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Abstract: This paper presents a non-random weight initialization method in convolutional layers of 
neural networks examined with the Fast Gradient Sign Method (FSGM) attack.  This paper's focus 
is convolutional layers, and are the layers that have been responsible for better than human per-
formance in image categorization.  The proposed method induces earlier learning through the use 
of striped forms, and as such has less unlearning of the existing random number speckled methods, 
consistent with the intuitions of Hubel and Wiesel.  The proposed method provides a higher per-
forming accuracy in a single epoch, with improvements of between 3-5% in a well known bench-
mark model, of which the first epoch is the most relevant as it is the epoch after initialization.  The 
proposed method is also repeatable and deterministic, as a desirable quality for safety critical ap-
plications in image classification within sensors.  That method is robust to Glorot/Xavier and He 
initialization limits as well.  The proposed non-random initialization was examined under adver-
sarial perturbation attack through the FGSM approach with transferred learning, as a technique to 
measure the affect in transferred learning with controlled distortions, and finds that the proposed 
method is less compromised to the original validation dataset, with higher distorted datasets. 

Keywords: Repeatable Determinism; Weight Initialization; Convolutional Layers; Adversarial 
Perturbation Attack; FSGM, Transferred Learning, Machine Learning, Smart Sensors. 
 

1. Introduction 
Convolutional layers in neural networks have been used in Artificial Intelligence 

(AI) applications, and led to the use of multiple layers separated by non-linearity func-
tions.  This layering of hidden layers are said to be deep, and the successes of that ar-
chitecture led to the Deep Learning research thread.  It is generally accepted that  con-
volutional layers may have translation to brain anatomy with respect to Hubel and 
Wiesel [1] [2].  Whom examined spider monkey's and cat's brain activity when under a 
light anaesthetic, while stimulating the retina with images of spots, stripes and patterns.  
Convolutional layers have had biological inspirations, and are generally accepted as 
providing hierarchical feature extraction in a deep Convolutional Network (ConvNet) [3] 
[4].  Later in 2012, Alex Krizhevsky's paper [5] would prove to become an influential 
paper, and demonstrated better than human performance within image categorization in 
the image net challenge using deep convolutional networks.  Convolutional Neural 
Networks (CNN) have played an influential role ever since.  Although, applications of 
convolutional layers provide some important human level capabilities, but they have not 
been embraced into mission critical applications [6] [7] [8] [9], owing in part to learning 
session accuracy variations, and certification of the network content as complete and 
correct.  Currently, random initialization methods provide a cross-validation variation 
in accuracy that is visible over regularisation, that is to say that different random initial-
ization states provide a variation in the prediction accuracy when cross-validated.   

To this end, the previous published background work [10] to this paper, also ex-
amined repeatable determinism, but in perceptron layers only, and proposed a method, 
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although was tightly coupled to the perceptron layers.  Although tightly coupled, that 
previous paper, resolved a numerical stability issue for repeatability, and proposed a 
non-random method for determinism, that achieved an almost equal performance in 
accuracy proving viability of a non-random method.  That work was furthered in a 
journal published version, which used the Glorot/Xavier limit values [11] with the 
non-random method, and this time achieved an equal performance in accuracy to the 
random method, now proving equality in performance as an alternative augmented ap-
proach.  That non-random method [11] was an augmentation to the established existing 
initialization method, rather than a replacement.  As it proposed and alternative to the 
random numbers only, rather than the limit values used in those methods, and as such is 
a complimentary approach.  The previous work [11] also had the benefit of ordering the 
weights after learning, into a structured form along the number of neurons axis and 
highlighted the correlation in structure at pixel indexes.  See Figure (1, left) for the 
weight matrix as an image of learnt weights of the existing random method, and Figure 
(1, right) for the weights using the non-random method [11], both in a perceptron layer. 

  
Figure 1. Weight matrix after learning, results from a perceptron only network, left is an existing 
random method (Glorot/Xavier), and right a non-random method from the previous work [11]. 

It was noted in that previous work [11], that both weight sequences have an equiv-
alence in performance, but the non-random method (in Figure 1 right) has a structure 
that may have a benefit for rule extraction.  As the weights have been grown in an or-
dered sequence along the number of neurons (in the x plane), and shows activation cor-
relations at pixel positions (in the y plane), and that helps to generalise in a rule extraction 
approach, as the pixel activations have been clustered to neighbouring weights.  How-
ever, both those previous papers [10] [11] were confined to perceptron layers and this 
paper furthers that work into convolutional networks.  That earlier work [10] [11] in 
perceptron layers did prove that an equal performance of a non-random weight initiali-
zation method was viable, and that random numbers for the initialization is not neces-
sary.  Which is the same assertion of Blumenfeld et al. too in 2020 [12], in an experiment 
of zeroing of some of the weights in a convolutional layer.  However, the zeroing of 
weights is not this paper's approach.  Furthermore, the order of weights in the back-
ground perceptron work [10] [11] was not significant, due to the fully connected links of 
nodes, and in convolutional layers the weights relate to convolved spatial filters, and so 
the order is significant.  So the previous perceptron form [10] [11] is not applicable 
within convolutional layers of networks directly. 
A. Structure of the paper 
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This papers structure is as follows: Section 1 is the introduction to the area and the 
background work.  Section 2 introduces recent contemporary related works.  Section 3 
introduces the novelty of this work.  Section 4 is the benchmark baseline model, and is 
comparable to the background work in perceptron layers [10] [11].  It presents the base-
line results of that model, reusing the critical-sections defined from the background work 
[10] to re-produce a 'repeatable' learning session.  Section 5 compares the existing ran-
dom initialization method as a benchmark to the proposed method.  Section 6 explains 
the number of weights and image size in each layer of the benchmark model, so the 
proposed method can be explained and the Glorot/Xavier limit values calculated.  Sec-
tion 7 shows the weight differences of the existing random method and the proposed 
method, before and after learning, with an illustration of what has been learnt.  Section 8 
presents the proposed non-random method that achieved a higher accuracy score and 
explains the design, and also verifies robustness to He et al. initialization limits as the 
current state of the art.  Section 9 makes a comparison under adversarial perturbation 
attack using the Fast Sign Gradient Method (FSGM) with transferred learning.  This is a 
convenient method for examining transferred learning compromise with a controlled 
distortion through the epsilon value ().  Section 10 presents the discussion of results 
and concludes this paper. 

II. Related Work 
Ding et al. in 2020 [13], proposed a shuffle leap frog algorithm approach, for the update 

and initialization with random Gaussian forms in the area of fundus lesions images.  
The approach presented in that paper contains random numbers, initially in a Gaussian 
distribution optimised with the shuffle leap frog algorithm, where as the approach pre-
sented in this paper, does not contain random numbers.  Wang et al. in 2020 [14], pro-
posed a 2D Principle Component Analysis (2DPCA) approach to the initialization of con-
volutional networks to adjust the weight difference values to promote back propagation.  
This approach avoids the use of random numbers, and uses samples of the dataset in-
stead. making it convergent to the sample data seen.  However, in this paper the ap-
proach is not coupled to the sample data, only the architecture in terms of layers and is 
adaptive for filter geometries and layer types used.  Ferreira et al. in 2019 [15], examined 
weight initialization using a De-noising Auto-Encoder (DAE) in the field of classifying 
tumour samples through dataset sampling, but this is also a data sample convergent ap-
proach, unlike the finite number sequence in the proposed method. 

III. Contribution and Novelty 
This paper's contribution is a proposed alternative initialization method, for gener-

ating a non-random number sequence for the initialization of convolutional and percep-
tron layer mixes, rather than perceptron layer only networks as in the previous work [10] 
[11].  The proposed non-random number sequence has formations of stripes and curves 
in that initialization state, and as such is predisposed to the application of image catego-
rization.  It is more generic and independent of the dataset utilised.  The proposed 
method also allows earlier learning, to lower the loss quicker, and arrives at a higher 
performing accuracy in the first learning session, that is repeatable and deterministic, 
supporting a value of dependable systems in mission and safety critical applications of 
smart sensing.  With the existing random number methods several learning sessions are 
required to establish which learning session's random sequence has provided the best 
accuracy from a variation of random initialization states.  In comparison to Blumenfeld 
et al. [12], Ding et al. [13], Wang et al. [14] and Ferreira et al. [15] approaches, that re-
quired to adjust weights, use random numbers or sampling the dataset for convergence, 
the proposed method, is without data sampling or random sequences as a more general 
case, and is a complimentary approach to both Glorot/Xavier, and He et al. initialization 
limit values [16].  The proposed method substitutes only the use of random numbers for 
a deterministic non-random finite number sequence, and retains the number range limits 
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of the original methods [16].  The proposed method also after model defence with 
transferred learning with an FSGM dataset, has less compromised the original dataset 
training with larger epsilon () value distortions of the FSGM attack.  The intuition for 
this is that the existing random initialization method provides an unintentional noise 
source, which causes noise re-colorization, when combined with the noise sources in the 
images delaying learning.  The FSGM with transferred learning approach provides a 
convenient method for examining the transferred learning compromise with a controlled 
distortion via the epsilon () value.  Although, neither method is immune to FSGM at-
tacks, the proposed method has the advantage of been less compromised to the original 
dataset, with transferred learning in model defence. 

IV. Benchmark Baseline Model and Method  
In the previous work [10] [11], perceptron layers and the MNIST dataset [17], were 

used as it is familiar to researchers.  So to demonstrate non-random weight initializa-
tions the same application and dataset is used, but in a convolutional form.  This 
benchmark is also used such that comparisons can be made from the previous back-
ground work [10] [11] as well.  Figure (2) presents the architecture of the benchmark 
model in a convolutional layer form. 

 
Figure 2. Architecture of the benchmark model, by Torres. 

The model architecture is the equivalent of the perceptron layer foundation work's 
benchmark [10] [11], but in a convolutional layer form, and as such forms a comparison 
bridge to the background work [10] [11].  Using the repeatable critical-sections defined 
from the background work [10], that removed a source of numerical instability in learn-
ing session variations, the convolutional layer benchmark results are in Table 1.  The 
benchmark model is using the Glorot/Xavier random number method initialization as 
per its' definition within Keras by Torres [18] and has a stated accuracy of about ~97%.  
Although it should be noted, that there are higher scoring models using the MNIST da-
taset in a convolutional form, a high accuracy score of 99.8% by Kassem [19], provides 
little-head room to show an improvement.  That model also requires 50 epochs, and that 
is along learning duration beyond the initial condition in this context, where the random 
shuffle may be a more dominant random effect.  Table 1 forms the experiment control 
results using the Torres model [18] baseline, as the benchmark. 

Table 1. Torres benchmark with the existing random initialization method results. 

Random Seeded Epochs Accuracy (Cross-Validation) Loss (Cross-Validation) 
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Yes 5 Shuffled 96.85% 0.105400465 
No 5 Shuffled 96.87% 0.105643138 
No 5 Shuffled 96.81% 0.112332284 
No 5 Shuffled 97.13% 0.104294091 
No 5 Shuffled 96.78% 0.111712694 
No 5 Shuffled 96.95% 0.103740148 
No 5 Shuffled 97.02% 0.102941796 
No 5 Shuffled 96.67% 0.110733353 
No 5 Shuffled 96.94% 0.104514159 
No 5 Shuffled 96.99% 0.103553012 
Averages: 96.901% 0.106486514 
Yes 1 Shuffled 88.98% 0.352222472 
No 1 Shuffled 90.44% 0.319229484 
No 1 Shuffled 91.79% 0.294954896 
No 1 Shuffled 91.31% 0.300388008 
No 1 Shuffled 90.71% 0.309825629 
No 1 Shuffled 91.9% 0.288508445 
No 1 Shuffled 91.95% 0.281219631 
No 1 Shuffled 91.34% 0.289107263 
No 1 Shuffled 91.81% 0.290958554 
No 1 Shuffled 91.05% 0.295696706 
Averages: 91.128% 0.302211109 
Yes 1 No Shuffle 89.3% 0.34017086 
No 1 No Shuffle 89.42% 0.334787607 
No 1 No Shuffle 89.29% 0.337718517 
No 1 No Shuffle 89.5% 0.333430499 
No 1 No Shuffle 89.8% 0.3234815 
No 1 No Shuffle 89.84% 0.324871719 
No 1 No Shuffle 90.02% 0.31683287 
No 1 No Shuffle 89.17% 0.342095852 
No 1 No Shuffle 89.34% 0.338885903 
No 1 No Shuffle 90.07% 0.314374834 
Averages: 89.575% 0.330665016 

 

The results in Table 1 show the benchmark results with the full 5 epochs shuffled, 
and reaching the approximate stated accuracy of that model, but also shows just 1 epoch, 
as the 1st epoch after initialization is of interest.  Those 1st epoch runs are also in two 
forms which are: with or without the shuffle, as there are two random effects (weight in-
itialization and shuffle order), and this allows those effects to be distinguished.  So that 
when no shuffle is used, there is only the effect of the random weight initialization, and 
the shuffled version shows the equivalence to the 5 epoch results where only shuffle 
forms are appropriate, to have reordering in each of the 5 epochs.  When the random 
number generator uses a seeded value (shown in bold), the results are completely repeat-
able between learning sessions.  But also more results have been added, not using the 
seeding of the random number generator, to show the accuracy variation that different 
random number initialization sequences have, that are visible over regularisation.  As 
random number generator seeding has two effects: the weights initialization values, and 
also the shuffle reorganization of the dataset.  So for this reason, Table 1 shows results 
from three configurations: 5 epochs with shuffles, a single epoch with the shuffle and a 
single epoch with no shuffle as that is the effect of the random number initialization in 
the weights alone, disregarding the original dataset order.  The results in Table 1. show 
an average accuracy of 89.575% in a single epoch with no shuffle, an average of 91.128% 
(+1.553%) when a shuffle is used, and an average accuracy of 96.901% (+5.773% greater) 
with the use of 5 shuffled epochs).  The Table 1 results forms the benchmark perfor-
mance of the Torres model [18]. 
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V. Comparison of the Benchmark with the Proposed (Non-Random) Method 
The presented proposed non-random initialization method achieves 93.28% in a 

single epoch with no shuffle, +3.705% better than the existing random method.  93.77% 
accuracy is achieved when a shuffle is used in a single epoch, again using the proposed 
non-random method, which is a 2.642% gain over the benchmark of the existing random 
method.  Then 97.5% (+0.599% over the existing random method) when 5 epochs are 
used.  Those results are within Table 2, shown in bold and are repeatable and deter-
ministic. 

Table 2. Gains of the proposed non-random initialization method over the existing benchmark. 

Epochs Accuracy (Cross-val.) Loss (Cross-val.) Gains over existing (random) method 
5 Shuffled 97.5% 0.085728347 +0.599% (Cross-validation gain) 
4 Shuffled 97.11% 0.097854339 N/A 
3 Shuffled 96.85% 0.114757389 N/A 
2 Shuffled 95.96% 0.141269892 N/A 
1 Shuffled 93.77% 0.230065033 +2.642% (Cross-validation gain) 
1 No Shuffle 93.28% 0.230725348 +3.705% (Cross-validation gain) 

From Table 2 the best gains are achieved in the first epoch, which is the epoch that 
occurs after the weight initialization.  Less relative gain is achieved in further epochs, as 
the learning is occurring longer after the initialization in the subsequent epochs, dimin-
ishing its' influence but inheriting the earlier learning.  An interpretation is the subse-
quent learning is more equivalent but earlier learning has a higher benefit as it may be 
using more of the dataset more effectively in the first epoch.  This could be because the 
initial learning in the proposed initialization method has stripes and curves rather than 
dots and speckles, and is more predisposed to the application of image categorization for 
feature extraction.  That is also consistent with the biological intuitions of Hubel and 
Wiesel [1] [2].  The approach is also repeatable and deterministic, as a value of depend-
able systems for smart sensing in mission critical applications.  As the model derived 
from training is repeatable, it supports testing and verification with different environ-
ments and conditions in development and testing. 

VI. Understanding the Weights and Image sizes 
To understand the presented proposed non-random weight method, the structure of 

the weights and the image sizes, in the benchmark model need to be understood clearly.  
To understand how the weights are used is critical, to understanding how convolutional 
layers use the weights and affect the image size.  As this is quite different from percep-
tron layers, and as in the findings of the journal version of the perceptron repeatable de-
terminism paper [11].  When using the Glorot/Xavier limits [20], the results were en-
hanced with the non-random method [11], over the results initially presented in the 
conference paper [10].  This was because of the tolerance and matching to the model 
architecture in terms of propagation values and limits.  Convolutional layers use the 
weights for the filters, and not the pixels directly, as such their dimensions of each filter 
is: width by height, then by depth (channels), where that depth may be inherited from the 
previous convolutional layer's filters.  Perceptron layers in a ConvNet use the image size 
by previous layer's filters, as the previous layers filter would have translated to depth 
(channels) in activations, and those activations are connected to each neuron.  Thus, the 
Gloror/Xavier limits need to be calculated, and Figure 3 illustrates the adjustment of 
image and weights sizes necessary in the Torres [18] benchmark model. 
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Figure 3. Weight & image size adjustments in the Torres benchmark model. 

Extracted from Figure 3, Table 3 shows the weights and image sizes in each layer in 
the benchmark model, such that the Glorot/Xavier limit values can be calculated to sup-
port the number ranges in the Glorot/Xavier approach, and later in the He et al. approach 
too. 

Table 3. Weights and image sizes in each layer of the benchmark model by Torres. 

Layer Filter/Pool/Neurons Depth Image/Tensor Size Weights 
Input 28x28x1 N/A 1 (B/W image) 28x28 (748) N/A 
Conv Layer 1 5 by 5 by 32 filters 1 24x24  (576) 800 
Max Pooling 2 by 2 32 12x12 (144) N/A 
Conv Layer 2 5 by 5 by 64 filters 32 8x8 (64) 51200 
Max Pooling 2 by 2 64 4x4  (16) N/A 
Flatten Layer N/A 1 1x(4x4x64) 1024 N/A 
Dense Layer 10 1 10x1024 (10240) 10240 

To calculate the Glorot/Xavier limits, See Equations (1), (2) and (3), but note that the 
calculated values have been rounded to 8 decimal places (as a rule of thumb for precision 
[21]), and are used as such and are shown as such in the Equations (1), (2) and (3): 

𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟1 =  ට
଺

(ହ∗ହ∗ଵ ା ହ∗ହ∗ଵ௫ଷଶ)
=0.08528029, (1) 

𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟2 = ට
଺

(ହ∗ହ∗ଵ∗ଷଶ ା ହ∗ହ∗଺ସ)
= 0.05    and (2) 

𝐷𝑒𝑛𝑠𝑒𝐿𝑎𝑦𝑒𝑟 = ට
଺

(ସ∗ସ∗଺ସ ା ଵ଴)
=0.07617551. (3) 

Alongside the Glorot/Xavier limits, the structure of the weight initialization se-
quence also requires to have positional stripes and curves variations in each filter.  
Those stripes and curves positional variations, are also to be aligned to feature extraction, 
in a Hubel and Wiesel [1] [2] stripes intuition.  That structure, is ideally to be more allied 
to edge detection than a random value placement as the start condition.  This is to pre-
disposed the initial condition more generically to the application of image classification.  
Thus outperform the random methods, by inducing earlier learning, with less unlearning 
of the initial state, and using the early data in the dataset more effectively. 
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VII. Comparison of the Weights before and after Learning 
In Figure (4, left), is the existing random method benchmarks weights before learn-

ing of the first convolutional layer, and in Figure (4, right), are the same filter weights but 
after learning. 

 
Figure 4. Initial and learnt weights in the first conv layer with the existing random method. 

In Figure (4), the existing random initialization method form has a speckled ap-
pearance in each filter, and it may also be noticed that there are high similarities in the 
filters, between the before and after learning.  Suggesting that the initial condition has a 
dominant affect in the subsequent learning even over a large dataset.  Which is perhaps 
why the variation in accuracy with different random sequences are visible over regular-
isation.  As the initial speckled positions in the filter relate to positions in image features, 
affecting the resultant performance of that filter from the outset.  Meaning that the filter 
organization is important to the performance, rather than just statistical equivalence.  
Furthermore, looking carefully, adaption can be notice between the before in Figure (4, 
left) and after learning in Figure (4, right).  Illustrated by when the initial weights are 
subtracted from the learnt weights, the adaption can be seen more clearly in Figure (5). 

 
Figure 5. Learnt filter weight adaption updates of the existing random method. 

Consistent with Figure (5), convolutional filters examined after learning may be 
expected to have stripes, spots and perhaps curves, that may be used in edge detection of 
feature extraction, that will be hierarchically connected and organized to form shapes in 
later layers.  Also convolutional layers, offer the ability to change the image resolution, 
at which a filter and the subsequent layers operate.  Combined with this, striped and 
curved patterns may be more conducive in shape detection, that vary from filter to filter.  
In filter generation stripes and curves from a modulation may orientate directions with 
different selections of width bounding values as they wrap by the maximum width value 
of the filter too.  So considering the proposed method, in Figure (6, left) is the proposed 
non-random method weight filter initialization, again produced for the first convolu-
tional layer.  In Figure (6, right) is those same weights of the filters but after learning has 
been conducted, as the update to those filters. 

 
Figure 6. Initial and learnt weights in the first conv layer with the proposed non-random method. 

It may be noted that there are also some similarities between the before in Figure (6, 
left) and after learning in Figure (6, right) with the proposed method, reinforcing the 
dominance of the initial condition assertion.  But those similarities are less, and this 
method is higher performing then the existing random method.  When subtracted to 
expose the learnt adaption in Figure (7), there are similarities with Figure (5).  The sub-
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traction of the before learning initialization from the learnt weights, might be thought of 
as what has been learnt, but is actually more formally what has been adapted from the 
initial condition in nudges of values in optimisation iterations. 

 
Figure 7. Learnt filter weight adaption updates with the proposed method.  

Thus it may also be noticed that there are also some similarities in what has been 
relatively adapted, between the random and non-random methods in Figure (5) and 
Figure (7).  In fact some equivalent relative filter adaption's between them can be no-
ticed. 

So it follows, that the initial condition therefore has an effect originating from their 
arrangement from the outset of learning, and different arrangements will affect the after 
learning result.  However, the relative adaptation from the methods (both random and 
non-random) have some equivalence indicating that it is a similar design implementation 
arrived at from the same dataset, rather than a different implementation.  Which is re-
assuring as the dataset, model architecture and algorithms are unchanged, and it is the 
initialization alone that has been modified, and that is what is responsible for the in-
creased accuracy. 

VIII. The Proposed (Non-Random) Method 
To explain the design of the proposed method, and how it is derived.  The intention 

was that the proposed initialization method would make filter arrangements that have 
stripes, spots and curves that are different in each filter, such that the subsequent learn-
ing adapts to the dataset quicker being pre-disposed to the application.  These ar-
rangements are also different in each filter providing a filter diversity of edge detection, 
in different orientations, as the positional variation of values is important as it relates to a 
filter sweeping across the pixels.  If the modulation of arrangement position is based on 
a filter cell multiple (like two) as in a matrix, then alternations may relate to stripes in a 
2D matrix when different maximum width values are used, that would be controlled 
from a hyper-parameter for that layer: filter width.  This would also connect the filter to 
the resolution in that filter in the model layer.  That striping will then be controlled by 
the convolutional layer's hyper-parameters (filter height, width and number of filters).  
As also the stripe orientation in different filter arrangements is important, a diversity is 
required in each filter over the number of filters.   

An algorithm published in the papers [22], that produced a least adjacent arrange-
ment based on a modulation of two for dataset shuffling, has some attractive properties 
to this application.  It was originally an alternative to the established random dataset 
shuffle approach.  This non-random shuffle approach, rearrange the dataset to produce 
a sequence with the first half of the input, that was output at a stride of two and then in 
filled the gaps with the remaining vector, also at a stride of two but in reverse order.  
This resulted in a placement with smallest and largest numbers neighbouring each other 
at the start of the vector.  Figure (8) shows, the number sequence with a vector length of 
10, and with the unordered in row 1 and the reordered in row 2. 

 
Number sequence with a vector length of 10 unordered and reordered 

0 1 2 3 4 5 6 7 8 9 
0 9 1 8 2 7 3 6 4 5 

Figure 8. Least neighbour shuffle with a vector length of 10. 
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This process can be repeated iteratively as an in place operation, and provides an 
number of filter variations that are deterministic.  When iteratively repeated as an in 
place operation, the original sequence order will repeat nominally, at a maximum num-
ber of iterations of: vector length -1 or less, and is an iterative numerical sequence.  See 
Figure (9), where row 1 and row 10 (the unordered, and 9th iteration of reordering), are 
the same due to that repeating nature of the numerical sequence. 
Number sequence with a vector length of 10, unordered and then 9 reordering iterations 

0 1 2 3 4 5 6 7 8 9 
0 9 1 8 2 7 3 6 4 5 
0 5 9 4 1 6 8 3 2 7 
0 7 5 2 9 3 4 8 1 6 
0 6 7 1 5 8 2 4 9 3 
0 3 6 9 7 4 1 2 5 8 
0 8 3 5 6 2 9 1 7 4 
0 4 8 7 3 1 5 9 6 2 
0 2 4 6 8 9 7 5 3 1 
0 1 2 3 4 5 6 7 8 9 

Figure 9. Least neighbour shuffle over 1st unordered and 9 reordering iterations. 

This algorithm is to be used as a readdressing method of the initialization weights 
pertaining to the filters to provide stripes and curves in that initialization method.  Re-
ferring to Figure (9), it can be noted that there is a sliding shift in value placement with 
iterations, and that those shifts occur in both diagonal slants, providing an influence from 
height and width bounding differences of the selected height and width of the filters. 

Another attractive quality of this reordering algorithm, is illustrated with a linear 
ramp of values.  Where a reorganisation from a modulated ramp to a saw tooth can 
occur in addressing shown in this test case at vector length -2 number of iterations, and is 
the iteration before the sequence is repeated, at vector length -1 number of iterations.  
Figure (10) shows, the reorganisation from the 1st iteration sequence in black and the 
penultimate iteration (vector length -2) in red, which is the iteration before the repeat for a 
vector length of 10 in the sequence at (vector length -1 iterations). 

 
Figure 10. Least neighbour re-addressing at iterations: 1 and 8. 

As the sequence repeats, that algorithm also has a maximum number of combina-
tions up to vector length -1, although some times less iterations depending on the vector 
length used, and a subject for further research is to extend the number of filters on offer.   
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The algorithm from the papers [22], is further enhanced here to deal with odd 
number length vectors.  The formulas for the algorithm are in Equations (4), (5), (6) and 
(7) as amended and use zero indexing:  The output of the function shuffle is a set y, with a 
re-ordering of the set x as defined by the subscripts  and .  As in logically moving 
from address position  to position .  The shuffle function declared in Equation (4) is 
recursive, where the number of recursions is defined by the number of filters (nFilter) in 
that layer as a subscript (LayerNo). 

𝑦 = 𝑠ℎ𝑢𝑓𝑓𝑙𝑒൫𝑥, 𝑛𝐹𝑖𝑙𝑡𝑒𝑟(௅௔௬௘௥ே௢)൯ . (4) 

The shuffle function is defined in Equation (5) using equation guards, that if the 
nFilter(LayerNo) (or i) is greater than one filter, then the recursion is still made with the sub-
script reordering (), while decrementing the i value by 1 on each recursion iteration.  
These recursions occur until the last recursion that will return the unordered subscript 
location () which will then be subject to all the subscript reorder recursions as the func-
tion shuffling iterations prior are applied to complete the shuffle definition pattern. 

𝑠ℎ𝑢𝑓𝑓𝑒𝑙(𝑥{ఉ}, 𝑖) = ቊ
𝑠ℎ𝑢𝑓𝑓𝑒𝑙(𝑥{ఈ},𝑖 − 1) 𝑖𝑓 𝑖 > 1

𝑥{ఉ} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , (5) 

where, the index subscript set for '' is in Equation (6), and where n defines the set 
size (and again is zero indexed): 

𝛽{଴..௡ିଵ} =

⎩
⎪
⎨

⎪
⎧

𝛽 ∈ ℕ
ተ

ተ

ቄ0 ≤ 2𝛽 ≤ 2 ቀቔ
௡

ଶ
ቕ − 1ቁቅ ∪

ቄ1 ≤ (2𝛽 + 1) ≤ ቀ2 ቀቔ
௡

ଶ
ቕ − 1ቁ + 1ቁቅ ∪

൜= ൜
(𝑛 − 1) 𝑖𝑓 𝑛(𝑚𝑜𝑑 2) ≠ 0

{} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
ൠ

⎭
⎪
⎬

⎪
⎫

, (6) 

and where the last set union is included if the set length (n) is an odd number de-
fined by n (mod 2)≠0, as the modulo division of the set length (n) by modulus 2.  This was 
the amendment from the papers [22].   

The index subscript set for '' is in Equation (7), and naturally has the same set size 
(n) and forms the initial order for the re-ordering displacement subscripting in the shuffle 
pattern: 

𝛼{଴..௡ିଵ} =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝛼 ∈ ℕ

ተ

ተ

ቄ0 ≤ 𝛼 ≤ ቔ
௡

ଶ
ቕ − 1ቅ ∪

ቄ𝑛 − 1 ≤ 𝑛 − 1 − 𝛼 ≥ ቒ
௡

ଶ
ቓቅ ∪

ቐ= ቊ
ቔ

௡

ଶ
ቕ 𝑖𝑓 𝑛(𝑚𝑜𝑑 2) ≠ 0

{} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
ቋቑ

⎭
⎪⎪
⎬

⎪⎪
⎫

, (7) 

In illustration, x at this point can be thought of as a sequence of numbers as in 
Equation (8), and when n=10 will provide the address shuffle sequences as in Figure (9).  
But however, the intended set values for x will be further defined later in this paper in the 
valSet function: 

𝑥{଴..௡ିଵ} = {0. . (𝑛 − 1)} and where n is the length of the tenser.  (8) 

This algorithm will always have the same value in the first location, and although 
this was not significant in the dataset shuffle application in the papers [22], it is signifi-
cant in this application of convolutional filters.  Experiments were conducted with 
pre-placement shift offsets in the data, and also with a data direction alternation of this 
algorithm.  These experiments proved to not be as high performing, although did pro-
vide a higher number of unique filters. 

As with convolutional layers the order of filter values is significant, so a 
pre-alternation of the data is conducted instead.  So that every second filter is reversed 
(or flipped) and the memory is addressed through width, height and depth for the odd 
filter numbers, and vector address reversed as then depth, height, width in reverse order 
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for the even filters.  This provides two different filters of alternating direction placement 
for the same shuffle iteration, doubling the number of unique filter iterations on offer, 
with also a crucial disruption variation to the first position value as its' primary intention. 

As well as the address order placement, the value distribution of the values within 
the initialization sequence can be significant, as images are less likely to be uniformly 
distributed in pixel values.  Experiments were conducted with linear ramps, as these 
had been the highest performing in perceptron layers [10] [11].  In these experiment 
cases the application of a linear ramp was higher performing with dense perceptron 
layers, and sinusoidal slopes in the convolutional layers.  This might be because of the 
cos(x) content is a partial distribution of a sine function (bath-tub), or at least it's distribu-
tion has a match to convolutional layers and the image data it processes.  As such the 
sinusoidal slope and linear ramp are selected based on the layer type within the network 
model architecture, because of the direct image processing in the convolutional layers. 

The formulas that call the addressing shuffle function (shuffle) is in Equations (9) - 
(30), and includes the addressing alternation in the definition.  Note that it also calls a 
function (called valSet) that provides a response based on the value ratio (cnt/m), and 
network layer type (t) to select a sinusoidal slope or linear ramp value form, altering the 
value distribution between layer types.  The initialization tensor length (InitTensorLength) 
for a layer is based on a number of filters (maxFilters) of that layer and the number of 
weights in the filter (m) is as in Equation (9): 
𝐼𝑛𝑖𝑡𝑇𝑒𝑛𝑠𝑜𝑟௅௘௡௚௧ = 𝑚 ∙ 𝑚𝑎𝑥𝐹𝑖𝑙𝑡𝑒𝑟𝑠 . (9) 

Where, each convolutional layer's filter tensor length can be calculated as (m), which 
is from the convolutional layer's filter: height, width and depth as a 3D matrix size and is 
defined as in Equation (10).  The value of m provides a maximum scale value (as the 
denominator of a ratio) for a numerator value cnt (as a progressive weight count in the 
filter), within each filter of a convolutional layer,  Where m-1 is the maximum value that 
the value that cnt as part of a ratio can achieve as defined in Equation (11). 

𝑚 = 𝐻𝑒𝑖𝑔ℎ𝑡ி௜௟௧௘௥ ∙ 𝑊𝑖𝑑𝑡ℎி௜௟௧௘௥ ∙ 𝐷𝑒𝑝𝑡ℎி௜௟௧௘௥ , (10) 

𝑐𝑛𝑡 = {0. . 𝑚 − 1} , 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑎𝑠: 𝑐𝑛𝑡(ௐ௜ௗ௧ ಷ೔೗೟೐ೝ, ு௘௜௚௛ ಷ೔೗೟೐ೝ,∙ ஽௘௣௧௛ಷ೔೗೟೐ೝ)  , (11) 

Note that the weight calculation algorithm of the dense layer is dependent on the 
other layers, and as such the dense layer weight calculation algorithm may vary de-
pending on the prior layer type in the architecture.  This is because the activations could 
be the number of neurons of a proceeding dense layer, and in that case the subsequent 
shuffle reordering and flips may not be necessary as the layers are fully connected as in 
the papers [10] [11].  However, if there is a proceeding convolutional layer, then the ac-
tivations map to the receptive fields of the convolved image filters, which is the case in 
this benchmark model.  So in this case the height and width are the image size and the 
depth is inherited as the channel depth (or filters from the previous layer), as in Equation 
(12), and the value set of cnt is in Equation (13). 

𝑚 = 𝐻𝑒𝑖𝑔ℎ𝑡ூ௠௔௚௘ ∙ 𝑊𝑖𝑑𝑡ℎூ௠௔௚௘ ∙ 𝐷𝑒𝑝𝑡ℎ௜௠௔௚௘ , (12) 

𝑐𝑛𝑡 = {0. . 𝑚 − 1}, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑎𝑠: 𝑐𝑛𝑡൫ௐ௜ௗ௧ ೔೘ೌ೒೐, ு௘௜௚௛௧೔೘ೌ೒೐,∙ ஽௘௣௧௛೔೘ೌ೒೐,൯
 . (13) 

Where nFilter (or nNeurons for a dense layer) and nDepth are number sets that are 
zero indexed, and the limit of nFilter is maxFilters-1 (or maxNeurons-1 for a dense layer), 
and nDepth is maxDepth-1 of which those sets are defined as in the Equations (14), (15) 
and (16). 

𝑛𝐹𝑖𝑙𝑡𝑒𝑟 =  {𝑛𝐹𝑖𝑙𝑡𝑒𝑟 ∈ ℕ |0 ≤ 𝑛𝐹𝑖𝑙𝑡𝑒𝑟 < 𝑚𝑎𝑥𝐹𝑖𝑙𝑡𝑒𝑟𝑠} ,  for a convolutional layer, (14) 

𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 =  {𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ∈ ℕ |0 ≤ 𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 < 𝑚𝑎𝑥𝑁𝑒𝑢𝑟𝑜𝑛𝑠} ,  for a dense layer and (15) 

𝑛𝐷𝑒𝑝𝑡ℎ = {𝑛𝐷𝑒𝑝𝑡ℎ ∈ ℕ |0 ≤ 𝑛𝐷𝑒𝑝𝑡ℎ < 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ} . (16) 
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As such each filter vector (or neurons vector in a dense layer) will be a vector of values 
with a vector length MaxFilters (or MaxNeurons), and with repeating values in the set in 
Equation (17): 
𝑛𝑆𝑒𝑡 =  {𝑛𝑆𝑒𝑡 ∈ ℕ |0 ≤ 𝑐𝑛𝑡 < 𝑚 − 1}. (17) 

The initialization tensor is a 4D tensor matrix of a nHeight 3D matrix tensor that 
comprises a 2D matrix of nWidth, and that is a nDepth 1D vector of nFilter length as the 
subscripts illustrated in the Equation (18): 
𝐼𝑛𝑖𝑡𝑇𝑒𝑛𝑠𝑜𝑟 = (௡ு௘௜௚ ,௡ௐ௜ௗ௧ ,௡஽௘ ,௡ி௜௟௧௘௥) , for a convolutional layer . (18) 

In this test case, the dense perceptron layers' initialization tensor is re-indexed from 
the receptive field mapping of the convolved filters in a previous layer to a matrix of ac-
tivations and neurons as the subscripts in the Equation (19): 
𝐼𝑛𝑖𝑡𝑇𝑒𝑛𝑠𝑜𝑟(஺௖௧௜௩௔௧௜௢௡௦,ே௘௨௥௢௡௦) =  ൫(௡ு௘௜௚௛௧,௡ௐ௜ௗ௧ ,௡஽௘௣௧௛),௡𝑁𝑒𝑢𝑟𝑜𝑛𝑠൯ , for a dense layer.  (19) 

Where the set for the subscripts nHeight and nWidth are given as in Equations (20) 
(21), and is the filter geometry in convolutional layers, or the image geometry mapped to 
the convolved filters in dense perceptron layers, following a convolutional layer: 

𝑛𝐻𝑒𝑖𝑔ℎ𝑡 =  {𝑛𝐻𝑒𝑖𝑔ℎ𝑡 ∈ ℕ |0 ≤ 𝑛𝐻𝑒𝑖𝑔ℎ𝑡 < 𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡} , (20) 

𝑛𝑊𝑖𝑑𝑡ℎ =  {𝑛𝑊𝑖𝑑𝑡ℎ ∈ ℕ |0 ≤ 𝑛𝑊𝑖𝑑𝑡ℎ < 𝑚𝑎𝑥𝑊𝑖𝑑𝑡ℎ} . (21) 

A convolutional layer illustrative example of the cnt values (convolved filter ad-
dressing) is given in Equation (22), in the case of 5 filters with a channel depth of 4 and 
the filter dimensions of width 3 and a height of 2. 

𝑠𝑒𝑡௢௙೎೙೟
=

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

൞

{0, 0, 0, 0, 0},    
{6, 6, 6, 6, 6},    

{12, 12, 12, 12, 12},    
{18, 18, 18, 18, 18}

ൢ,   

൞

{1, 1, 1, 1, 1},   

 {7, 7, 7, 7, 7},    
{13, 13, 13, 13, 13},    

{19, 19, 19, 19, 19}

ൢ,   

൞

{2, 2, 2, 2, 2},    
{8, 8, 8, 8, 8},    

{14, 14, 14, 14, 14},    
{20, 20, 20, 20, 20}

ൢ

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

൞

{3, 3, 3, 3, 3},

   {9, 9, 9, 9, 9},     
{15, 15, 15, 15, 15},    

{21, 21, 21, 21, 21}

ൢ,   

൞

{4, 4, 4, 4, 4},   

 {10, 10, 10, 10, 10},   

 {16, 16, 16, 16, 16},    
{22, 22, 22, 22, 22}

ൢ ,

 ൞

{5, 5, 5, 5, 5},    
{11, 11, 11, 11, 11},   

 {17, 17, 17, 17, 17},    
{23, 23, 23, 23, 23}

ൢ

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 . for Conv layer (22) 

The Equation (22) shows vectors of 5 filters are provided for each of the 4 depth 
channels, and those in turn are for each of the filter dimensions of width (3) and height 
(2).  The values of cnt are counting through values of width then height and then depth 
as an indexing order and at this point all filter weight values of cnt are matching, as lat-
terly they will be shuffled and alternated towards the final filter permutations for linier 
striping. 

The tensor of values of cnt with respect to m are applied to the slope alternatives that 
are as in the Equation (23), and that can select between the convolutional and perceptron  
layer type (t), also with the chosen calculated limit value as (l) for either uniform He et al. 
or Glorot/Xavier limit values. 

𝑣𝑎𝑙𝑆𝑒𝑡(𝑐𝑛𝑡, 𝑚, 𝑙, 𝑡) = ቐ
𝑐𝑜𝑠 ቀ

௖௡௧

௠ିଵ
𝜋ቁ 𝑙 𝑖𝑓 𝑡 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙

௖௡௧

௠ିଵ
2𝑙 − 𝑙 𝑖𝑓 𝑡 = 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛

 . (23) 

The valSet function provides two value sequence types depending on the layer type, 
this provides two distributions of values that are either uniformly distributed for dense 
layers, or bathtub distributed in nature for the convolutional layers. 

As the shuffle reordering does not shift the address of the first filter value every 
second filter is reversed in order, for convenience this is done in a matrix transpose form, 
and forms a transposed matrix as in Equation (24). 
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TsprMat(௡ி௜௟௧௘௥,   ௡஽௘௣௧௛,   ௡ௐ௜ௗ௧௛,   ௡ு௘௜௚௛௧,) = 𝑇൫௜௡௜௧௩௔௟௨௘௦೙ಹ೐೔೒೓೟,   ೙ೈ೔ ,   ೙ವ೐೛೟೓,   ೙ಷ೔೗೟೐ೝ൯ (24) 
Every second filter is order reversed (flipped) as a contiguous vector tenser as in 

Equation (25): 

𝑓𝑙𝑖𝑝𝑀𝑎𝑡 = ቊ
𝑇𝑠𝑝𝑟𝑀𝑎𝑡(௡ி௜௟௧௘௥,(௠ିଵ)..଴) (𝑛𝐹𝑖𝑙𝑡𝑒𝑟 + 1) (𝑚𝑜𝑑2) = 0

𝑇𝑠𝑝𝑟𝑀𝑎𝑡(௡ி௜௟௧௘௥,଴..(௠ିଵ)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . (25) 

Then the vector is re-indexed back to the matrix subscripts as in Equation (26): 
𝑇𝑠𝑝𝑟𝑀𝑎𝑡2[𝑛𝐹𝑖𝑙𝑡𝑒𝑟]   =  𝑓𝑙𝑖𝑝𝑀𝑎𝑡 (𝑑𝑒𝑝𝑡ℎ, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) (26) 

Again for illustration, if the matrix (TsprMat2) is also transposed back and using the 
cnt values, rather than the valSet function response values as intended, so as to provide a 
clear illustration in comparison with the previous example in Equation (22), then the 
matrix becomes as in Equation (27): 

𝑠𝑒𝑡௢௙೎೙೟
=

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

൞

{0, 23, 0, 23, 0},    
{6, 17, 6, 17, 6},    

{12, 11, 12, 11, 12},    
{18, 5, 18, 5, 18}

ൢ,   

൞

{1, 22, 1, 22, 1},   

 {7, 16, 7, 16, 7},    
{13, 10, 13, 10, 13},    

{19, 4, 19, 4, 19}

ൢ,   

൞

{2, 21, 2, 21, 2},    
{8, 15, 8, 15, 8},    

{14, 9, 14, 9, 14},    
{20, 3, 20, 3, 20}

ൢ

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

൞

{3, 20, 3, 20, 3},

   {9, 14, 9, 14, 9},     
{15, 8, 15, 8, 15},    

{21, 2, 21, 2, 21}

ൢ,   

൞

{4, 19, 4, 19, 4},   

 {10, 13, 10, 13, 10},   

 {16, 7, 16, 7, 16},    
{22, 1, 22, 1, 22}

ൢ ,

 ൞

{5, 18, 5, 18, 5},    
{11, 12, 11, 12, 11},   

 {17, 6, 17, 6, 17},    
{23, 0, 23, 0, 23}

ൢ

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 . (27) 

Equation (27) shows the filter flips in every second filter when compared with 
Equation (22).   

Furthermore, to apply the shuffle as an address re-order on the alternated vector re-
versed matrix (flipped) as a contiguous vector, Equation (28) is used: 
𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑀𝑎𝑡(𝑛𝐹𝑖𝑙𝑡𝑒𝑟) = 𝑆ℎ𝑢𝑓𝑓𝑙𝑒(𝑓𝑙𝑖𝑝𝑀𝑎𝑡൫௡ி௜௟௧௘௥,଴..(௠ିଵ)൯, ⌊𝑛𝐹𝑖𝑙𝑡𝑒𝑟/2⌋) (28) 

Then the vector is re-indexed back to the matrix subscripts as in Equation (29): 
𝑇𝑠𝑝𝑟𝑀𝑎𝑡3[𝑛𝐹𝑖𝑙𝑡𝑒𝑟]   =  𝑠ℎ𝑢𝑓𝑓𝑒𝑙𝑀𝑎𝑡(ௗ௘௣ ,௪௜ௗ௧௛,௛௘௜௚௛௧) (29) 

Yet again for illustration, if the matrix (TsprMat3) is again transposed back and using 
the cnt values for a clear illustration rather than the valSet function response values, so as 
to be in comparison to previous examples in Equations (22) and (27), the matrix becomes 
as in Equation (30): 

𝑠𝑒𝑡௢௙೎೙೟
=

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

൞

{0, 23, 0, 23, 0},    
{6, 17, 4, 19, 20},    
{12, 11, 6, 17, 4},    
{18, 5, 10, 13, 21}

ൢ,   

൞

{1, 22, 3, 20, 23},   

 {7, 16, 2, 21, 1},    
{13, 10, 9, 14, 19},    

{19, 4, 8, 15, 5}

ൢ,   

൞

{2, 21, 1, 22, 3},    
{8, 15, 5, 18, 22},    
{14, 9, 7,16, 2},    
{20, 3, 11, 12, 18}

ൢ

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

൞

{3, 20, 23, 0,12},

   {9, 14, 19, 4, 8},     
{15, 8, 17, 6, 16},    

{21, 2, 13, 10,9}

ൢ,   

൞

{4, 19, 20, 3, 11},   

 {10, 13, 21, 2, 13},   

 {16, 7, 14,9, 7},    
{22, 1, 22, 1, 22}

ൢ ,

 ൞

{5, 18, 5, 18, 5},    
{11, 12, 11, 12, 11},   

 {17, 6, 17, 6, 17},    
{23, 0, 23, 0, 23}

ൢ

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 . (30) 

Equation (30) shows the shuffle reordering of the filters when compared with the 
example in Equation (27), although the valSet value for the cnt value would be used in the 
actual implementation. 

The cnt values have been shown here for illustration to compare with Equations (22) 
(27), and show the address reordering cnt values for clearer understanding, rather than 
the intended valSet function distribution response. 
A. Summary of the proposed method 
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In summary the resulting initialization weights, that were higher performing pro-
vided a sinusoidal bathtub distribution in convolutional layers, and a uniform distribu-
tion in the perceptron layer.  Where the reordering provides uniquely reordered filters 
in each filter, with alternating vector directions and that reordering provides a two posi-
tion base shift least neighbour arrangement.  That least neighbour arrangement has a 
pattern reorganisation from a linear ramp to a saw tooth that is quasi-progressive in each 
filter, with a matching filter direction alternative provided from the numerical reverse 
order arrangement.   

The nominal maximum number of unique filters is as in Equation (31), although 
with some weight geometries of a filter the pattern repeats earlier through aliasing.  This 
is a subject of research to extend the number of useful filters on offer, and optimise the 
filters, given the filter geometries and number of them. 
𝑛௙௜௟௧௘௥ = 2(𝑟𝑜𝑤௙௜௟௧௘௥ ∙  𝑐𝑜𝑙𝑢𝑚𝑛௙௜௟௧௘௥  ∙  𝑑𝑒𝑝𝑡ℎ ௙௜௟௧௘௥ − 1). (31) 

When the losses are compared during learning, of the first epoch, as the epoch after 
initialization, were the initial learning occurs.  Then the loss does reduce quicker with 
the proposed non-random method, owing to the stripes and curves in the initial condi-
tion, being pre disposed to the application of categorization.  Note that losses are shown 
as they are the optimisation objective.  See Figure (11, left) for the existing random 
method, and Figure (11, right) for the proposed non-random method when shuffled. 

 

Figure 11. Losses over batches in fitting when shuffled (existing method left, and proposed method 
right). 

Figure (12) also makes the comparison with the existing random method in Figure 
(12, left), and the proposed non-random method in Figure (12, right).  In comparison to 
the dataset shuffling in Figure (11), and the un-shuffled dataset results in Figure (12), the 
proposed non-random method has achieved the lower loss quicker in learning in both 
cases, and is noted at the batch 100 point.  Thus earlier learning has benefited relatively 
in the proposed non-random method, using more of the dataset more effectively from the 
outset of learning, regardless of the dataset shuffling. 

 

Figure 12. Losses over batches in fitting when un-shuffled (existing method left, and proposed 
method right). 

There is however an enquiring question raised, and that is: although it is a departure 
from the benchmark model, would the proposed method be robust to He et al. [16] ini-

1st epoch Shuffled 

Proposed Non-Random 

Method at batch 100. 

1st epoch Shuffled 

Existing Random Method 

at batch 100. 

1st epoch Un-Shuffled 

Existing Random Method 

at Batch 100. 

1st epoch Un-Shuffled 

Proposed Non- Random 

Mathod at Batch 100. 
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tialisation limits instead.  As He et al. initialisation is regarded as the state of the art.  The 
uniform He et al. initialisation limit values are calculated in Equations (32), (33) and (34): 

𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟1 =  ට
଺

(ହ∗ହ∗ଵ)
=0.48989795 , (32) 

𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟2 = ට
଺

(ହ∗ହ∗ଷଶ)
=0.08660254   and (33) 

𝐷𝑒𝑛𝑠𝑒𝐿𝑎𝑦𝑒𝑟 = ට
଺

(ସ∗ସ∗଺ସ)
= 0.07654655. (34) 

As before with the Glorot/Xavier limits the He et al. limit values are rounded to 8 
decimal places [21], so as to be compatible in comparison.  The cross-validation results 
using the He et al. initialisation limits are presented in Table 4 in columns: 'Loss' and 
'Accuracy.  Also the relative gain percentage of the proposed non-random method, over 
the Glorot/Xavier limits, is within the column 'He/Glorot (Non-Rand)'.  Those percent-
ages are the He et al and Glorot/Xavier initialisation limit values gain results both using 
the proposed non-random method.  Also within Table 4, for completeness is a compar-
ison gain using the proposed non-random method and the existing random method, both 
with He et al. initialisation, which is in column the 'He (Rnd/Non-Rnd)'. 

Table 4. He et al. limits with the proposed initialization method, and gain comparisons. 

Epochs He et al. (Non Rnd) measure Gains Over the Baseline 
Loss Accuracy He/Glorot (Non-Rand) He (Rnd/Non-Rnd) 

5 Shuffled 0.082669578 97.55% +0.05% +0.7% 
4 Shuffled 0.093996972 97.19% +0.08% +0.91% 
3 Shuffled 0.10997723 96.97% +0.12% +1.49% 
2 Shuffled 0.134461805 96.15% +0.19% +1.83% 
1 Shuffled 0.214723364 94.11% +0.34% +5.13% 
1 No Shuffle 0.217569217 93.57% +0.29% +4.27% 

In all cases in Table 4 the proposed method offers a positive accuracy gain ad-
vantage in cross-validation.  However, the greatest increase in accuracies are in both the 
first epoch cases shown in bold.  Suggesting that He et al. initialisation limits also bene-
fited again in extra earlier learning, over the earlier learning gains of the Glorot/Xavier 
limits previously demonstrated.  The proposed method also offers an advantage gain in 
comparison with the existing random form using He et al. initialization, with again the 
greatest advantage in the initial epoch. 

In all cases, the proposed method has an advantage in cross-validation accuracy 
when either applied to Glorot/Xavier, or the current state of the art of He et al limit values, 
and is repeatable and deterministic.  That is an additional advantage for development of 
dependable safety critical applications, and also is an advantage within smart sensors 
using image classification. 

IX. Fast Sign Gradient Method (FSGM) Perturbation Attack 
This section will further examine the proposed non-random and existing random 

methods, using a transferred learning and FSGM approach.  FSGM with transferred 
learning is a convenient approach to control distortions in a transferred learning dataset 
from the FSGM's epsilon () value.  The FSGM model defence with transferred learning 
approach, is used rather than other approaches, as it will demonstrate in influence of how 
compromised the transferred learning is, over the updated further learning, and the 
transferred learning approach will provide an indicator of those influences with a vary-
ing controlled magnitude of error distortion via the FSGM's epsilon () value. 
A. The FSGM transferred learning approach 

 A modern theme in neural networks is the area of perturbation attacks using the 
Fast Sign Gradient Method (FSGM) attack proposed by Ian Goodfellow [23] [24].  This is 
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an attack that can cause miss-classifications with an effect that may not be humanly per-
ceivable.  The attack itself can have a strength value of the attack controlled by an error 
magnitude value epsilon () [23] [24] as in Equation (36): 
𝑥ᇱ = 𝑥 +  𝜀 ∙ 𝑠𝑖𝑔𝑛 (∇௫𝐽(, 𝑥, 𝑦)) (36) 

A modification to the FSGM attack equation is made to avoid out of scale numbers 
in the image after perturbation, by clipping the perturbation image pixel values between 
0 and 1, as in Equation (37).  This is to be compatible in comparison to the non-perturbed 
image pixel scales, that were also scaled between values 0 and 1 in the Torres model [18]: 
𝑥ᇱ = max൫min൫𝑥 +  𝜀 ∙ 𝑠𝑖𝑔𝑛 ൫∇௫𝐽(, 𝑥, 𝑦)൯, 1.0൯, 0.0൯ (37) 

When the epsilon () value is small the attack can be a deception (or spoofing) 
coursing miss-classification to another number assignment other than a human would.  
Also when the epsilon () value is large it can cause a denial of service (DoS) to the human 
while still having a classification in the computer.  It might be noted, that this might also 
have applications to encryption and hidden messages. 

The FSGM transferred learning approach used is by Theiler [25], and it explains the 
attack with examples, and importantly uses the same MNIST dataset.  See Figure (13) for 
the Theiler and Torres architecture as integrated, with three experiment test points. 

 
Figure 13. Theiler's FSGM transferred learning experiment model [25], as added to the Torres's 
benchmark model. 

The Theiler attack dataset sizes [25] are thus used as the dataset is the same, alt-
hough is adapted to the Torres benchmark's number of epochs [18] instead.  The epochs 
used in transferred learning are set to be half that of the Torres baseline benchmark case, 
instead of half the Theiler number of epochs, as is the case from Theiler's initial learning 
model.  Such that the amount of back propagation is relatively similar to the transferred 
learning from Theiler's model but applied to the Torres model. 

The relevance of the FSGM attack to this paper is a hypotheses that FSGM attacks 
could be effective partially from the less humanly perceivable noise content in an image 
dataset rather than the useful information in the dataset alone.  Furthermore, that that 
noise could be noise re-colourised by the random numbers as a noise source in the ini-
tialisation state when the weights are multiplied with the activations.  It follows that if 
an initialisation state has less random content that could be thought of as noise, then the 
subsequent learning may have less opportunity for unintentional noise re-colourisation 
as a result.  Thus the effect could affect the compromise of the original training after 
defence if the adversarial attack dataset is used to retrain the model to protect it.  The 
FSGM approach also provides a controlled distortion via the epsilon () value. 
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In Figure (14, left and right) are the 1st 20 images of the FSGM perturbation attack 
datasets.  They are generated from the sign of the gradient of the loss of a true prediction 
and an image,  In Figure (14, left) is the generation from the existing random form, and 
in Figure (14, right) from the proposed non-random method instead.  Along the columns 
axis are the 1st 20 images of each dataset, and in each row as perturbed with images with 
an increasing epsilon value of 0.0 to 1.0 in steps of 0.05.  In green are the perturbation 
images that are correctly classified against their original tag, and in red are the perturba-
tion images that are miss-classified. 

   
Figure 14. FSGM attack image examples: existing method (left) proposed method (right). 

Figure (14) shows that the low perturbation epsilon error values images (at the 1st 
rows) are humanly recognisable and the high epsilon error values images (at the last 
rows) are not humanly recognisable.  At the point that the miss-classifications occur, the 
strength of the competing images pixels become more apparent, and traditional 
de-noising and image value clipping would enhance the image classification in many 
cases of both methods.  The subject of noise and noise injection, but as a method for de-
fence from FSGM is proposed in 2020 by Schwinn et al. [26], but their approach requires a 
learning regularisation step that couples it to the dataset.  Although the Schwinn et al. 
[26] approach is of interest, but in a non-dataset coupled form, and perhaps as an aug-
mentation to the epoch scheme.  However, this paper's approach is purely to examine 
the possible resistance and compromise with a reduction in noise re-colorization oppor-
tunities. 

Thus applying the same perturbed FSGM attack method with different epsilon error 
strengths, a comparison in accuracy and loss between the existing (random) and pro-
posed (non-random) methods are presented in Figures (15), (16) and (17). 
B. The undefended model, attacked by FSGM 

Figure (15, left) and Figure (15, right) are results (at the experiment test point 1) in 
accuracy and loss, from cross-validation with a generated validation adversarial attack 
perturbation dataset of 10,000 images using the FSGM approach, and applied to an un-
defended model.  In Figure (15), both the existing (random shown in red) and proposed 
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(non-random shown in blue) methods are using the higher performing He et al. initiali-
sation limit values, and with controlled steps of the epsilon () distortion value.   

  
Figure 15. Accuracy and losses of an undefended model with epsilon increments under attack (test 
point 1). 

In Figure (15, left) in both initialization cases, the results are almost identical in ac-
curacy, with an undefended model, signalling a similar generalisation was achieved 
under attack.  Ideally the accuracy would be higher, to correctly classify the images with 
their original tag despite the perturbation attack.  Both the existing (random) and pro-
posed (non-random) methods are susceptible to FSGM attack, and in both cases the sus-
ceptibility is greater as the epsilon value gets larger, signalled by the cross-validation 
accuracy lowering.  In Figure (15, right) ideally the losses may be low showing regular-
isation is still effective, i.e. it reduces the variance, despite the perturbation attack.  
However, in this attack the sign of the gradient is taken from a calculated loss of a true 
prediction and an input image, that gradient is then applied to an image as a perturbation 
image, therefore the loss rises as the epsilon value is raised, as the controlled distortion.  
The proposed (non-random) method has a lower loss then the existing (random) method, 
at larger epsilon values.  Suggesting that the perturbation of features in the attacks are 
less sensitive to regularisation in the proposed method, although this is at epsilon values 
where the generalisation (accuracy) has diminished in the attack. 
C. Defending a model from FSGM 

The Theiler [25] approach to defending a model from an attack is to transfer learning 
and include adversarial perturbation attack examples into a further training dataset, and 
generate a further attack validation dataset.  Then cross-validate with both validation 
datasets (i.e. both attack and non-attack datasets).  This makes a comparison in accuracy 
and loss after model defence.  As such the original model is further trained with 20,000 
training adversarial perturbation attack images to defend it over 2 epochs, examined 
with controlled increments of the epsilon () value.  In the experiment approach the ep-
silon () value is stepped, providing a controlled distortion in the transferred learning.  
Such that the controlled distortions can be examined after transferred learning, and re-
veal how compromised both methods are after the learning transfer. 
D. Examining the transferred learning adaption 

The results from the existing (random) and proposed (non-random) methods are 
shown for experiment test point 2.  In Figure (16, left) and Figure (16, right) the perfor-
mance against the validation attack perturbation dataset is shown.  Such that the trans-
ferred learning of the original dataset is transferred with an attack dataset to evaluate the 
performance. 
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Figure 16. Accuracy and losses of a defended model with epsilon increments against the validation 
attack dataset (test point 2). 

Figure (16, left) and Figure (16, right) show the accuracy and losses of the defended 
model cross-validated with the validation attack dataset, and shows the existing (ran-
dom) and proposed (non-random) methods, have as similar performance with low ep-
silon values.  Figure (16, left) shows that with larger epsilon values, the cross-validation 
accuracy of the attack dataset is higher with the existing method, showing the existing 
method prefers the further generalisation from retraining after model defence at higher 
distortions.  In Figure (16, right) the losses are also lower in the existing method indi-
cating that they are slightly more regularised in the existing method. 
E. Examining the model compromise in defence to the original cross-validation dataset 

In Figure (17, left) and Figure (17, right) are the results after model defence with the 
adversarial FSGM perturbation attack dataset, but cross-validated with the original 
non-attack dataset (at experiment test point 3).  This is to show how compromised the 
models are to the original non-attack dataset after model defence via transferred learn-
ing. 

  
Figure 17. Accuracy and losses of a defended model with epsilon increments against the original 
non-attack cross-validation dataset (test point 3). 

Figure (17, left) and Figure (17, right) shows the defended model with the original 
dataset cross-validation in accuracy and loss.  Figure (17, left) and Figure (17, right) 
shows that at greater epsilon error magnitudes the difference between the existing (ran-
dom) and proposed (non-random) methods are divergent.  With the proposed 
(non-random) method being the higher accuracy in Figure (17, left) and lower loss in 
Figure (17, right).  Meaning that the proposed (non-random) method has suffered less in 
accuracy when re-trained with the perturbed attack dataset to defend it. i.e. the attack 
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defence has less affected the accuracy to the original dataset with the proposed method, 
most notably with larger distortions in that further training attack dataset.   
F. FSGM attacks with varying epsilon values 

In all cases included in Figures (15), (16) and (17), each perturbation attack dataset, 
used a constant epsilon value in each measurement, that was progressively increased.  
In Table 5 are the results from both the existing (random) and proposed (non-random) 
methods, but with a randomly varying epsilon value in both the cross-validation and 
training datasets. 

Table 5. Results from a single dataset that included random epsilon values. 

Initialization method used prior to 
model defence via transferred 
learning. 

Non-Attack 
cross-validation dataset  

Attack  
cross-validation dataset 

Loss 
(Cross Val) 

Accuracy 
(Cross Val) 

Loss 
(Cross Val) 

Accuracy 
(Cross Val) 

Proposed (Non-Random) Method 0.9854 67.01% 1.3331 61.82% 
Existing (Random) Method 1.2736 61.05% 0.8366 78.41% 

In Table 5 the cross-validation accuracy with the proposed (non-random) method is 
greater with a lower loss, when cross-validated with the original non-attack validation 
images.  This is shown in Bold, within the column: 'Non-Attack cross-validation dataset'.  
However, the cross-validation accuracy is higher with a lower loss with the existing 
method using the attack cross-validation dataset.  This is also shown in bold, within the 
column: 'Attack cross-validation dataset'.   

Table 5 demonstrates that the proposed non-random method has been less com-
promised to the original learning that was transferred.  Also that the existing method by 
contrast, had a higher accuracy and lower loss with the retraining attack dataset, thus 
may have embraced the subsequent attack dataset more, but has been more compro-
mised to the original training to a greater extent.  These findings were also shown in 
Figures (15), (16) and (17), and those results also showed a greater difference with con-
stant epsilon values, and the most extreme difference was with the larger epsilon () 
values, rather than smaller values. 

X. Discussion and Conclusions 
This work focused on repeatable determinism to support mission and safety critical 

systems that use convolutional networks with mixes of both perceptron and convolu-
tional layers.   
A. Proposed method in neural networks 

The proposed method, is applicable to deep convolutional networks for repeatabil-
ity, however also achieves a higher accuracy in a single learning session, with a compu-
tational initialization state number sequence that has been designed to be more condu-
cive to image classification.  The proposed method has a finite number sequence set that 
is not coupled to the dataset via sampling, which may be closer to a general case.  The 
losses during learning show a quicker reduction using the proposed form, and result in a 
higher accuracy.  The repeatable deterministic property also provides no variation in 
learning sessions, aiding the speed of development of a model.  The proposed method is 
complimentary to existing methods, replacing only the random numbers in those meth-
ods.  The proposed non-random method provided a higher cross-validation accuracy 
against the existing random number method, and when used with Glorot/Xavier limits of 
the benchmark models achieved an extra 3.705% un-shuffled, and 2.642% shuffled in the 
first epoch.  Thus dataset order is still a significant effect, but the proposed method was 
tolerant.  The proposed method is also robust to He et al. initialization value limits as the 
current state of the art, and when used with the proposed method offered an accuracy gain 
of 5.13% shuffled and 4.27% un-shuffled in the first epoch. 
B. Proposed method in FSGM with transferred learning 
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When applied to FSGM attacks both methods offer little resistance to perturbation 
attacks without transferred learning, but the proposed (non-random) method also has an 
advantage of being less compromised, noted with larger epsilon values.  These results 
may be biased to the order that the datasets where trained in, and transferred from, as a 
bias to the original programming.   However it could also be that the higher epsilon 
values have less suitable application to the proposed method, and further study would 
be required.  The results do show that the proposed method when transferred in this 
order, can provide a lower compromise to the original programming, and achieved an 
accuracy of ~31%, compared with ~9% of the existing method.  Moreover, the FSGM at-
tack was used with transferred learning to examine the compromise of the learning from 
cross-validation datasets, under controlled distortions.  This found that with higher ep-
silon distortions the proposed (non-random) method was less compromised to the orig-
inal cross-validation datasets that had no distortions.  By contrast, the existing random 
method with higher attack distortions was less compromised with the attack dataset, but 
much more compromised to a dataset with no distortions.  This also provides support to 
the notion that high epsilon values can be used to cause a DoS attack to a human while 
still being readable by a computer at 63%-85%, and that the proposed method can still 
provide a higher level of performance in generalisation in non-perturb cases of ~31%, in-
stead of just ~9% with the existing method.  The bias to original training is favoured, il-
lustrated by, that if the transferred learning was to extend the training to a letter set from 
A to F as the hexadecimal set.  Then the existing random method may be biased to re-
placing the training of numbers with letters.  Whereas the proposed non-random 
method may be more biased to extending the training to letters, while still retaining more 
of what was learnt from numbers.  It follows that there are more subjects for further re-
search. 
C. Further research 

Synthetic noise replacement: A further extension to this work may look at synthetic 
noise like injection methods into the dataset consistent with the Schwinn approach [26], 
but not to be dataset coupled, perhaps as an augmentation to the epoch scheme, and it 
was noted that dataset order is also still an effect on performance.   

Model architectures and dataset: Also in further work, a focus on different datasets, 
particularly those datasets with multi-channel images and in other applications.  There 
may also be more dense layer configurations depending on the layers prior, that will in-
crease performance in neural network generalisations.  It may be that the proposed 
method is a more general approach by not being coupled to the dataset directly through 
data sampling, as used in other related works.  However, it is indirectly coupled, as the 
model architectures are coupled to the datasets and applications.  As such the proposed 
method is connected to hyper-parameters.  The proposed non-random method having 
more striped forms through a filter may make the filter size less sensitive to hy-
per-parameters.  As with the random speckled form the initialisation filter patterns be-
come more specific as the filter is enlarged.  Further research is required to set the re-
sultant filter patterns with variations in the hyper-parameters used in different model 
architectures, datasets and applications to perfect the algorithms proposed, such that 
they can be a general case, as a direct alternative to the existing random forms. 

Increasing and optimising filter diversity: Another subject of research is increasing 
the number of filters on offer, and making them tolerant to the hyper-parameters in more 
architectures.  Such that the proposed method is adapted to an architecture generally 
and is not constraining to it, providing the best filters for any model architecture.  That 
may also include examining the success of current proposed filters, such that a subse-
quent proposed method can be optimised towards higher performing filters. 
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