicarboxamides, to study the influence of 

the position of carboxamide linker in the quinoline/isoquinoline rings on the molecular 

geometry and electronic distribution, and how these parameters impact on compounds’ 

selective binding and stabilization of G4s of different topologies. 
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Following a simple synthetic protocol, we were able to successfully obtain six bis-quino-

linyl and two bis-isoquinolinyl derivatives, compounds 1a-h, with yields of 50-94% 

(Scheme 1). FRET melting experiments revealed that from these, only compounds with 

the amide-NH linked to positions 6 (1d) and 4 (1e), that is, with a relative 1,4-position 

between this group and the quinoline nitrogen, showed moderate G4 stabilizing capacity, 

with a preference for the hybrid h-Telo G4. Similarly, it was shown that the presence of a 

4-amine group in the quinoline ring of N2,N6-di(quinolin-6-yl)pyridine-2,6-dicarboxamide 

leads to a G4 ligand as potent as the methylated counterpart [15]. This may be explained 

by an increased fraction of protonated quinolines nitrogens due to the electron donator 

character of amine/amide-NH in a 1,4-relative position. Upon methylation of the quino-

line/isoquinoline nitrogens, all compounds became much better G4 stabilizers (1c vs 2a, 

1e vs 2c, 1g vs 2d and 1h vs 2b), showing a relative potency trend of 2a > 2d > 2c > 2b, as 

determined by FRET and CD-melting assays, and a general preference for parallel G4 

structures. In addition, FRET-melting competition assays showed that ligands 2a-2d are 

selective to G4s up to around 100-fold concentration of double strand DNA. We have also 

studied by CD the capacity of 2a-2d to induce a G4 topology switch and block polymerase 

activity in a PCR-stop assay. Compound 2a was able to switch the hybrid 21-nt hTelo G4 

to a parallel topology, whereas 2d induced an interconversion of this G4 from hybrid to 

an antiparallel topology. Both compounds were also able to inhibit DNA-polymerization 

of the primer with the G4-forming sequence present in c-MYC promoter, being 2d more 

selective, since 2a also inhibited the polymerization of the mutated sequence.  

 

To understand the molecular features of compounds 2a-2d behind the observed signifi-

cant differences between these analogs on G4 stabilization, we performed molecular dy-

namic simulations using the parallel k-RAS22 G4 structure determined by NMR (PDB ID 

5i2v). Figure 6 shows that best G4 stabilizers 2a, 2c and 2d bind to the G-quartet through 

π-π stacking between the quinoline/isoquinoline and pyridine rings of the ligand and the 

guanines of the G4, as well as through electrostatic interactions between the cationic quin-

oline/isoquinoline nitrogens and the G4 phosphate backbone. Moreover, position of the 

methyl groups in relation to the pyridine-2,6-dicarboxamide central module is determi-

nant for the overall geometry of the ligand. Best G4 stabilizer (2a) can adopt an almost 

planar configuration, which optimizes the π-π stacking interactions, whereas worst G4 

stabilizer (the isoquinoline derivative 2b) interacts preferentially with the groove of a loop 

of the G4, in a complete twisted configuration. 

Quadruplex-interactive small molecules have a wide potential application, not only as 

drugs but also as sensors of quadruplexes structures. With this work we increased the 

portfolio of G4 ligands of the pyridine-2,6-dicarboxamide family and showed that intro-

duction of a electron donator group in position 4 of que quinoline ring increases G4 stabi-

lization capacity of the ligands, whereas upon N-methylation of the quinoline or isoquin-

oline rings, the relative spatial orientation of the two quinoline/isoquinoline rings deter-

mines the ligands mode and strength of binding to G4s. Overall, we report here new iso-

mers of the potent G4 ligand 360A (2a) presenting different strengths and modes of bind-

ing to G4s, which maybe important when seeking for selectivity. This was here shown by 

the new bis-methyl-isoquinolinium derivative 2d which is less potent G4 stabilizer than 

2a but is more selective than this latter one in blocking DNA polymerization upon stabi-

lization of the 2-3-4-5 G4 loop-isomer of the c-MYC promoter sequence (Figure 3). Know-

ing the structural features of these molecules governing the binding to G4 structures is 

crucial for the rational development of better therapeutics and more selective G4 sensors. 

 

 

4. Materials and Methods 

4.1 Synthesis of compounds 

4.1.1 General procedure A for synthesis of bis-quinolinyl/isoquinolinyl-pyridine-2,6-di-

carboxamides (1b-1h). 
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In a round-bottom flask, a mixture of aminoquinoline/amino-isoquinoline (70 mg, 0.60 

mmol) and pyridine-2,6-dicarbonyl-dichloride (50 mg, 0.245 mmol) was refluxed over-

night in 2.0 ml of freshly-dried toluene. The resulting precipitate was recovered by suction 

filtration, washed with acetone and a 5% aqueous solution of NaHCO3, to obtain the titled 

compound (1b-1h) as a white powder with a yield of 50-95%. 

N2,N6-di(quinolin-2-yl)pyridine-2,6-dicarboxamide (1a). 2-aminoquinoline (77.75 mg, 

0.539 mmol) was dissolved in 3 ml of THF and 93.92 µL of DIPEA (0.539 mmol) added to 

the mixture. Pyridine-2,6-dicarbonyl-dichloride (50 mg, 0.245 mmol) was finally added to 

the solution refluxed for 24H. The solvent was then removed in vacuum and the product 

purified by flash chromatography (100 Hexane to 3:7 Hexane/EtOAc), to give a light 

brown powder in a yield of 60%. 1H NMR (CDCl3) δ 11.27 (s, 2H), 8.63 (d, J = 8.7 Hz, 2H), 

8.45 (d, J = 7.8 Hz, 2H), 8.18 (d, J = 9.0 Hz, 2H), 8.08 (t, J = 7.8 Hz, 1H), 7.90 (d, J = 8.4 Hz, 

2H), 7.74 (d, J = 7.9 Hz, 2H), 7.64 (t, J = 7.7 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H). 13C NMR (CDCl3) 

δ 162.18, 150.87, 148.54, 146.26, 139.50, 139.00, 130.20, 127.60, 127.44, 126.38, 125.96, 125.51, 

114.50. ESI-MS m/z (100%), 420.3 ([M+H]+). 

N2,N6-di(quinolin-5-yl)pyridine-2,6-dicarboxamide (1b). The title compound was syn-

thesized following the general synthetic procedure A, reacting pyridine-2,6-dicarbonyl-

dichloride with 5-aminoquinoline, with a final yield of 89%. 1H NMR (DMSO-d6) δ 11.48 

(s, 2H, NH), 8.97 (d, J = 2.4 Hz, 2H), 8.57 - 8.43 (m, 4H), 8.37 (dd, J=7.2, 7.8 Hz, 1H), 8.02 (d, 

J = 8.1 Hz, 2H), 7.92 – 7.77 (m, 4H), 7.64 (dd, J = 9.0, 6.0 Hz, 2H). 13C NMR (DMSO-d6) δ 

163.21, 151.32, 148.96, 148.59, 140.69, 133.76, 132.75, 129.59, 128.19, 125.96, 125.00, 124.96, 

121.92. ESI-MS m/z (100%), 420.3 ([M+H]+). 

N2,N6-di(quinolin-3-yl)pyridine-2,6-dicarboxamide (1c). The title compound was syn-

thesized following the general synthetic procedure A, reacting pyridine-2,6-dicarbonyl-

dichloride with 3-aminoquinoline, with a final yield of 70%. 1H NMR (DMSO-d6) δ 9.39 

(d, J = 2.5 Hz, 2H), 8.98 (d, J = 2.5 Hz, 2H), 8.47 (d, J = 7.6 Hz, 2H), 8.36 (dd, J = 7.8, 6.9 Hz, 

1H), 8.03 (d, J = 8.1 Hz, 4H), 7.71 (td, J = 9.0, 1,2 Hz, 2H), 7.63 (td, J = 9.0, 1.0 Hz, 2H). 13C 

NMR (DMSO-d6) δ 162.94, 148.93, 146.55, 145.12, 140.72, 132.41, 129.11, 128.87, 128.40, 

128.16, 127.64, 126.12, 124.88. ESI-MS m/z (100%), 420.3 ([M+H]+). 

N2,N6-di(quinolin-6-yl)pyridine-2,6-dicarboxamide (1d). The title compound was syn-

thesized following the general synthetic procedure A, reacting pyridine-2,6-dicarbonyl-

dichloride with 6-aminoquinoline, with a final yield of 69%. 1H NMR (DMSO-d6) δ 11.39 

(s, 2H, NH), 8.86 (dd, J = 4.2, 1.6 Hz, 2H), 8.73 (d, J = 2.2 Hz, 2H), 8.49 (d, 2H), 8.43 (dd, J = 

7.6, 2.3 Hz, 2H), 8.37 (t, J = 8.6, 6.8 Hz, 1H), 8.26 (dd, J = 9.1, 2.3 Hz, 2H), 8.13 (d, J = 9.1 Hz, 

2H), 7.56 (dd, J = 8.3, 4.2 Hz, 2H). 13C NMR (DMSO-d6) δ 162.53, 150.03, 149.15, 145.48, 

140.68, 136.49, 136.40, 129.87, 128.69, 126.12, 125.40, 122.44, 117.72. ESIMS m/z (100%), 

420.3 ([M+H]+). 

N2,N6-di(quinolin-4-yl)pyridine-2,6-dicarboxamide (1e). The title compound was syn-

thesized following the general synthetic procedure A, reacting pyridine-2,6-dicarbonyl-

dichloride with 4-aminoquinoline with a final yield of 50%.  1H NMR (DMSO-d6) δ 11.59 

(s, 2H, NH), 8.98 (d, J = 4.9 Hz, 2H), 8.53 (d, J = 7.5 Hz, 2H), 8.46- 8.35 (m, 3H), 8.10 (d, J = 

8.5 Hz, 2H), 8.01 (d, J = 4.9 Hz, 2H), 7.86 (td, J = 7.8, 1.4 Hz, 2H), 7.75 (td, J = 7.7, 1.4 Hz, 

2H). 13C NMR (DMSO-d6) δ 163.92, 152.21, 150.16, 149.71, 142.34, 141.83, 131.31, 130.73, 

127.82, 127.53, 124.70, 124.21, 117.23. ESI-MS m/z (100%), 420.3 ([M+H]+). 

N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide (1f). The title compound was syn-

thesized following the general synthetic procedure A, reacting pyridine-2,6-dicarbonyl-

dichloride with 8-aminoquinoline with a final yield of 94%.  1H NMR (CDCl3) δ 12.38 (s, 

2H, NH), 9.04 (dd, J = 7.0, 2.0 Hz, 2H), 8.60 (d, J = 7.8 Hz, 2H), 8.28 (dd, J = 4.2, 1.7 Hz, 2H), 

8.25 – 8.17 (m, 3H), 7.75 – 7.59 (m, 4H), 7.35 (dd, J = 8.2, 4.2 Hz, 2H). 13C NMR (CDCl3) δ 

162.01, 149.86, 148.70, 139.60, 139.34, 136.14, 134.42, 128.06, 127.37, 125.43, 122.35, 121.42, 

117.28. ESI-MS m/z (100%), 420.3 ([M+H]+). 

N2,N6-di(isoquinolin-4-yl)pyridine-2,6-dicarboxamide (1g). The title compound was 

synthesized following the general synthetic procedure A, reacting pyridine-2,6-dicar-

bonyl-dichloride with 4-amino-isoquinoline with a final yield of 56%. 1H NMR (DMSO-

d6) δ 11.46 (s, 2H, NH), 9.34 (s, 2H), 8.71 (s, 2H), 8.48 (d, J = 8.4 Hz, 2H), 8.38 (dd, J= 9.0, 
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6.5 Hz, 2H), 8.25 (d, J = 8.4 Hz, 2H), 8.11 (d, J = 8.4 Hz, 2H), 7.91 (td, J = 8.4, 1.3 Hz, 2H), 

7.78 (td, J = 8.1, 1.2 Hz, 2H). 13C NMR (DMSO-d6) δ 163.45, 151.47, 148.85, 141.43, 140.73, 

140.40, 132.45, 131.32, 128.98, 128.63, 128.35, 126.05, 123.08. ESI-MS m/z (100%), 420.3 

([M+H]+). 

N2,N6-di(isoquinolin-5-yl)pyridine-2,6-dicarboxamide (1h). The title compound was 

synthesized following the general synthetic procedure A, reacting pyridine-2,6-dicar-

bonyl-dichloride with 5-aminoisoquinoline with a final yield of %.  1H NMR (DMSO-d6) 

δ 11.46 (s, 2H, NH), 9.40 (d, J = 1.2 Hz, 2H), 8.60 (d, J = 6.0 Hz, 2H), 8.47 (d, J = 7.7 Hz, 2H), 

8.38 (dd, J = 8.8, 6.5 Hz, 1H), 8.18 (d, J= 6 Hz, 2H), 7.99 (dd, J = 8.2, 1.2 Hz, 2H), 7.95 (d, J = 

6.0 Hz, 2H), 7.80 (t, J = 8.2 Hz, 2H). 13C NMR (DMSO-d6) δ 163.18, 153.09, 148.93, 143.52, 

140.72, 132.74, 132.15, 129.25, 128.77, 127.77, 126.85, 126.00, 116.89. ESI-MS m/z (100%), 

420.3 ([M+H]+). 

 

4.1.2 General procedure A for synthesis of bis-methyl-quinolinium/isoquinolinium-

pyridine2,6-dicarboxamides (2a-2d). 

In a round-bottom flask, 50 mg of pyridine-2,6-dicarboxamide (1c, 1e, 1g or 1h, 0.119 

mmol) were dissolved in 1.5 ml of a mixture DMF:Acetone (1:1). 148.5 µl of CH3I were 

added to the reaction mixture, which was stirred for 5 days at room temperature. The 

resulting yellow precipitate was filtered and washed with cold MeOH to obtain the meth-

ylated bis-quinolinium/isoquinolinium iodide (2a-2d) with a yield of 50-60%. 

 

3,3'-((pyridine-2,6-dicarbonyl)bis(azanediyl))bis(1- methylquinolin-1-ium) iodide (2a) 

50 mg of 1c (0.119 mmol) were dissolved in 1.5 ml of a mixture DMF/acetone (1:1). 148.5 

µl of CH3I were added to the mixture and stirred for 5 days at room temperature. The 

resulting yellow precipitate was filtered and washed with cold MeOH to give the title 

compound in 61 % yield.  1H NMR (DMSO-d6) δ 11.83 (s, 2H, NH), 10.13 (s, 2H), 9.67 (s, 

2H), 8.62 – 8.53 (m, 6H), 8.49 (t, J = 7.7 Hz, 1H), 8.24 (t, J = 7.5 Hz, 2H), 8.08 (t, J = 7.6 Hz, 

2H), 4.80 (s, 6H). 13C NMR (DMSO-d6) δ 162.5, 147.5, 144.7, 141.2, 135.9, 134.5, 134.1, 132.3, 

130.5, 129.9, 129.3, 126.5, 122.8, 119.3, 118.5, 49.2. NMR data in agreement with previously 

reported in [40].). ESI-MS m/z 224.8 ([M-2I]2+ (100%). 

5,5' -((pyridine-2,6-dicarbonyl)bis(azanediyl))bis(2- methylisoquinolin-2-ium) iodide 

(2b) was obtained following the same conditions as 2a, using 1h instead of 1c with a final 

yield of 56 %.  1H NMR (DMSO-d6) δ 11.65 (s, 2H, NH), 10.10 (s, 2H), 8.74 (d, J = 6.6 Hz, 

2H), 8.65 (d, J = 6.9 Hz, 2H), 8.55 – 8.38 (m, 7H), 8.18 (t, J = 7.9 Hz, 2H), 4.52 (s, 6H). 13C 

NMR (DMSO-d6) δ 163.36, 151.61, 148.55, 141,11 (Detected via HMQC), 136.19, 134.22, 

133.77, 133.34, 131.77, 129.33, 128.29, 126.40, 122.82, 48.46. ESI-MS m/z 224.8 ([M-2I]2+, 

100%); 448.3 ([M-H-2I]+). 

4,4'-((pyridine-2,6-dicarbonyl)bis(azanediyl))bis(1- methylquinolin-1-ium) iodide (2c) 

was obtained following the same conditions as 2a, using 1e instead of 1c with a final 51 % 

yield.  1H NMR (DMSO-d6) δ 12.10 (s, 2H), 9.45 (d, J = 6.9 Hz, 2H), 9.11 (d, J = 8.5 Hz, 2H), 

8.79 (d, J = 6.8 Hz, 2H), 8.68 (d, J = 7.7 Hz, 2H), 8.61 – 8.47 (m, 3H), 8.34 (t, J = 7.5 Hz, 2H), 

8.08 (t, J = 7.7 Hz, 2H), 4.56 (s, 6H). 13C NMR (DMSO-d6) 163.84 (C=O), 150.73 (CH), 148.13 

(C), 141.35 (CH), 139.95 (C), 135.76 (CH), 129.09 (CH), 128.19 (CH), 125.91 (CH), 125.60 (C), 

121.96 (C), 119.98 (CH), 112.56 (CH), 45.16 (CH3). ESI-MS m/z 224.9 ([M-2I]2+, 100%); 448.3 

([M-H-2I]+). 

4,4'-((pyridine-2,6-dicarbonyl)bis(azanediyl))bis(2- methylisoquinolin-2-ium) iodide 

(2d) was obtained following the same conditions as 2a, using 1g instead of 1c, stirring for 

2 days with a final 51% yield.  
 1H NMR (DMSO-d6) δ 11.78 (s, 2H), 9.97 (s, 2H), 9.21 (s, 2H), 8.65 (d, J = 8.5 Hz, 2H), 8.58 

(d, J = 7.6 Hz, 4H), 8.52 – 8.46 (m, 1H), 8.39 (t, J = 7.8 Hz, 2H), 8.17 (t, J = 7.7 Hz, 2H), 4.56 

(s, 6H). 13C NMR (DMSO-d6) δ 163.34, 148.94, 148.17, 141.30 (Detected in HMQC), 136.99, 

132.87, 132.84, 132.68, 132.09, 131.10, 128.04, 127.06, 123.94, 48.95. ESI-MS m/z 224.8 ([M-

2I]2+, 100%); 448.3 ([M-H-2I]+). 
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4.2 PCR-Stop assay 

The protocol for PCR-Stop assay and the primer design was adapted from a previously 

reported protocol [46]. For the complete sequence list, refer to Table S3 (supplementary 

material). Briefly, for each reaction, 0.5μL of Taq DNA Polymerase, 2.0 μL of Termopol 

buffer, 1.0 μL of dNTP mix, 1.0 μL of each primer (straight + reverse, 25μM) solutions 

were added, for a total volume of 5.5μL. The calculated volume of tested compound is 

added to the required final concentration, for a final volume of 20μL (Physiological solu-

tion was added to reach this final volume). The tubes so prepared, were placed on a 

thermo-cycler with the following cycling conditions: 94 °C for 3 min, followed by 10 cycles 

of 94 °C for 30 s, 58 °C for 30 s, and 72 °C for 30 s. After the amplification, 2 μl of stop 

solution (marked with bromophenol blue) were added. The amplified products were sep-

arated running electrophoresis in 10% polyacrylamide gel (PAGE). The gel was stained 

with ethidium bromide and photographed under UV light. 

 

4.3. FRET-Melting analysis and competition experiments 

Working solutions of 5’-FAM/3’TAMRA- labelled oligonucleotides (please refer to table 

S1 for the complete sequence list) were freshly prepared, diluted with FRET buffer (60 

mM KCl, potassium cacodylate pH 7.4) at a final concentration of 20 µM. These were di-

luted at 0.4 µM and annealed at 95°C for 10 minutes in a heating block, then slowly cooled 

to room temp. (over 1.5 h). 50 µL of annealed DNA solution were mixed with 50 µL of 

tested compound at the appropriate concentration, in 96-Well RT-PCR plates, with a final 

DNA concentration of 0.2 µM. Fluorescence readings were taken at intervals of 0.5 °C, in 

the range 31–95 °C. The advanced curve-fitting function in GraphPad Prism (nonlinear 

regression fit) was used for calculation of ΔTm values. Only results with fitting r2 values 

> 0.75 were considered. 

 

For the competition experiments, the melting of the k-RAS G4 (0.2 µM) complexed with 

ligand (5 µM or 0.5 µM) was monitored under the same conditions, including 0.4, 2.0, 10, 

and 25 µM of non-fluorescent double-stranded competitor 26ds DNA, using the same 

FRET assay conditions. 

 

4.4 CD titration and melting analyses 

All CD measurements were performed at 20 °C at 10 µM strand concentration of 

oligonucleotide in 20 mM lithium cacodylate containing 10 mM KCl and 90 mM LiCl for 

h-Telo, 20 mM lithium cacodylate containing 100 mM LiCl for c-MYC and 20 mM lithium 

cacodylate containing 50 mM KCl for k-RAS. The sequences were annealed by heating to 

95 °C for 10 min followed by cooling on ice for 1 h. For CD titration experiments, a 10 mM 

stock solution of each ligand was prepared in DMSO and the required volume for each 

point was added directly to a 1 mm quartz cell containing the oligonucleotide solution. 

CD spectra were recorded using a Jasco J-815 spectrapolarimeter equipped with a Peltier-

type temperature control system (model CDF-426S/15), using an instrument scanning 

speed of 200 nm/min with a response time of 1 s in wavelengths ranging from 200 to 340 

nm. The recording bandwidth was 1 nm with 1 nm step size. The spectra were signal 

averaged over four scans and baseline corrected by subtracting a buffer spectrum.  

CD melting spectra were acquired in the temperature range 20-100 °C, with a heating rate 

of 1 °C/min by monitoring the ellipticity at 290 and 265 nm for telomeric DNA and 

oncogene promoters, respectively. Spectra were acquired in the presence of 1, 5 and 10 

molar equivalents of ligand. CD melting spectra were acquired in in 20 mM potassium 

phosphate buffer containing 10 mM KCl. Data was converted into fraction folded plots, 

fit to a Boltzmann distribution and the melting temperatures determined from the two-

state transition model (OriginPro 8). 

 

4.5 Molecular modeling 
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4.5.1. Compound structure preparation 

The 3D structures of 2a, 2b, 2c and 2d compounds were initially generated using the 

MarvinSketch (version 20.13) software from Chemaxon (http:www.chemaxon.com). The 

resulting geometries were then optimized at the B3LYP/6-31G(d) level of theory [49–53], 

using Gaussian 09, Rev A.2 [54]. To derive the partial atomic charges for each 

compound, we have used the strategy described for GAFF [51,55], with the molecular 

electrostatic potentials (ESP) created for all elements at the HF/6-31G(d) [56–58] level of 

theory. The overall charge of each compound was set to +2. The atomic partial charges 

were afterwards derived following the restrained ESP (RESP) [59] procedure, using the 

antechamber [60] module implemented in AmberTools19 [61]. 

4.5.2. Molecular dynamics simulations 

All molecular mechanics/dynamics (MM/MD) simulations were performed using the 

GROMACS 2018.6 software package [62–64] as well as the OL15 refinement of the 

Amber14sb force field [65–68].  

The initial structure of the k-RAS molecule was taken from PDB 5i2v [69]. Four different 

systems were built, each consisting of the quadruplex and one of the four compounds 

previously parameterized. Amber topologies were built for each compound using the 

tleap module in AmberTools19 [61], which were subsequently converted to GROMACS 

format using ACPYPE [70]. Five different replicate simulations were built for each 

system. In each replicate, one copy of each compound was manually placed in different 

positions around k-RAS. These systems were then initially solvated using TIP3P water 

molecules [71,72] in a dodecahedric box, and the overall system charge was neutralized 

by randomly replacing 17 water molecules with K+ ions, via the gmx genion tool. Next, 

the systems underwent a 2-step energy minimization procedure using the steepest 

descent algorithm [73]: first, with no constraints, and second with hydrogen bond 

constraints. Velocities were then generated according to a Maxwell distribution at 298.15 

K.  

Each replicate was then simulated for 750 ns, using the particle mesh Ewald (PME) 

method to treat long-range electrostatic interactions [74,75] with a Fourier grid spacing 

of 0.12 nm and a cutoff of 1.4 nm for direct contributions. Lennard-Jones interactions 

were calculated using a neighbor pair list with a cutoff of 1.4 nm and using a Verlet 

scheme [76]. Solute bonds were constrained using the parallel linear constraint solver P-

LINCS [77], while water molecules were constrained using the SETTLE algorithm [78]. 

The temperature was kept at 298.15 K using a Nosé-Hoover thermostat [79,80] with a 

coupling constant of 1 ps, and an isotropic Parrinello-Rahman barostat [81,82] was used 

to keep the pressure constant at 1 bar with a coupling constant of 5 ps and a 

compressibility of 4.5 x 10-5 bar-1. 

Analyses were performed using several GROMACS tools. In addition, plots were made 

using Gnuplot [83] and all 3D conformations were built using PyMOL [84]. 

 

4.5.3. MM/PBSA calculations 

To calculate the binding free energies of the different compounds to the k-RAS, we have 

used the program g_mmpbsa developed by Kumari et al. [85,86]. Analogously to other 

studies [87], we have used a single trajectory approach, which assumes the quadruplex 

and the ligand conformation in the bound and unbound states to be identical. Equations 

used to determine binding free energies can be found in Supporting Information. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1. 

CD titration of c-MYC in presence of increasing equivalents (0-25) of compound 2a (A), 2b (B), 2c 

(C), 2d (D); Figure S2. CD titration of k-RAS in presence of increasing equivalents (0-25) of com-

pound 2a (A), 2b (B), 2c (C), 2d (D); Figure S3. A) Results of PCR-stop assay of compounds 1a-eat 50 

for c-MYC gene promoter Pu27. B) Results of PCR-stop assay of compound 2a for c-MYC gene pro-

moter Pu27 and for mutated c-MYC gene promoter (Pu27mut); Figure S4. Root mean square 
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deviation (RMSD) of the complex k-RAS + ligand, throughout the simulation time for each replicate 

simulation; Figure S5. Variation of the MM/PBSA binding free energy between the different ligands 

and k-RAS for each replicate simulation; Figure S6. Minimum distance of compound 2a to each pair 

of bases of k-RAS for all replicate simulations; Figure S7. Minimum distance of compound 2b to 

each pair of bases of k-RAS for all replicate simulations; Figure S8. Minimum distance of compound 

2c to each pair of bases of k-RAS for all replicate simulations; Figure S9. Minimum distance of com-

pound 2d to each pair of bases of k-RAS for all replicate simulations. Figure S10-S19 NMR charac-

terization of the synthesized molecules; Table S1. Sequences used in FRET-melting experiments; 

Table S2. Sequences used in CD experiments; Table S3. Sequences used in PCR-stop assay 
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