

Article

Deep ConvNet: Non-Random Weight Initialization for Re-
peatable Determinism, examined with FSGM
Richard Rudd-Orthner 1* and Lyudmila Mihaylova2

1 University of Sheffield; RNMRudd-Orthner1@sheffield.ac.uk
2 University of Sheffield; L.S.Mihaylova@sheffield.ac.uk
* Correspondence: ruddorthner@gmail.com; Tel.: (optional; +966 (0)54 192 2312)

Abstract: This paper presents a non-random weight initialization method in convolutional layers of
neural networks examined with the Fast Gradient Sign Method (FSGM) attack. This paper's focus
is convolutional layers, and are the layers that have been responsible for better than human per-
formance in image categorization. The proposed method induces earlier learning through the use
of striped forms, and as such has less unlearning of the existing random number speckled methods,
consistent with the intuitions of Hubel and Wiesel. The proposed method provides a higher per-
forming accuracy in a single epoch, with improvements of between 3-5% in a well known bench-
mark model, of which the first epoch is the most relevant as it is the epoch after initialization. The
proposed method is also repeatable and deterministic, as a desirable quality for safety critical ap-
plications in image classification within sensors. That method is robust to Glorot/Xavier and He
initialization limits as well. The proposed non-random initialization was examined under adver-
sarial perturbation attack through the FGSM approach with transferred learning, as a technique to
measure the affect in transferred learning with controlled distortions, and finds that the proposed
method is less compromised to the original validation dataset, with higher distorted datasets.

Keywords: Repeatable Determinism; Weight Initialization; Convolutional Layers; Adversarial
Perturbation Attack; FSGM, Transferred Learning, Machine Learning, Smart Sensors.

1. Introduction
Convolutional layers in neural networks have been used in Artificial Intelligence

(AI) applications, and led to the use of multiple layers separated by non-linearity func-
tions. This layering of hidden layers are said to be deep, and the successes of that ar-
chitecture led to the Deep Learning research thread. It is generally accepted that con-
volutional layers may have translation to brain anatomy with respect to Hubel and
Wiesel [1] [2]. Whom examined spider monkey's and cat's brain activity when under a
light anaesthetic, while stimulating the retina with images of spots, stripes and patterns.
Convolutional layers have had biological inspirations, and are generally accepted as
providing hierarchical feature extraction in a deep Convolutional Network (ConvNet) [3]
[4]. Later in 2012, Alex Krizhevsky's paper [5] would prove to become an influential
paper, and demonstrated better than human performance within image categorization in
the image net challenge using deep convolutional networks. Convolutional Neural
Networks (CNN) have played an influential role ever since. Although, applications of
convolutional layers provide some important human level capabilities, but they have not
been embraced into mission critical applications [6] [7] [8] [9], owing in part to learning
session accuracy variations, and certification of the network content as complete and
correct. Currently, random initialization methods provide a cross-validation variation
in accuracy that is visible over regularisation, that is to say that different random initial-
ization states provide a variation in the prediction accuracy when cross-validated.

To this end, the previous published background work [10] to this paper, also ex-
amined repeatable determinism, but in perceptron layers only, and proposed a method,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/

although was tightly coupled to the perceptron layers. Although tightly coupled, that
previous paper, resolved a numerical stability issue for repeatability, and proposed a
non-random method for determinism, that achieved an almost equal performance in
accuracy proving viability of a non-random method. That work was furthered in a
journal published version, which used the Glorot/Xavier limit values [11] with the
non-random method, and this time achieved an equal performance in accuracy to the
random method, now proving equality in performance as an alternative augmented ap-
proach. That non-random method [11] was an augmentation to the established existing
initialization method, rather than a replacement. As it proposed and alternative to the
random numbers only, rather than the limit values used in those methods, and as such is
a complimentary approach. The previous work [11] also had the benefit of ordering the
weights after learning, into a structured form along the number of neurons axis and
highlighted the correlation in structure at pixel indexes. See Figure (1, left) for the
weight matrix as an image of learnt weights of the existing random method, and Figure
(1, right) for the weights using the non-random method [11], both in a perceptron layer.

Figure 1. Weight matrix after learning, results from a perceptron only network, left is an existing
random method (Glorot/Xavier), and right a non-random method from the previous work [11].

It was noted in that previous work [11], that both weight sequences have an equiv-
alence in performance, but the non-random method (in Figure 1 right) has a structure
that may have a benefit for rule extraction. As the weights have been grown in an or-
dered sequence along the number of neurons (in the x plane), and shows activation cor-
relations at pixel positions (in the y plane), and that helps to generalise in a rule extraction
approach, as the pixel activations have been clustered to neighbouring weights. How-
ever, both those previous papers [10] [11] were confined to perceptron layers and this
paper furthers that work into convolutional networks. That earlier work [10] [11] in
perceptron layers did prove that an equal performance of a non-random weight initiali-
zation method was viable, and that random numbers for the initialization is not neces-
sary. Which is the same assertion of Blumenfeld et al. too in 2020 [12], in an experiment
of zeroing of some of the weights in a convolutional layer. However, the zeroing of
weights is not this paper's approach. Furthermore, the order of weights in the back-
ground perceptron work [10] [11] was not significant, due to the fully connected links of
nodes, and in convolutional layers the weights relate to convolved spatial filters, and so
the order is significant. So the previous perceptron form [10] [11] is not applicable
within convolutional layers of networks directly.
A. Structure of the paper

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

This papers structure is as follows: Section 1 is the introduction to the area and the
background work. Section 2 introduces recent contemporary related works. Section 3
introduces the novelty of this work. Section 4 is the benchmark baseline model, and is
comparable to the background work in perceptron layers [10] [11]. It presents the base-
line results of that model, reusing the critical-sections defined from the background work
[10] to re-produce a 'repeatable' learning session. Section 5 compares the existing ran-
dom initialization method as a benchmark to the proposed method. Section 6 explains
the number of weights and image size in each layer of the benchmark model, so the
proposed method can be explained and the Glorot/Xavier limit values calculated. Sec-
tion 7 shows the weight differences of the existing random method and the proposed
method, before and after learning, with an illustration of what has been learnt. Section 8
presents the proposed non-random method that achieved a higher accuracy score and
explains the design, and also verifies robustness to He et al. initialization limits as the
current state of the art. Section 9 makes a comparison under adversarial perturbation
attack using the Fast Sign Gradient Method (FSGM) with transferred learning. This is a
convenient method for examining transferred learning compromise with a controlled
distortion through the epsilon value (). Section 10 presents the discussion of results
and concludes this paper.

II. Related Work
Ding et al. in 2020 [13], proposed a shuffle leap frog algorithm approach, for the update

and initialization with random Gaussian forms in the area of fundus lesions images.
The approach presented in that paper contains random numbers, initially in a Gaussian
distribution optimised with the shuffle leap frog algorithm, where as the approach pre-
sented in this paper, does not contain random numbers. Wang et al. in 2020 [14], pro-
posed a 2D Principle Component Analysis (2DPCA) approach to the initialization of con-
volutional networks to adjust the weight difference values to promote back propagation.
This approach avoids the use of random numbers, and uses samples of the dataset in-
stead. making it convergent to the sample data seen. However, in this paper the ap-
proach is not coupled to the sample data, only the architecture in terms of layers and is
adaptive for filter geometries and layer types used. Ferreira et al. in 2019 [15], examined
weight initialization using a De-noising Auto-Encoder (DAE) in the field of classifying
tumour samples through dataset sampling, but this is also a data sample convergent ap-
proach, unlike the finite number sequence in the proposed method.

III. Contribution and Novelty
This paper's contribution is a proposed alternative initialization method, for gener-

ating a non-random number sequence for the initialization of convolutional and percep-
tron layer mixes, rather than perceptron layer only networks as in the previous work [10]
[11]. The proposed non-random number sequence has formations of stripes and curves
in that initialization state, and as such is predisposed to the application of image catego-
rization. It is more generic and independent of the dataset utilised. The proposed
method also allows earlier learning, to lower the loss quicker, and arrives at a higher
performing accuracy in the first learning session, that is repeatable and deterministic,
supporting a value of dependable systems in mission and safety critical applications of
smart sensing. With the existing random number methods several learning sessions are
required to establish which learning session's random sequence has provided the best
accuracy from a variation of random initialization states. In comparison to Blumenfeld
et al. [12], Ding et al. [13], Wang et al. [14] and Ferreira et al. [15] approaches, that re-
quired to adjust weights, use random numbers or sampling the dataset for convergence,
the proposed method, is without data sampling or random sequences as a more general
case, and is a complimentary approach to both Glorot/Xavier, and He et al. initialization
limit values [16]. The proposed method substitutes only the use of random numbers for
a deterministic non-random finite number sequence, and retains the number range limits

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

of the original methods [16]. The proposed method also after model defence with
transferred learning with an FSGM dataset, has less compromised the original dataset
training with larger epsilon () value distortions of the FSGM attack. The intuition for
this is that the existing random initialization method provides an unintentional noise
source, which causes noise re-colorization, when combined with the noise sources in the
images delaying learning. The FSGM with transferred learning approach provides a
convenient method for examining the transferred learning compromise with a controlled
distortion via the epsilon () value. Although, neither method is immune to FSGM at-
tacks, the proposed method has the advantage of been less compromised to the original
dataset, with transferred learning in model defence.

IV. Benchmark Baseline Model and Method
In the previous work [10] [11], perceptron layers and the MNIST dataset [17], were

used as it is familiar to researchers. So to demonstrate non-random weight initializa-
tions the same application and dataset is used, but in a convolutional form. This
benchmark is also used such that comparisons can be made from the previous back-
ground work [10] [11] as well. Figure (2) presents the architecture of the benchmark
model in a convolutional layer form.

Figure 2. Architecture of the benchmark model, by Torres.

The model architecture is the equivalent of the perceptron layer foundation work's
benchmark [10] [11], but in a convolutional layer form, and as such forms a comparison
bridge to the background work [10] [11]. Using the repeatable critical-sections defined
from the background work [10], that removed a source of numerical instability in learn-
ing session variations, the convolutional layer benchmark results are in Table 1. The
benchmark model is using the Glorot/Xavier random number method initialization as
per its' definition within Keras by Torres [18] and has a stated accuracy of about ~97%.
Although it should be noted, that there are higher scoring models using the MNIST da-
taset in a convolutional form, a high accuracy score of 99.8% by Kassem [19], provides
little-head room to show an improvement. That model also requires 50 epochs, and that
is along learning duration beyond the initial condition in this context, where the random
shuffle may be a more dominant random effect. Table 1 forms the experiment control
results using the Torres model [18] baseline, as the benchmark.

Table 1. Torres benchmark with the existing random initialization method results.

Random Seeded Epochs Accuracy (Cross-Validation) Loss (Cross-Validation)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

Yes 5 Shuffled 96.85% 0.105400465
No 5 Shuffled 96.87% 0.105643138
No 5 Shuffled 96.81% 0.112332284
No 5 Shuffled 97.13% 0.104294091
No 5 Shuffled 96.78% 0.111712694
No 5 Shuffled 96.95% 0.103740148
No 5 Shuffled 97.02% 0.102941796
No 5 Shuffled 96.67% 0.110733353
No 5 Shuffled 96.94% 0.104514159
No 5 Shuffled 96.99% 0.103553012
Averages: 96.901% 0.106486514
Yes 1 Shuffled 88.98% 0.352222472
No 1 Shuffled 90.44% 0.319229484
No 1 Shuffled 91.79% 0.294954896
No 1 Shuffled 91.31% 0.300388008
No 1 Shuffled 90.71% 0.309825629
No 1 Shuffled 91.9% 0.288508445
No 1 Shuffled 91.95% 0.281219631
No 1 Shuffled 91.34% 0.289107263
No 1 Shuffled 91.81% 0.290958554
No 1 Shuffled 91.05% 0.295696706
Averages: 91.128% 0.302211109
Yes 1 No Shuffle 89.3% 0.34017086
No 1 No Shuffle 89.42% 0.334787607
No 1 No Shuffle 89.29% 0.337718517
No 1 No Shuffle 89.5% 0.333430499
No 1 No Shuffle 89.8% 0.3234815
No 1 No Shuffle 89.84% 0.324871719
No 1 No Shuffle 90.02% 0.31683287
No 1 No Shuffle 89.17% 0.342095852
No 1 No Shuffle 89.34% 0.338885903
No 1 No Shuffle 90.07% 0.314374834
Averages: 89.575% 0.330665016

The results in Table 1 show the benchmark results with the full 5 epochs shuffled,
and reaching the approximate stated accuracy of that model, but also shows just 1 epoch,
as the 1st epoch after initialization is of interest. Those 1st epoch runs are also in two
forms which are: with or without the shuffle, as there are two random effects (weight in-
itialization and shuffle order), and this allows those effects to be distinguished. So that
when no shuffle is used, there is only the effect of the random weight initialization, and
the shuffled version shows the equivalence to the 5 epoch results where only shuffle
forms are appropriate, to have reordering in each of the 5 epochs. When the random
number generator uses a seeded value (shown in bold), the results are completely repeat-
able between learning sessions. But also more results have been added, not using the
seeding of the random number generator, to show the accuracy variation that different
random number initialization sequences have, that are visible over regularisation. As
random number generator seeding has two effects: the weights initialization values, and
also the shuffle reorganization of the dataset. So for this reason, Table 1 shows results
from three configurations: 5 epochs with shuffles, a single epoch with the shuffle and a
single epoch with no shuffle as that is the effect of the random number initialization in
the weights alone, disregarding the original dataset order. The results in Table 1. show
an average accuracy of 89.575% in a single epoch with no shuffle, an average of 91.128%
(+1.553%) when a shuffle is used, and an average accuracy of 96.901% (+5.773% greater)
with the use of 5 shuffled epochs). The Table 1 results forms the benchmark perfor-
mance of the Torres model [18].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

V. Comparison of the Benchmark with the Proposed (Non-Random) Method
The presented proposed non-random initialization method achieves 93.28% in a

single epoch with no shuffle, +3.705% better than the existing random method. 93.77%
accuracy is achieved when a shuffle is used in a single epoch, again using the proposed
non-random method, which is a 2.642% gain over the benchmark of the existing random
method. Then 97.5% (+0.599% over the existing random method) when 5 epochs are
used. Those results are within Table 2, shown in bold and are repeatable and deter-
ministic.

Table 2. Gains of the proposed non-random initialization method over the existing benchmark.

Epochs Accuracy (Cross-val.) Loss (Cross-val.) Gains over existing (random) method
5 Shuffled 97.5% 0.085728347 +0.599% (Cross-validation gain)
4 Shuffled 97.11% 0.097854339 N/A
3 Shuffled 96.85% 0.114757389 N/A
2 Shuffled 95.96% 0.141269892 N/A
1 Shuffled 93.77% 0.230065033 +2.642% (Cross-validation gain)
1 No Shuffle 93.28% 0.230725348 +3.705% (Cross-validation gain)

From Table 2 the best gains are achieved in the first epoch, which is the epoch that
occurs after the weight initialization. Less relative gain is achieved in further epochs, as
the learning is occurring longer after the initialization in the subsequent epochs, dimin-
ishing its' influence but inheriting the earlier learning. An interpretation is the subse-
quent learning is more equivalent but earlier learning has a higher benefit as it may be
using more of the dataset more effectively in the first epoch. This could be because the
initial learning in the proposed initialization method has stripes and curves rather than
dots and speckles, and is more predisposed to the application of image categorization for
feature extraction. That is also consistent with the biological intuitions of Hubel and
Wiesel [1] [2]. The approach is also repeatable and deterministic, as a value of depend-
able systems for smart sensing in mission critical applications. As the model derived
from training is repeatable, it supports testing and verification with different environ-
ments and conditions in development and testing.

VI. Understanding the Weights and Image sizes
To understand the presented proposed non-random weight method, the structure of

the weights and the image sizes, in the benchmark model need to be understood clearly.
To understand how the weights are used is critical, to understanding how convolutional
layers use the weights and affect the image size. As this is quite different from percep-
tron layers, and as in the findings of the journal version of the perceptron repeatable de-
terminism paper [11]. When using the Glorot/Xavier limits [20], the results were en-
hanced with the non-random method [11], over the results initially presented in the
conference paper [10]. This was because of the tolerance and matching to the model
architecture in terms of propagation values and limits. Convolutional layers use the
weights for the filters, and not the pixels directly, as such their dimensions of each filter
is: width by height, then by depth (channels), where that depth may be inherited from the
previous convolutional layer's filters. Perceptron layers in a ConvNet use the image size
by previous layer's filters, as the previous layers filter would have translated to depth
(channels) in activations, and those activations are connected to each neuron. Thus, the
Gloror/Xavier limits need to be calculated, and Figure 3 illustrates the adjustment of
image and weights sizes necessary in the Torres [18] benchmark model.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

Figure 3. Weight & image size adjustments in the Torres benchmark model.

Extracted from Figure 3, Table 3 shows the weights and image sizes in each layer in
the benchmark model, such that the Glorot/Xavier limit values can be calculated to sup-
port the number ranges in the Glorot/Xavier approach, and later in the He et al. approach
too.

Table 3. Weights and image sizes in each layer of the benchmark model by Torres.

Layer Filter/Pool/Neurons Depth Image/Tensor Size Weights
Input 28x28x1 N/A 1 (B/W image) 28x28 (748) N/A
Conv Layer 1 5 by 5 by 32 filters 1 24x24 (576) 800
Max Pooling 2 by 2 32 12x12 (144) N/A
Conv Layer 2 5 by 5 by 64 filters 32 8x8 (64) 51200
Max Pooling 2 by 2 64 4x4 (16) N/A
Flatten Layer N/A 1 1x(4x4x64) 1024 N/A
Dense Layer 10 1 10x1024 (10240) 10240

To calculate the Glorot/Xavier limits, See Equations (1), (2) and (3), but note that the
calculated values have been rounded to 8 decimal places (as a rule of thumb for precision
[21]), and are used as such and are shown as such in the Equations (1), (2) and (3):

𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟1 =
(∗ ∗ ∗ ∗)

=0.08528029, (1)

𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟2 =
(∗ ∗ ∗ ∗ ∗)

= 0.05 and (2)

𝐷𝑒𝑛𝑠𝑒𝐿𝑎𝑦𝑒𝑟 =
(∗ ∗)

=0.07617551. (3)

Alongside the Glorot/Xavier limits, the structure of the weight initialization se-
quence also requires to have positional stripes and curves variations in each filter.
Those stripes and curves positional variations, are also to be aligned to feature extraction,
in a Hubel and Wiesel [1] [2] stripes intuition. That structure, is ideally to be more allied
to edge detection than a random value placement as the start condition. This is to pre-
disposed the initial condition more generically to the application of image classification.
Thus outperform the random methods, by inducing earlier learning, with less unlearning
of the initial state, and using the early data in the dataset more effectively.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

VII. Comparison of the Weights before and after Learning
In Figure (4, left), is the existing random method benchmarks weights before learn-

ing of the first convolutional layer, and in Figure (4, right), are the same filter weights but
after learning.

Figure 4. Initial and learnt weights in the first conv layer with the existing random method.

In Figure (4), the existing random initialization method form has a speckled ap-
pearance in each filter, and it may also be noticed that there are high similarities in the
filters, between the before and after learning. Suggesting that the initial condition has a
dominant affect in the subsequent learning even over a large dataset. Which is perhaps
why the variation in accuracy with different random sequences are visible over regular-
isation. As the initial speckled positions in the filter relate to positions in image features,
affecting the resultant performance of that filter from the outset. Meaning that the filter
organization is important to the performance, rather than just statistical equivalence.
Furthermore, looking carefully, adaption can be notice between the before in Figure (4,
left) and after learning in Figure (4, right). Illustrated by when the initial weights are
subtracted from the learnt weights, the adaption can be seen more clearly in Figure (5).

Figure 5. Learnt filter weight adaption updates of the existing random method.

Consistent with Figure (5), convolutional filters examined after learning may be
expected to have stripes, spots and perhaps curves, that may be used in edge detection of
feature extraction, that will be hierarchically connected and organized to form shapes in
later layers. Also convolutional layers, offer the ability to change the image resolution,
at which a filter and the subsequent layers operate. Combined with this, striped and
curved patterns may be more conducive in shape detection, that vary from filter to filter.
In filter generation stripes and curves from a modulation may orientate directions with
different selections of width bounding values as they wrap by the maximum width value
of the filter too. So considering the proposed method, in Figure (6, left) is the proposed
non-random method weight filter initialization, again produced for the first convolu-
tional layer. In Figure (6, right) is those same weights of the filters but after learning has
been conducted, as the update to those filters.

Figure 6. Initial and learnt weights in the first conv layer with the proposed non-random method.

It may be noted that there are also some similarities between the before in Figure (6,
left) and after learning in Figure (6, right) with the proposed method, reinforcing the
dominance of the initial condition assertion. But those similarities are less, and this
method is higher performing then the existing random method. When subtracted to
expose the learnt adaption in Figure (7), there are similarities with Figure (5). The sub-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

traction of the before learning initialization from the learnt weights, might be thought of
as what has been learnt, but is actually more formally what has been adapted from the
initial condition in nudges of values in optimisation iterations.

Figure 7. Learnt filter weight adaption updates with the proposed method.

Thus it may also be noticed that there are also some similarities in what has been
relatively adapted, between the random and non-random methods in Figure (5) and
Figure (7). In fact some equivalent relative filter adaption's between them can be no-
ticed.

So it follows, that the initial condition therefore has an effect originating from their
arrangement from the outset of learning, and different arrangements will affect the after
learning result. However, the relative adaptation from the methods (both random and
non-random) have some equivalence indicating that it is a similar design implementation
arrived at from the same dataset, rather than a different implementation. Which is re-
assuring as the dataset, model architecture and algorithms are unchanged, and it is the
initialization alone that has been modified, and that is what is responsible for the in-
creased accuracy.

VIII. The Proposed (Non-Random) Method
To explain the design of the proposed method, and how it is derived. The intention

was that the proposed initialization method would make filter arrangements that have
stripes, spots and curves that are different in each filter, such that the subsequent learn-
ing adapts to the dataset quicker being pre-disposed to the application. These ar-
rangements are also different in each filter providing a filter diversity of edge detection,
in different orientations, as the positional variation of values is important as it relates to a
filter sweeping across the pixels. If the modulation of arrangement position is based on
a filter cell multiple (like two) as in a matrix, then alternations may relate to stripes in a
2D matrix when different maximum width values are used, that would be controlled
from a hyper-parameter for that layer: filter width. This would also connect the filter to
the resolution in that filter in the model layer. That striping will then be controlled by
the convolutional layer's hyper-parameters (filter height, width and number of filters).
As also the stripe orientation in different filter arrangements is important, a diversity is
required in each filter over the number of filters.

An algorithm published in the papers [22], that produced a least adjacent arrange-
ment based on a modulation of two for dataset shuffling, has some attractive properties
to this application. It was originally an alternative to the established random dataset
shuffle approach. This non-random shuffle approach, rearrange the dataset to produce
a sequence with the first half of the input, that was output at a stride of two and then in
filled the gaps with the remaining vector, also at a stride of two but in reverse order.
This resulted in a placement with smallest and largest numbers neighbouring each other
at the start of the vector. Figure (8) shows, the number sequence with a vector length of
10, and with the unordered in row 1 and the reordered in row 2.

Number sequence with a vector length of 10 unordered and reordered

0 1 2 3 4 5 6 7 8 9
0 9 1 8 2 7 3 6 4 5

Figure 8. Least neighbour shuffle with a vector length of 10.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

This process can be repeated iteratively as an in place operation, and provides an
number of filter variations that are deterministic. When iteratively repeated as an in
place operation, the original sequence order will repeat nominally, at a maximum num-
ber of iterations of: vector length -1 or less, and is an iterative numerical sequence. See
Figure (9), where row 1 and row 10 (the unordered, and 9th iteration of reordering), are
the same due to that repeating nature of the numerical sequence.
Number sequence with a vector length of 10, unordered and then 9 reordering iterations

0 1 2 3 4 5 6 7 8 9
0 9 1 8 2 7 3 6 4 5
0 5 9 4 1 6 8 3 2 7
0 7 5 2 9 3 4 8 1 6
0 6 7 1 5 8 2 4 9 3
0 3 6 9 7 4 1 2 5 8
0 8 3 5 6 2 9 1 7 4
0 4 8 7 3 1 5 9 6 2
0 2 4 6 8 9 7 5 3 1
0 1 2 3 4 5 6 7 8 9

Figure 9. Least neighbour shuffle over 1st unordered and 9 reordering iterations.

This algorithm is to be used as a readdressing method of the initialization weights
pertaining to the filters to provide stripes and curves in that initialization method. Re-
ferring to Figure (9), it can be noted that there is a sliding shift in value placement with
iterations, and that those shifts occur in both diagonal slants, providing an influence from
height and width bounding differences of the selected height and width of the filters.

Another attractive quality of this reordering algorithm, is illustrated with a linear
ramp of values. Where a reorganisation from a modulated ramp to a saw tooth can
occur in addressing shown in this test case at vector length -2 number of iterations, and is
the iteration before the sequence is repeated, at vector length -1 number of iterations.
Figure (10) shows, the reorganisation from the 1st iteration sequence in black and the
penultimate iteration (vector length -2) in red, which is the iteration before the repeat for a
vector length of 10 in the sequence at (vector length -1 iterations).

Figure 10. Least neighbour re-addressing at iterations: 1 and 8.

As the sequence repeats, that algorithm also has a maximum number of combina-
tions up to vector length -1, although some times less iterations depending on the vector
length used, and a subject for further research is to extend the number of filters on offer.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

The algorithm from the papers [22], is further enhanced here to deal with odd
number length vectors. The formulas for the algorithm are in Equations (4), (5), (6) and
(7) as amended and use zero indexing: The output of the function shuffle is a set y, with a
re-ordering of the set x as defined by the subscripts and . As in logically moving
from address position to position . The shuffle function declared in Equation (4) is
recursive, where the number of recursions is defined by the number of filters (nFilter) in
that layer as a subscript (LayerNo).

𝑦 = 𝑠ℎ𝑢𝑓𝑓𝑙𝑒 𝑥, 𝑛𝐹𝑖𝑙𝑡𝑒𝑟() . (4)

The shuffle function is defined in Equation (5) using equation guards, that if the
nFilter(LayerNo) (or i) is greater than one filter, then the recursion is still made with the sub-
script reordering (), while decrementing the i value by 1 on each recursion iteration.
These recursions occur until the last recursion that will return the unordered subscript
location () which will then be subject to all the subscript reorder recursions as the func-
tion shuffling iterations prior are applied to complete the shuffle definition pattern.

𝑠ℎ𝑢𝑓𝑓𝑒𝑙(𝑥{ }, 𝑖) =
𝑠ℎ𝑢𝑓𝑓𝑒𝑙(𝑥{ },𝑖 − 1) 𝑖𝑓 𝑖 > 1

𝑥{ } 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , (5)

where, the index subscript set for '' is in Equation (6), and where n defines the set
size (and again is zero indexed):

𝛽{ .. } =

⎩
⎪
⎨

⎪
⎧

𝛽 ∈ ℕ

0 ≤ 2𝛽 ≤ 2 − 1 ∪

1 ≤ (2𝛽 + 1) ≤ 2 − 1 + 1 ∪

=
(𝑛 − 1) 𝑖𝑓 𝑛(𝑚𝑜𝑑 2) ≠ 0

{} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⎭
⎪
⎬

⎪
⎫

, (6)

and where the last set union is included if the set length (n) is an odd number de-
fined by n (mod 2)≠0, as the modulo division of the set length (n) by modulus 2. This was
the amendment from the papers [22].

The index subscript set for '' is in Equation (7), and naturally has the same set size
(n) and forms the initial order for the re-ordering displacement subscripting in the shuffle
pattern:

𝛼{ .. } =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝛼 ∈ ℕ

0 ≤ 𝛼 ≤ − 1 ∪

𝑛 − 1 ≤ 𝑛 − 1 − 𝛼 ≥ ∪

=
𝑖𝑓 𝑛(𝑚𝑜𝑑 2) ≠ 0

{} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⎭
⎪⎪
⎬

⎪⎪
⎫

, (7)

In illustration, x at this point can be thought of as a sequence of numbers as in
Equation (8), and when n=10 will provide the address shuffle sequences as in Figure (9).
But however, the intended set values for x will be further defined later in this paper in the
valSet function:

𝑥{ .. } = {0. . (𝑛 − 1)} and where n is the length of the tenser. (8)

This algorithm will always have the same value in the first location, and although
this was not significant in the dataset shuffle application in the papers [22], it is signifi-
cant in this application of convolutional filters. Experiments were conducted with
pre-placement shift offsets in the data, and also with a data direction alternation of this
algorithm. These experiments proved to not be as high performing, although did pro-
vide a higher number of unique filters.

As with convolutional layers the order of filter values is significant, so a
pre-alternation of the data is conducted instead. So that every second filter is reversed
(or flipped) and the memory is addressed through width, height and depth for the odd
filter numbers, and vector address reversed as then depth, height, width in reverse order

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

for the even filters. This provides two different filters of alternating direction placement
for the same shuffle iteration, doubling the number of unique filter iterations on offer,
with also a crucial disruption variation to the first position value as its' primary intention.

As well as the address order placement, the value distribution of the values within
the initialization sequence can be significant, as images are less likely to be uniformly
distributed in pixel values. Experiments were conducted with linear ramps, as these
had been the highest performing in perceptron layers [10] [11]. In these experiment
cases the application of a linear ramp was higher performing with dense perceptron
layers, and sinusoidal slopes in the convolutional layers. This might be because of the
cos(x) content is a partial distribution of a sine function (bath-tub), or at least it's distribu-
tion has a match to convolutional layers and the image data it processes. As such the
sinusoidal slope and linear ramp are selected based on the layer type within the network
model architecture, because of the direct image processing in the convolutional layers.

The formulas that call the addressing shuffle function (shuffle) is in Equations (9) -
(30), and includes the addressing alternation in the definition. Note that it also calls a
function (called valSet) that provides a response based on the value ratio (cnt/m), and
network layer type (t) to select a sinusoidal slope or linear ramp value form, altering the
value distribution between layer types. The initialization tensor length (InitTensorLength)
for a layer is based on a number of filters (maxFilters) of that layer and the number of
weights in the filter (m) is as in Equation (9):
𝐼𝑛𝑖𝑡𝑇𝑒𝑛𝑠𝑜𝑟 = 𝑚 ∙ 𝑚𝑎𝑥𝐹𝑖𝑙𝑡𝑒𝑟𝑠 . (9)

Where, each convolutional layer's filter tensor length can be calculated as (m), which
is from the convolutional layer's filter: height, width and depth as a 3D matrix size and is
defined as in Equation (10). The value of m provides a maximum scale value (as the
denominator of a ratio) for a numerator value cnt (as a progressive weight count in the
filter), within each filter of a convolutional layer, Where m-1 is the maximum value that
the value that cnt as part of a ratio can achieve as defined in Equation (11).

𝑚 = 𝐻𝑒𝑖𝑔ℎ𝑡 ∙ 𝑊𝑖𝑑𝑡ℎ ∙ 𝐷𝑒𝑝𝑡ℎ , (10)

𝑐𝑛𝑡 = {0. . 𝑚 − 1} , 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑎𝑠: 𝑐𝑛𝑡(, ,∙) , (11)

Note that the weight calculation algorithm of the dense layer is dependent on the
other layers, and as such the dense layer weight calculation algorithm may vary de-
pending on the prior layer type in the architecture. This is because the activations could
be the number of neurons of a proceeding dense layer, and in that case the subsequent
shuffle reordering and flips may not be necessary as the layers are fully connected as in
the papers [10] [11]. However, if there is a proceeding convolutional layer, then the ac-
tivations map to the receptive fields of the convolved image filters, which is the case in
this benchmark model. So in this case the height and width are the image size and the
depth is inherited as the channel depth (or filters from the previous layer), as in Equation
(12), and the value set of cnt is in Equation (13).

𝑚 = 𝐻𝑒𝑖𝑔ℎ𝑡 ∙ 𝑊𝑖𝑑𝑡ℎ ∙ 𝐷𝑒𝑝𝑡ℎ , (12)

𝑐𝑛𝑡 = {0. . 𝑚 − 1}, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑎𝑠: 𝑐𝑛𝑡 , ,∙ ,
 . (13)

Where nFilter (or nNeurons for a dense layer) and nDepth are number sets that are
zero indexed, and the limit of nFilter is maxFilters-1 (or maxNeurons-1 for a dense layer),
and nDepth is maxDepth-1 of which those sets are defined as in the Equations (14), (15)
and (16).

𝑛𝐹𝑖𝑙𝑡𝑒𝑟 = {𝑛𝐹𝑖𝑙𝑡𝑒𝑟 ∈ ℕ |0 ≤ 𝑛𝐹𝑖𝑙𝑡𝑒𝑟 < 𝑚𝑎𝑥𝐹𝑖𝑙𝑡𝑒𝑟𝑠} , for a convolutional layer, (14)

𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 = {𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ∈ ℕ |0 ≤ 𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 < 𝑚𝑎𝑥𝑁𝑒𝑢𝑟𝑜𝑛𝑠} , for a dense layer and (15)

𝑛𝐷𝑒𝑝𝑡ℎ = {𝑛𝐷𝑒𝑝𝑡ℎ ∈ ℕ |0 ≤ 𝑛𝐷𝑒𝑝𝑡ℎ < 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ} . (16)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

As such each filter vector (or neurons vector in a dense layer) will be a vector of values
with a vector length MaxFilters (or MaxNeurons), and with repeating values in the set in
Equation (17):
𝑛𝑆𝑒𝑡 = {𝑛𝑆𝑒𝑡 ∈ ℕ |0 ≤ 𝑐𝑛𝑡 < 𝑚 − 1}. (17)

The initialization tensor is a 4D tensor matrix of a nHeight 3D matrix tensor that
comprises a 2D matrix of nWidth, and that is a nDepth 1D vector of nFilter length as the
subscripts illustrated in the Equation (18):
𝐼𝑛𝑖𝑡𝑇𝑒𝑛𝑠𝑜𝑟 = (, , ,) , for a convolutional layer . (18)

In this test case, the dense perceptron layers' initialization tensor is re-indexed from
the receptive field mapping of the convolved filters in a previous layer to a matrix of ac-
tivations and neurons as the subscripts in the Equation (19):
𝐼𝑛𝑖𝑡𝑇𝑒𝑛𝑠𝑜𝑟(,) = (, ,), 𝑁𝑒𝑢𝑟𝑜𝑛𝑠 , for a dense layer. (19)

Where the set for the subscripts nHeight and nWidth are given as in Equations (20)
(21), and is the filter geometry in convolutional layers, or the image geometry mapped to
the convolved filters in dense perceptron layers, following a convolutional layer:

𝑛𝐻𝑒𝑖𝑔ℎ𝑡 = {𝑛𝐻𝑒𝑖𝑔ℎ𝑡 ∈ ℕ |0 ≤ 𝑛𝐻𝑒𝑖𝑔ℎ𝑡 < 𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡} , (20)

𝑛𝑊𝑖𝑑𝑡ℎ = {𝑛𝑊𝑖𝑑𝑡ℎ ∈ ℕ |0 ≤ 𝑛𝑊𝑖𝑑𝑡ℎ < 𝑚𝑎𝑥𝑊𝑖𝑑𝑡ℎ} . (21)

A convolutional layer illustrative example of the cnt values (convolved filter ad-
dressing) is given in Equation (22), in the case of 5 filters with a channel depth of 4 and
the filter dimensions of width 3 and a height of 2.

𝑠𝑒𝑡 =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

{0, 0, 0, 0, 0},
{6, 6, 6, 6, 6},

{12, 12, 12, 12, 12},
{18, 18, 18, 18, 18}

,

{1, 1, 1, 1, 1},

 {7, 7, 7, 7, 7},
{13, 13, 13, 13, 13},

{19, 19, 19, 19, 19}

,

{2, 2, 2, 2, 2},
{8, 8, 8, 8, 8},

{14, 14, 14, 14, 14},
{20, 20, 20, 20, 20} ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

{3, 3, 3, 3, 3},

 {9, 9, 9, 9, 9},
{15, 15, 15, 15, 15},

{21, 21, 21, 21, 21}

,

{4, 4, 4, 4, 4},

 {10, 10, 10, 10, 10},

 {16, 16, 16, 16, 16},
{22, 22, 22, 22, 22}

,

{5, 5, 5, 5, 5},
{11, 11, 11, 11, 11},

 {17, 17, 17, 17, 17},
{23, 23, 23, 23, 23} ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 . for Conv layer (22)

The Equation (22) shows vectors of 5 filters are provided for each of the 4 depth
channels, and those in turn are for each of the filter dimensions of width (3) and height
(2). The values of cnt are counting through values of width then height and then depth
as an indexing order and at this point all filter weight values of cnt are matching, as lat-
terly they will be shuffled and alternated towards the final filter permutations for linier
striping.

The tensor of values of cnt with respect to m are applied to the slope alternatives that
are as in the Equation (23), and that can select between the convolutional and perceptron
layer type (t), also with the chosen calculated limit value as (l) for either uniform He et al.
or Glorot/Xavier limit values.

𝑣𝑎𝑙𝑆𝑒𝑡(𝑐𝑛𝑡, 𝑚, 𝑙, 𝑡) =
𝑐𝑜𝑠 𝜋 𝑙 𝑖𝑓 𝑡 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙

2𝑙 − 𝑙 𝑖𝑓 𝑡 = 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛
 . (23)

The valSet function provides two value sequence types depending on the layer type,
this provides two distributions of values that are either uniformly distributed for dense
layers, or bathtub distributed in nature for the convolutional layers.

As the shuffle reordering does not shift the address of the first filter value every
second filter is reversed in order, for convenience this is done in a matrix transpose form,
and forms a transposed matrix as in Equation (24).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

TsprMat(, , , ,) = 𝑇
, , ,

 (24)
Every second filter is order reversed (flipped) as a contiguous vector tenser as in

Equation (25):

𝑓𝑙𝑖𝑝𝑀𝑎𝑡 =
𝑇𝑠𝑝𝑟𝑀𝑎𝑡(,()..) (𝑛𝐹𝑖𝑙𝑡𝑒𝑟 + 1) (𝑚𝑜𝑑2) = 0

𝑇𝑠𝑝𝑟𝑀𝑎𝑡(, ..()) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . (25)

Then the vector is re-indexed back to the matrix subscripts as in Equation (26):
𝑇𝑠𝑝𝑟𝑀𝑎𝑡2[𝑛𝐹𝑖𝑙𝑡𝑒𝑟] = 𝑓𝑙𝑖𝑝𝑀𝑎𝑡 (𝑑𝑒𝑝𝑡ℎ, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) (26)

Again for illustration, if the matrix (TsprMat2) is also transposed back and using the
cnt values, rather than the valSet function response values as intended, so as to provide a
clear illustration in comparison with the previous example in Equation (22), then the
matrix becomes as in Equation (27):

𝑠𝑒𝑡 =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

{0, 23, 0, 23, 0},
{6, 17, 6, 17, 6},

{12, 11, 12, 11, 12},
{18, 5, 18, 5, 18}

,

{1, 22, 1, 22, 1},

 {7, 16, 7, 16, 7},
{13, 10, 13, 10, 13},

{19, 4, 19, 4, 19}

,

{2, 21, 2, 21, 2},
{8, 15, 8, 15, 8},

{14, 9, 14, 9, 14},
{20, 3, 20, 3, 20} ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

{3, 20, 3, 20, 3},

 {9, 14, 9, 14, 9},
{15, 8, 15, 8, 15},

{21, 2, 21, 2, 21}

,

{4, 19, 4, 19, 4},

 {10, 13, 10, 13, 10},

 {16, 7, 16, 7, 16},
{22, 1, 22, 1, 22}

,

{5, 18, 5, 18, 5},
{11, 12, 11, 12, 11},

 {17, 6, 17, 6, 17},
{23, 0, 23, 0, 23} ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 . (27)

Equation (27) shows the filter flips in every second filter when compared with
Equation (22).

Furthermore, to apply the shuffle as an address re-order on the alternated vector re-
versed matrix (flipped) as a contiguous vector, Equation (28) is used:
𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑀𝑎𝑡(𝑛𝐹𝑖𝑙𝑡𝑒𝑟) = 𝑆ℎ𝑢𝑓𝑓𝑙𝑒(𝑓𝑙𝑖𝑝𝑀𝑎𝑡 , ..() , ⌊𝑛𝐹𝑖𝑙𝑡𝑒𝑟/2⌋) (28)

Then the vector is re-indexed back to the matrix subscripts as in Equation (29):
𝑇𝑠𝑝𝑟𝑀𝑎𝑡3[𝑛𝐹𝑖𝑙𝑡𝑒𝑟] = 𝑠ℎ𝑢𝑓𝑓𝑒𝑙𝑀𝑎𝑡(, ,) (29)

Yet again for illustration, if the matrix (TsprMat3) is again transposed back and using
the cnt values for a clear illustration rather than the valSet function response values, so as
to be in comparison to previous examples in Equations (22) and (27), the matrix becomes
as in Equation (30):

𝑠𝑒𝑡 =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

{0, 23, 0, 23, 0},
{6, 17, 4, 19, 20},
{12, 11, 6, 17, 4},
{18, 5, 10, 13, 21}

,

{1, 22, 3, 20, 23},

 {7, 16, 2, 21, 1},
{13, 10, 9, 14, 19},

{19, 4, 8, 15, 5}

,

{2, 21, 1, 22, 3},
{8, 15, 5, 18, 22},
{14, 9, 7,16, 2},
{20, 3, 11, 12, 18} ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

{3, 20, 23, 0,12},

 {9, 14, 19, 4, 8},
{15, 8, 17, 6, 16},

{21, 2, 13, 10,9}

,

{4, 19, 20, 3, 11},

 {10, 13, 21, 2, 13},

 {16, 7, 14,9, 7},
{22, 1, 22, 1, 22}

,

{5, 18, 5, 18, 5},
{11, 12, 11, 12, 11},

 {17, 6, 17, 6, 17},
{23, 0, 23, 0, 23} ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 . (30)

Equation (30) shows the shuffle reordering of the filters when compared with the
example in Equation (27), although the valSet value for the cnt value would be used in the
actual implementation.

The cnt values have been shown here for illustration to compare with Equations (22)
(27), and show the address reordering cnt values for clearer understanding, rather than
the intended valSet function distribution response.
A. Summary of the proposed method

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

In summary the resulting initialization weights, that were higher performing pro-
vided a sinusoidal bathtub distribution in convolutional layers, and a uniform distribu-
tion in the perceptron layer. Where the reordering provides uniquely reordered filters
in each filter, with alternating vector directions and that reordering provides a two posi-
tion base shift least neighbour arrangement. That least neighbour arrangement has a
pattern reorganisation from a linear ramp to a saw tooth that is quasi-progressive in each
filter, with a matching filter direction alternative provided from the numerical reverse
order arrangement.

The nominal maximum number of unique filters is as in Equation (31), although
with some weight geometries of a filter the pattern repeats earlier through aliasing. This
is a subject of research to extend the number of useful filters on offer, and optimise the
filters, given the filter geometries and number of them.
𝑛 = 2(𝑟𝑜𝑤 ∙ 𝑐𝑜𝑙𝑢𝑚𝑛 ∙ 𝑑𝑒𝑝𝑡ℎ − 1). (31)

When the losses are compared during learning, of the first epoch, as the epoch after
initialization, were the initial learning occurs. Then the loss does reduce quicker with
the proposed non-random method, owing to the stripes and curves in the initial condi-
tion, being pre disposed to the application of categorization. Note that losses are shown
as they are the optimisation objective. See Figure (11, left) for the existing random
method, and Figure (11, right) for the proposed non-random method when shuffled.

Figure 11. Losses over batches in fitting when shuffled (existing method left, and proposed method
right).

Figure (12) also makes the comparison with the existing random method in Figure
(12, left), and the proposed non-random method in Figure (12, right). In comparison to
the dataset shuffling in Figure (11), and the un-shuffled dataset results in Figure (12), the
proposed non-random method has achieved the lower loss quicker in learning in both
cases, and is noted at the batch 100 point. Thus earlier learning has benefited relatively
in the proposed non-random method, using more of the dataset more effectively from the
outset of learning, regardless of the dataset shuffling.

Figure 12. Losses over batches in fitting when un-shuffled (existing method left, and proposed
method right).

There is however an enquiring question raised, and that is: although it is a departure
from the benchmark model, would the proposed method be robust to He et al. [16] ini-

1st epoch Shuffled

Proposed Non-Random

Method at batch 100.

1st epoch Shuffled

Existing Random Method

at batch 100.

1st epoch Un-Shuffled

Existing Random Method

at Batch 100.

1st epoch Un-Shuffled

Proposed Non- Random

Mathod at Batch 100.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

tialisation limits instead. As He et al. initialisation is regarded as the state of the art. The
uniform He et al. initialisation limit values are calculated in Equations (32), (33) and (34):

𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟1 =
(∗ ∗)

=0.48989795 , (32)

𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟2 =
(∗ ∗)

=0.08660254 and (33)

𝐷𝑒𝑛𝑠𝑒𝐿𝑎𝑦𝑒𝑟 =
(∗ ∗)

= 0.07654655. (34)

As before with the Glorot/Xavier limits the He et al. limit values are rounded to 8
decimal places [21], so as to be compatible in comparison. The cross-validation results
using the He et al. initialisation limits are presented in Table 4 in columns: 'Loss' and
'Accuracy. Also the relative gain percentage of the proposed non-random method, over
the Glorot/Xavier limits, is within the column 'He/Glorot (Non-Rand)'. Those percent-
ages are the He et al and Glorot/Xavier initialisation limit values gain results both using
the proposed non-random method. Also within Table 4, for completeness is a compar-
ison gain using the proposed non-random method and the existing random method, both
with He et al. initialisation, which is in column the 'He (Rnd/Non-Rnd)'.

Table 4. He et al. limits with the proposed initialization method, and gain comparisons.

Epochs He et al. (Non Rnd) measure Gains Over the Baseline
Loss Accuracy He/Glorot (Non-Rand) He (Rnd/Non-Rnd)

5 Shuffled 0.082669578 97.55% +0.05% +0.7%
4 Shuffled 0.093996972 97.19% +0.08% +0.91%
3 Shuffled 0.10997723 96.97% +0.12% +1.49%
2 Shuffled 0.134461805 96.15% +0.19% +1.83%
1 Shuffled 0.214723364 94.11% +0.34% +5.13%
1 No Shuffle 0.217569217 93.57% +0.29% +4.27%

In all cases in Table 4 the proposed method offers a positive accuracy gain ad-
vantage in cross-validation. However, the greatest increase in accuracies are in both the
first epoch cases shown in bold. Suggesting that He et al. initialisation limits also bene-
fited again in extra earlier learning, over the earlier learning gains of the Glorot/Xavier
limits previously demonstrated. The proposed method also offers an advantage gain in
comparison with the existing random form using He et al. initialization, with again the
greatest advantage in the initial epoch.

In all cases, the proposed method has an advantage in cross-validation accuracy
when either applied to Glorot/Xavier, or the current state of the art of He et al limit values,
and is repeatable and deterministic. That is an additional advantage for development of
dependable safety critical applications, and also is an advantage within smart sensors
using image classification.

IX. Fast Sign Gradient Method (FSGM) Perturbation Attack
This section will further examine the proposed non-random and existing random

methods, using a transferred learning and FSGM approach. FSGM with transferred
learning is a convenient approach to control distortions in a transferred learning dataset
from the FSGM's epsilon () value. The FSGM model defence with transferred learning
approach, is used rather than other approaches, as it will demonstrate in influence of how
compromised the transferred learning is, over the updated further learning, and the
transferred learning approach will provide an indicator of those influences with a vary-
ing controlled magnitude of error distortion via the FSGM's epsilon () value.
A. The FSGM transferred learning approach

 A modern theme in neural networks is the area of perturbation attacks using the
Fast Sign Gradient Method (FSGM) attack proposed by Ian Goodfellow [23] [24]. This is

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

an attack that can cause miss-classifications with an effect that may not be humanly per-
ceivable. The attack itself can have a strength value of the attack controlled by an error
magnitude value epsilon () [23] [24] as in Equation (36):
𝑥 = 𝑥 + 𝜀 ∙ 𝑠𝑖𝑔𝑛 (∇ 𝐽(, 𝑥, 𝑦)) (36)

A modification to the FSGM attack equation is made to avoid out of scale numbers
in the image after perturbation, by clipping the perturbation image pixel values between
0 and 1, as in Equation (37). This is to be compatible in comparison to the non-perturbed
image pixel scales, that were also scaled between values 0 and 1 in the Torres model [18]:
𝑥 = max min 𝑥 + 𝜀 ∙ 𝑠𝑖𝑔𝑛 ∇ 𝐽(, 𝑥, 𝑦) , 1.0 , 0.0 (37)

When the epsilon () value is small the attack can be a deception (or spoofing)
coursing miss-classification to another number assignment other than a human would.
Also when the epsilon () value is large it can cause a denial of service (DoS) to the human
while still having a classification in the computer. It might be noted, that this might also
have applications to encryption and hidden messages.

The FSGM transferred learning approach used is by Theiler [25], and it explains the
attack with examples, and importantly uses the same MNIST dataset. See Figure (13) for
the Theiler and Torres architecture as integrated, with three experiment test points.

Figure 13. Theiler's FSGM transferred learning experiment model [25], as added to the Torres's
benchmark model.

The Theiler attack dataset sizes [25] are thus used as the dataset is the same, alt-
hough is adapted to the Torres benchmark's number of epochs [18] instead. The epochs
used in transferred learning are set to be half that of the Torres baseline benchmark case,
instead of half the Theiler number of epochs, as is the case from Theiler's initial learning
model. Such that the amount of back propagation is relatively similar to the transferred
learning from Theiler's model but applied to the Torres model.

The relevance of the FSGM attack to this paper is a hypotheses that FSGM attacks
could be effective partially from the less humanly perceivable noise content in an image
dataset rather than the useful information in the dataset alone. Furthermore, that that
noise could be noise re-colourised by the random numbers as a noise source in the ini-
tialisation state when the weights are multiplied with the activations. It follows that if
an initialisation state has less random content that could be thought of as noise, then the
subsequent learning may have less opportunity for unintentional noise re-colourisation
as a result. Thus the effect could affect the compromise of the original training after
defence if the adversarial attack dataset is used to retrain the model to protect it. The
FSGM approach also provides a controlled distortion via the epsilon () value.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

In Figure (14, left and right) are the 1st 20 images of the FSGM perturbation attack
datasets. They are generated from the sign of the gradient of the loss of a true prediction
and an image, In Figure (14, left) is the generation from the existing random form, and
in Figure (14, right) from the proposed non-random method instead. Along the columns
axis are the 1st 20 images of each dataset, and in each row as perturbed with images with
an increasing epsilon value of 0.0 to 1.0 in steps of 0.05. In green are the perturbation
images that are correctly classified against their original tag, and in red are the perturba-
tion images that are miss-classified.

Figure 14. FSGM attack image examples: existing method (left) proposed method (right).

Figure (14) shows that the low perturbation epsilon error values images (at the 1st
rows) are humanly recognisable and the high epsilon error values images (at the last
rows) are not humanly recognisable. At the point that the miss-classifications occur, the
strength of the competing images pixels become more apparent, and traditional
de-noising and image value clipping would enhance the image classification in many
cases of both methods. The subject of noise and noise injection, but as a method for de-
fence from FSGM is proposed in 2020 by Schwinn et al. [26], but their approach requires a
learning regularisation step that couples it to the dataset. Although the Schwinn et al.
[26] approach is of interest, but in a non-dataset coupled form, and perhaps as an aug-
mentation to the epoch scheme. However, this paper's approach is purely to examine
the possible resistance and compromise with a reduction in noise re-colorization oppor-
tunities.

Thus applying the same perturbed FSGM attack method with different epsilon error
strengths, a comparison in accuracy and loss between the existing (random) and pro-
posed (non-random) methods are presented in Figures (15), (16) and (17).
B. The undefended model, attacked by FSGM

Figure (15, left) and Figure (15, right) are results (at the experiment test point 1) in
accuracy and loss, from cross-validation with a generated validation adversarial attack
perturbation dataset of 10,000 images using the FSGM approach, and applied to an un-
defended model. In Figure (15), both the existing (random shown in red) and proposed

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

(non-random shown in blue) methods are using the higher performing He et al. initiali-
sation limit values, and with controlled steps of the epsilon () distortion value.

Figure 15. Accuracy and losses of an undefended model with epsilon increments under attack (test
point 1).

In Figure (15, left) in both initialization cases, the results are almost identical in ac-
curacy, with an undefended model, signalling a similar generalisation was achieved
under attack. Ideally the accuracy would be higher, to correctly classify the images with
their original tag despite the perturbation attack. Both the existing (random) and pro-
posed (non-random) methods are susceptible to FSGM attack, and in both cases the sus-
ceptibility is greater as the epsilon value gets larger, signalled by the cross-validation
accuracy lowering. In Figure (15, right) ideally the losses may be low showing regular-
isation is still effective, i.e. it reduces the variance, despite the perturbation attack.
However, in this attack the sign of the gradient is taken from a calculated loss of a true
prediction and an input image, that gradient is then applied to an image as a perturbation
image, therefore the loss rises as the epsilon value is raised, as the controlled distortion.
The proposed (non-random) method has a lower loss then the existing (random) method,
at larger epsilon values. Suggesting that the perturbation of features in the attacks are
less sensitive to regularisation in the proposed method, although this is at epsilon values
where the generalisation (accuracy) has diminished in the attack.
C. Defending a model from FSGM

The Theiler [25] approach to defending a model from an attack is to transfer learning
and include adversarial perturbation attack examples into a further training dataset, and
generate a further attack validation dataset. Then cross-validate with both validation
datasets (i.e. both attack and non-attack datasets). This makes a comparison in accuracy
and loss after model defence. As such the original model is further trained with 20,000
training adversarial perturbation attack images to defend it over 2 epochs, examined
with controlled increments of the epsilon () value. In the experiment approach the ep-
silon () value is stepped, providing a controlled distortion in the transferred learning.
Such that the controlled distortions can be examined after transferred learning, and re-
veal how compromised both methods are after the learning transfer.
D. Examining the transferred learning adaption

The results from the existing (random) and proposed (non-random) methods are
shown for experiment test point 2. In Figure (16, left) and Figure (16, right) the perfor-
mance against the validation attack perturbation dataset is shown. Such that the trans-
ferred learning of the original dataset is transferred with an attack dataset to evaluate the
performance.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

Figure 16. Accuracy and losses of a defended model with epsilon increments against the validation
attack dataset (test point 2).

Figure (16, left) and Figure (16, right) show the accuracy and losses of the defended
model cross-validated with the validation attack dataset, and shows the existing (ran-
dom) and proposed (non-random) methods, have as similar performance with low ep-
silon values. Figure (16, left) shows that with larger epsilon values, the cross-validation
accuracy of the attack dataset is higher with the existing method, showing the existing
method prefers the further generalisation from retraining after model defence at higher
distortions. In Figure (16, right) the losses are also lower in the existing method indi-
cating that they are slightly more regularised in the existing method.
E. Examining the model compromise in defence to the original cross-validation dataset

In Figure (17, left) and Figure (17, right) are the results after model defence with the
adversarial FSGM perturbation attack dataset, but cross-validated with the original
non-attack dataset (at experiment test point 3). This is to show how compromised the
models are to the original non-attack dataset after model defence via transferred learn-
ing.

Figure 17. Accuracy and losses of a defended model with epsilon increments against the original
non-attack cross-validation dataset (test point 3).

Figure (17, left) and Figure (17, right) shows the defended model with the original
dataset cross-validation in accuracy and loss. Figure (17, left) and Figure (17, right)
shows that at greater epsilon error magnitudes the difference between the existing (ran-
dom) and proposed (non-random) methods are divergent. With the proposed
(non-random) method being the higher accuracy in Figure (17, left) and lower loss in
Figure (17, right). Meaning that the proposed (non-random) method has suffered less in
accuracy when re-trained with the perturbed attack dataset to defend it. i.e. the attack

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

defence has less affected the accuracy to the original dataset with the proposed method,
most notably with larger distortions in that further training attack dataset.
F. FSGM attacks with varying epsilon values

In all cases included in Figures (15), (16) and (17), each perturbation attack dataset,
used a constant epsilon value in each measurement, that was progressively increased.
In Table 5 are the results from both the existing (random) and proposed (non-random)
methods, but with a randomly varying epsilon value in both the cross-validation and
training datasets.

Table 5. Results from a single dataset that included random epsilon values.

Initialization method used prior to
model defence via transferred
learning.

Non-Attack
cross-validation dataset

Attack
cross-validation dataset

Loss
(Cross Val)

Accuracy
(Cross Val)

Loss
(Cross Val)

Accuracy
(Cross Val)

Proposed (Non-Random) Method 0.9854 67.01% 1.3331 61.82%
Existing (Random) Method 1.2736 61.05% 0.8366 78.41%

In Table 5 the cross-validation accuracy with the proposed (non-random) method is
greater with a lower loss, when cross-validated with the original non-attack validation
images. This is shown in Bold, within the column: 'Non-Attack cross-validation dataset'.
However, the cross-validation accuracy is higher with a lower loss with the existing
method using the attack cross-validation dataset. This is also shown in bold, within the
column: 'Attack cross-validation dataset'.

Table 5 demonstrates that the proposed non-random method has been less com-
promised to the original learning that was transferred. Also that the existing method by
contrast, had a higher accuracy and lower loss with the retraining attack dataset, thus
may have embraced the subsequent attack dataset more, but has been more compro-
mised to the original training to a greater extent. These findings were also shown in
Figures (15), (16) and (17), and those results also showed a greater difference with con-
stant epsilon values, and the most extreme difference was with the larger epsilon ()
values, rather than smaller values.

X. Discussion and Conclusions
This work focused on repeatable determinism to support mission and safety critical

systems that use convolutional networks with mixes of both perceptron and convolu-
tional layers.
A. Proposed method in neural networks

The proposed method, is applicable to deep convolutional networks for repeatabil-
ity, however also achieves a higher accuracy in a single learning session, with a compu-
tational initialization state number sequence that has been designed to be more condu-
cive to image classification. The proposed method has a finite number sequence set that
is not coupled to the dataset via sampling, which may be closer to a general case. The
losses during learning show a quicker reduction using the proposed form, and result in a
higher accuracy. The repeatable deterministic property also provides no variation in
learning sessions, aiding the speed of development of a model. The proposed method is
complimentary to existing methods, replacing only the random numbers in those meth-
ods. The proposed non-random method provided a higher cross-validation accuracy
against the existing random number method, and when used with Glorot/Xavier limits of
the benchmark models achieved an extra 3.705% un-shuffled, and 2.642% shuffled in the
first epoch. Thus dataset order is still a significant effect, but the proposed method was
tolerant. The proposed method is also robust to He et al. initialization value limits as the
current state of the art, and when used with the proposed method offered an accuracy gain
of 5.13% shuffled and 4.27% un-shuffled in the first epoch.
B. Proposed method in FSGM with transferred learning

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

When applied to FSGM attacks both methods offer little resistance to perturbation
attacks without transferred learning, but the proposed (non-random) method also has an
advantage of being less compromised, noted with larger epsilon values. These results
may be biased to the order that the datasets where trained in, and transferred from, as a
bias to the original programming. However it could also be that the higher epsilon
values have less suitable application to the proposed method, and further study would
be required. The results do show that the proposed method when transferred in this
order, can provide a lower compromise to the original programming, and achieved an
accuracy of ~31%, compared with ~9% of the existing method. Moreover, the FSGM at-
tack was used with transferred learning to examine the compromise of the learning from
cross-validation datasets, under controlled distortions. This found that with higher ep-
silon distortions the proposed (non-random) method was less compromised to the orig-
inal cross-validation datasets that had no distortions. By contrast, the existing random
method with higher attack distortions was less compromised with the attack dataset, but
much more compromised to a dataset with no distortions. This also provides support to
the notion that high epsilon values can be used to cause a DoS attack to a human while
still being readable by a computer at 63%-85%, and that the proposed method can still
provide a higher level of performance in generalisation in non-perturb cases of ~31%, in-
stead of just ~9% with the existing method. The bias to original training is favoured, il-
lustrated by, that if the transferred learning was to extend the training to a letter set from
A to F as the hexadecimal set. Then the existing random method may be biased to re-
placing the training of numbers with letters. Whereas the proposed non-random
method may be more biased to extending the training to letters, while still retaining more
of what was learnt from numbers. It follows that there are more subjects for further re-
search.
C. Further research

Synthetic noise replacement: A further extension to this work may look at synthetic
noise like injection methods into the dataset consistent with the Schwinn approach [26],
but not to be dataset coupled, perhaps as an augmentation to the epoch scheme, and it
was noted that dataset order is also still an effect on performance.

Model architectures and dataset: Also in further work, a focus on different datasets,
particularly those datasets with multi-channel images and in other applications. There
may also be more dense layer configurations depending on the layers prior, that will in-
crease performance in neural network generalisations. It may be that the proposed
method is a more general approach by not being coupled to the dataset directly through
data sampling, as used in other related works. However, it is indirectly coupled, as the
model architectures are coupled to the datasets and applications. As such the proposed
method is connected to hyper-parameters. The proposed non-random method having
more striped forms through a filter may make the filter size less sensitive to hy-
per-parameters. As with the random speckled form the initialisation filter patterns be-
come more specific as the filter is enlarged. Further research is required to set the re-
sultant filter patterns with variations in the hyper-parameters used in different model
architectures, datasets and applications to perfect the algorithms proposed, such that
they can be a general case, as a direct alternative to the existing random forms.

Increasing and optimising filter diversity: Another subject of research is increasing
the number of filters on offer, and making them tolerant to the hyper-parameters in more
architectures. Such that the proposed method is adapted to an architecture generally
and is not constraining to it, providing the best filters for any model architecture. That
may also include examining the success of current proposed filters, such that a subse-
quent proposed method can be optimised towards higher performing filters.

References
1. Hubel, D.H.; Wiesel, T.N., Receptive fields and functional architecture of monkey striate cortex, The Journal of Physiology, 1958,

vol. 195, no. 1, pp. 215-243.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

2. Hubel, D.H.; Wiesel, T.N. Shape and arrangement of columns in cat's striate context, The Journal of Physiology, 1963, vol. 165, pp.
559-568.

3. LeCun, Y.; Kavukcuoglu, K.; Farabet C., Convolutional networks and applications in vision, Proc. of IEEE International Sympo-
sium on Circuits and Systems (ISCAS). 2010, pp. 253-256.

4. Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber. J., Stacked convolutional auto-encoders for hierarchical feature extraction,
Honkela T., Duch W., Girolami M., Kaski S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011.
Lecture Notes in Computer Science, 2011, vol. 6791. Springer, Berlin, Heidelberg.

5. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks, NIPS'12: Proc. of the
25th International Conference on Neural Information Processing Systems., 2012, vol. 1, pp 1097-1105.

6. Srivastava, S.; Bisht, A; Narayan, N. Safety and security in smart cities using artificial intelligence - a review, Proc. of 7th Inter-
national Conference on Cloud Computing, Data Science & Engineering - Confluence, 2017, pp 130-133.

7. Knight, J., Safety critical systems: challenges and directions, Proc. of International Conference on Software Engineering. 2002, pp.
547 - 550.

8. Serban, A., Designing safety critical software systems to manage inherent uncertainty, Proc of 2019 IEEE International Conference
on Software Architecture Companion (ICSA-C). 2019, pp 246-249.

9. Carpenter, P., Verification of requirements for safety-critical software, Proc. of the 1999 annual ACM SIGAda international con-
ference on Ada. 2019. Volume: XIX, pp. 23-29.

10. Rudd-Orthner, R.; Mihaylova, L., Non-random weight initialisation in deep learning networks for repeatable determinism,
Proc. of IEEE International Conference on Dependable Systems, Services and Technologies (DESSERT), 2019, pp. 223-230.

11. Rudd-Orthner, R; Mihaylova, L., Repeatable determinism using non-random weight initialisations in smart city applications of
deep learning. Journal of Reliable Intelligent Environments, 2020, vol. 6, pp. 31-49.

12. Blumenfeld, Y.; Gilboa D.; Soudry, D., Beyond signal propagation: is feature diversity necessary in deep neural network ini-
tialization?, Proc. of the 37th International Conference on Machine Learning, 2020, vol. 119, pp. 960-969.

13. Ding, W.; Sun, Y.; Ren, L.; Ju, H.; Feng Z.; Li, M., Multiple lesions detection of fundus images based on convolution neural
network algorithm with improved SFLA, Special Section on Deep Learning Algorithms for Internet of Medical Things, 2020, vol. 8 pp
97618-97631.

14. Wang, Y.; Rong, Y.; Pan, H.; Liu, K.; Hu, Y.; Wu, F.; Peng, W.; Xue X.; Chen, J., PCA based kernel initialization for convolutional
neural networks, Tan Y., Shi Y., Tuba M. (eds) Data Mining and Big Data. DMBD 2020. Communications in Computer and Information
Science, 2020, vol. 1234. Springer, Singapore.

15. Ferreira, M.F.; Camacho R.; Teixeira, L.F., Autoencoders as weight initialization of deep classification networks for cancer
versus cancer studies, BMC medical informatics and decision making, 2019, vol. 20. sup. 5:141

16. Arat, M.M., Weight Initialization Schemes - Xavier (Glorot) and He, Mustafa Murat ARAT, 2019, Available:
https://mmuratarat.github.io/2019-02-25/xavier-glorot-he-weight-init.

17. LeCun, Y.; Cortes C.; Burges, C., MNIST handwritten digit database, Yann.lecun.com. Available at:
http://yann.lecun.com/exdb/mnist/ [Accessed on 28/05/2021].

18. Torres, J., Convolutional neural networks for beginners using Keras & TensorFlow 2, Medium, 2020, Available
at: https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25

19. Kassem, MNIST: simple CNN keras (accuracy : 0.99)=>top 1%, Kaggle.com, 2019, Available at:
https://www.kaggle.com/elcaiseri/mnist-simple-cnn-keras-accuracy-0-99-top-1.

20. Kakaraparthi, V., Xavier and He normal (he-et-al) initialization, Medium, 2018, Available at:
https://medium.com/@prateekvishnu/xavier-and-he-normal-he-et-al-initialization-8e3d7a087528.

21. Hewlett-Packard, HP-UX Floating-point guide HP 9000 computers Ed 4, Citeseerx.ist.psu.edu, 1997, p. 38.. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.9291&rep=rep1&type=pdf.

22. Rudd-Orthner R.; Mihaylova, L., Numerical discrimination of the generalisation model from learnt weights in neural net-
works, In Proc. of the International Conf. on Computing, Electronics & Communications Engineering (iCCECE), IEEE, 2019.

23. Goodfellow, I.; McDaniel P.; Papernot, N., Making machine learning robust against adversarial inputs, Communications of the
ACM, 2018, vol. 61, no. 7, pp. 56-66.

24. Molnar, C., 6.2 Adversarial examples | interpretable machine learning. Christophm.github.io. 2021, Available at:
https://christophm.github.io/interpretable-ml-book/adversarial.html.

25. Theiler, S.. Implementing Adversarial Attacks and defenses in keras & tensorflow 2.0, Medium, 2019, Available at:
https://medium.com/analytics-vidhya/implementing-adversarial-attacks-and-defenses-in-keras-tensorflow-2-0-cab6120c5715.

26. Schwinn, L.; Raab, R.; Eskofier, B., Towards rapid and robust adversarial training with one-step attacks ArXiv preprints
arXiv:2002.10097, 2020.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2021

