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ON THE RIEMANN-HARDY CONJECTURE FOR THE
RAMANUJAN ZETA-FUNCTION

XTAO-JUN YANG

ABSTRACT. In this article we propose the integral, series and product representa-
tions for the Ramanujan zeta-function. We suggest a variant for the Conrey-Ghosh
product for the entire Ramanujan zeta-function. We present some variants for the
product for the Ramanujan =-function. We prove that all of its zeros are real.
Along the way we obtain the truth of the Riemann-Hardy conjecture.
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1. INTRODUCTION

In his remarkable paper [1], Ramanujan in 1916 introduced the zeta-function
L, (s), that in his honor is now called the Ramanujan zeta-function, which is de-

fined as [2]
1) L) =3 W (e (s) > 1372),
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RIEMANN-HARDY CONJECTURE 2

and conjectured the arithmetical function 7 (n) that in his honor is now called the
Ramanujan’s tau-function, which is expressed by (for example, see [3], p.156)

(2) Ge)=) 7m)a"=z][ Q-2 (2] <1),

which was proved by Mordell in 1917 [4, 5], where s € C, x € R and k € N, if we
denote the sets of the complex numbers, natural numbers and real numbers by C ; IN
and C, and the real and imaginary parts of s € C by Re (s) and I'm (s), respectively.
Before the work of Deligne [6], Ramanujan conjectured an Euler product for Eq. (1),
which can be expressed as [2, 7, §]

s Lol T -1 -l
B) Les)=JJ0-7mpe+p" ) =]](Q—ap) (1—ap™) .
P P
where p is prime and Re (s) > 13/2. The second term of Eq. (3) (see [3], p.164)
was conjectured by Ramanujan [1] and proved by Mordell in 1917 [4], and the third
term of Eq. (3) was proved by Deligne [6]. Rankin in 1939 [9] suggested the entire
Ramanujan zeta-function & (s) by

(4) & (s) = (2m) "I (s) L (s),
which leads to the functional equation
(5) 57 (5> ZST (12_3)7

proved by Wilton [10] and denoted by Conrey and Ghosh [2]. By the result of the
Weierstrass and Hadamard work on the entire functions [11], Conrey and Ghosh
pointed out that the entire Ramanujan zeta-function of order a = 1 can be rewritten
in the form [2]

(© &= [ (1-2) e

91 Po

where py run the nontrivial zeros of &, (s), ¥ € IN and ~ is a constant. For @ # 0

and ¢ = 4/—1, Rankin in 1939 showed [9]
1 1
) A (@) = =80 (1),

which implies that [12]

(8) £ (s) = / A, (iw) de,
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and (see [11, 12], which is the special case of Wilton [10])

(e} e}

() = () = & (64 it) = / FHIA_ (i) dow — / F 1) e,
where .

(10) F(l)=A, (i) e

and [13]

(11) A, (@) =n(@)* = H (1- ekw)24 = ZT (k) e*mike
with

(12) U (—%) = \/?7 (@),

which satisfies the Dedekind eta function [14]

(13) n(w) =" ][ (1)

Following the idea of Chirre and Castanén [15], =, (¢) is called the Ramanujan =-
function. Based on the above results mentioned, the interesting topics for the Ra-
manujan zeta-function have been conjectured by Hardy as follows (see [3], p.174):

e (Critical Strip)

The critical strip for the Ramanujan zeta-function is 11/2 < Re (s) < 13/2;
o (Trivial Zeros)

The trivial zeros for the Ramanujan zeta-function is s = —w with w € INU{0};
e (Riemann-Hardy Conjecture)

Conjecture 1. The nontrivial zeros for the Ramanujan zeta-function lie on
the critical line Re (s) = 6.

Hardy in 1940 (see [3], p.174) proposed the Riemann-Hardy conjecture for the Ra-
manujan zeta-function associated with the Ramanujan’s tau-function, that in his
honor is as an analogue of Riemann conjecture for the Riemann zeta-function. Up
to now, it remains an important unsolved problem in the analytic number theory.
Moreover, a great many of the interesting problems similar to the interesting topics
for the Riemann zeta-function have been reported by Hardy [3]. For example, an
analogue of the theorem of Hardy for the entire Ramanujan zeta-function was pro-
posed by Hardy (see [3], p.174) and proved by Lekkerkerker [16]. An analogue of
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the von Mangoldt-like formula for the entire Ramanujan zeta-function was conjec-
tured by Hardy (see [3], p.174) and proved by Ki [17]. Ferguson and coauthors [18§]
reported 18 nontrivial zeros for the Ramanujan zeta-function. An analogue of the
Rieman-Siegel-like formula for the Ramanujan zeta-function (1) was conjectured by
Hardy (see [3], p.174) and proved by Keiper [19].

Let ¢y run the positive zeros for =, (¢). In 1983, Hafner [13] proposed the equiva-
lent form of Conjecture 1, which states that

(14) No(T) = N(T),
where

(15) No(T)=#{s=6+it:0<t<T,=,(s) =0}
and

(16) N(T)=#{s=o0+it:0<t<T,11/2 <0 <13/2,& (s) = 0}.

Moreover, other statements equivalent to Conjecture 1 were reported in Moreno [7].
The main targets of our article are to proceed to prove Conjecture 1, and to propose
the series and product formulas to give the structure of the product formulas to
obtain this conjecture. The structure of this article is given as follows. In Section
2 we propose the integral and series representations for (1) and the Lekkerkerker
theorem. In Section 3 we suggest the product formulas for (1) and (4). In Section
4 we prove that all zeros of the Ramanujan =-function (9) are real. In Section 5 we
also prove the truth of Conjecture 1. Finally, we propose some equivalent theorems
in Section 6.

2. THE INTEGRAL AND SERIES REPRESENTATIONS

In this section we consider the integral and series representations for the Ramanu-
jan zeta-function.

Now we consider the remark on the work of Wilton to consider the integral repre-
sentations of them.

Remark. In 1929, Wilton (see [10], formula (5.2)) proved that

dwo
) =

{T (S) — / (WS_6 + ’ZUG_S) wGG (6—27rw
1


https://doi.org/10.20944/preprints202105.0769.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2021 d0i:10.20944/preprints202105.0769.v1

RIEMANN-HARDY CONJECTURE 5

which leads to

|
[\) HSg/C-/;\

)
(ws—6+w6—s) wGG (6—27rw) d;w

(s—6)1 —(s—6) _
(e s=6)logw 4= (s ) =G (6 27rw> dw

2 w

1
2 [ cosh ((s — 6) logw) @’G (e ") dw.
1

Thus, we have

& (s) = 2/cosh((s —6)logw) X (w) dw,

where
(17) X (w) =@°G (7).
Theorem 1. Let A, (w) = i T (k) ek=. If & (s) is defined in (4), then we have for
seC, =
(18) & (s) = /cosh ((s —6)logw) X (w) dw,
1
where

X (@) = @G (e777) = @’A, (iw).
Proof. By the definition of the entire Ramanujan zeta-function and (7), we have

& (s)

oA, (iw) dw

|
H\g)—‘%SH\g)—‘%8 0\8

1
A, (iw) 2 + [ A, (iw) 2=
0

(19) @A, (iw) &2 — [@2A, (iw) 22
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and
h d r d

w w
20 SAT ) - = — 12_SA7- ) s
(20) /w (1) - /w (i) -

0 1

where

‘ A, (—1/iw)

A, (i) = p=p

By (2) and (11), we arrive at the identity
(21) G (e72™) = A, (iw),

which leads to
X (@) = @G (e777) = @’A, (iw).
It follows that

& (5)
— [ (=70 — =) A, (i) =
1

(6(5—6) logw _ e—(S—G)) w5AT (zw) dw

I
[N} =

(22)

(s—6)logw _,—(s—6) .
(es kit >w5AT (1) dw

2

2 [ cosh ((s — 6)log @) WA, (iw) dw

2

PSR =g g

cosh ((s — 6)logw) X (w) dw.

Then, the desired result follows.
Hence, we finish the proof of Theorem 1. O

Theorem 2. Let A, (w) = i 7 (k) ek=. If & (s) is defined in (4), then we have for
m € NU{0} and s € C,

(23) & (s) = B (s —6)",
where
(24) B = ﬁ / (logw)*" X (w) dw
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Proof. By Theorem 1, we now show that

& (s)

[e.e]

=2 [ cosh ((s — 6)log w) X (w) dw

1
—of 55 et (o) 4
(25) - 5 (o et (@) i) (-6
::§;<(ﬁhnj%bgwme(wNWO(s—Gfm
= 3 Buls = 6",
where
(26) B = TS /logw "X () de.
Thus, the result follows. (I

Theorem 3. Let A, (w) = Y. 7(k)e"™. If =, (t) is defined in (9), then we have for
k=1
teR,

(27) = () = 2/005 (tlogw) X (w) dw.

Proof. Making use of (9) and Theorem 1, we give
& 6+ it)
cosh {[(6 + it) — 6]log w} X (w) dw

—_
—
—

T

(28)

t) =
I

=2 Lo[ocosh (itlogw) X (w) dw
:f s (tlog ) X (w) dw,

and the result follows. 0
Remark. In 1929, Wilton (see [10], formulas (5.31) and (5.32)) proved that

oo

a@:/AmW%

—0o0
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where
A(l) =G (672#61) .

It has been proved by Ferguson and coauthors [18] that

[e.9]

= (t) = 2/66’”AT (1e) cos (tx) dx,
0

which can be rewritten as (27) when x = log w.
Thus, we find that

= (Ozi)

— f plrel <€—27rel) ciltq]

=2 [ 5 A, (ie”) cos (tz) dx
0

=2 [ cos (tlog w) X (w) dw.
1

Theorem 4. Let A, (w) = > 7 (k) e*™. If =, () is defined in (9), then we have for
k=1

m € NU {0},
(29) = (t) = Z (_1)m Bmtzma
where
2 Ji 2m
(30) B = TS / (log @)2™ X () dw

Proof. By Theorem 2 and (9), one obtains

(31) = () =& (6+it) = Zﬁm [(6+t) — 67" = (=1)™ But™,
m=0 m=0
where
— 2 [ 2m

1
Thus, we finish the proof. U
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Remark. It is clearly seen that Theorem 3 also reduces to the desired result.
By (27) and (29), we find that

(33) ET <_t) = ET (t) )

which is in agreement with the result of Conrey and Ghosh [12].
Moreover, there exist

"=, (1) 2
34 = e ) —=2m) (o
(31 b= | ] = 0)
such that
(35) = (1) =) (=)™ EP™ (0) £
m=0

In view of (34) and (30), we arrive at

_[EE O] _cemg 2 [ 2m
1
Similarly, we also present
d2m . - .
(37) o= (1" | 5] — e o).
5=6

By using the above remark, one has the following corollaries:

Corollary 1. If =, (t) is defined in (9), then we have for m € N U {0},

(38) ) =) (=1)" Bt
m=0
where
(39) B = EP™(0).
Corollary 2. If &, (s) is defined in (4), then we have for m € N U {0},
(40) & ()= Bmls—6)""
m=0
where
(41) B = (1) 2™ (6).

In 1955, Lekkerkerker [16] showed that =, (¢) has infinitely many zeros by Lekkerk-
erker theorem.
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Lemma 1. (Lekkerkerker theorem) If 2. (t) is defined in (9) and
No(T)=#{s=6+1t:0<t<T,& (s) =0},

then we have

(42) No(T) > AT
such that 2, (t) has infinitely many zeros, where A is a positive constant.
Proof. See [16]. O

3. THE PRODUCT FORMULAS

In this section we propose a variant for the Conrey-Ghosh product for the entire
Ramanujan zeta-function and some product for Ramanujan zeta-function.

Now, we introduce the Conrey-Ghosh product by applying the result of the Weier-
strass and Hadamard [11].

Lemma 2. (Conrey-Ghosh product)
Let py € C, s € C and ¥ € N. Suppose that py Tun the nontrivial zeros of &, (s)
and v is a constant. If & (s) is defined in (4), then we have

= s
43 L (s) =& (0)e® 1 — s/py
(43 t0=e0 T (1-)e
Proof. For the proof of the Conrey-Ghosh product, see [2]. O

Theorem 5. Let py € C, s € C and 9 € N. Suppose that py run the nontrivial zeros
of & (s) and 7y is a constant defined in (6). If & (s) is defined in (4) and &, (0) # 0,

then we have

(44) £(6) #0
and

(45) & (12) # 0.

Proof. By (5) and Lemma 2, one has

(46) £ (s) =& (12— 5)

such that

(47) £ (12) = £ (0) £ 0

and

(15) &0 =& O [ (1= 2 ) 20

=1
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since py # 6 € R.
Thus, we complete the proof of Theorem 5. U

Theorem 6. Let py € C and ¥ € IN. Suppose that py run the nontrivial zeros of
&-(s) and v is a constant. If &, (s) is defined in (4) and Z. (t) is defined in (9), then
we have

_ v(s—6) = _ 56 (s—6)/py
(49) £ (5) = & (6)¢ H(1 2=

where s € C, and

(50) = () =& 6) ] (1- )

e py — 6

where t € R.

Proof. With Lemma 2 and (48) one gives

& (s)
— 57 (0) evs H (1 _ ps ) es/pﬂ
190201
=& () IT e
190201
=& O TT (555250 e
_ s = po—6  py—s s/
51 S T - —S S
(51) =& (0) € 191;[1 (piﬁG ﬁiffs) e
_ s T po—6 - P9—s s/
~6 e 1 o Il e
_ s _ 6 po—6—(s=6) s/
=& (0) e’ 191;[1 (1 pa> ﬂHI P96 C "
_ s T _ 6 T s—6 s/
_ (s—6) s—6 (s—6)/
=& (6)e” i (1 pﬁ—@’) e P9

which completes the proof of (49).
Putting s = 6 + it into (49), one obtains (50).
Thus, we finish the proof of Theorem 6. O
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Theorem 7. Let py € C and ¥ € IN. Suppose that py run the nontrivial zeros of
- (s) and 7y is a constant. Then we have for s € C,

(52) L, (8) _ 57- (O)F(?:))S evs H <1 B i) es/p,(g’

9=1 Po

and

(53) L@=§@%ew H(

) o(5=6)/p0.
Py —
Proof. By (4) and Lemma 2, one obtains

vs X
(54) L (s) = &0 2” ‘ H < ) e’/Po,
and by (4) and Theorem 6, one gives
& (6) (2m)" =0 = s—0\ (o
(55) G (s) = ”(% (- o
9=1

I'(s py — 6
Thus, we finish the proof of Theorem 7. U
Remark. By Theorem 7, it is clearly shown that L, (s) has the trivial zeros s = —w

with w € INU {0}, controlled by poles of I' (s), and that py run the nontrivial zeros
of L, (s) (for more details, see [3], p.174). Hardy proved in 1940 (see [3], p.174) that
L. (11/2+it) # 0 and that L, (13/2 4 it) # 0 for t € R.

4. REAL ZEROS

In this section we will prove that all of the zeros for the Ramanujan =-function
=, (t) are real by the Lekkerkerker theorem and Theorem 6.

Corollary 3. Lett € R. If =, (t) is defined in (9), then all of the zeros of =, (t) are
real.

Proof. Applying Theorem 6, we have
56 =, (t) = =, (0) e (1— ! )e“/f’ﬂ,
(50 0=20 T (1-,,%

where ¢t € R, ¥ € IN, and the product runs over zeroes py of the entire Ramanujan
zeta-function & (s).
In order to investigate the zeros of Z. (t), we now rewrite (56) as

(57) = (1) ”H( %wﬁ
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where t € R, ¢ € N, and the product runs over the zeroes 1y of =, (t) and the zeroes
po of the entire Ramanujan zeta-function &, (s).

Now, let us consider the first hypothesis that all zeros of =, (¢) are given by
(58) wﬁ = 619 + 7;72/197
where gy € R\ {0} and 7y € R\ {0}, and the second hypothesis that all zeros of
=, (t) are
(59) wﬂ = 619 )

where £y € R\ {0}. Our idea is that if two cases are false, then we have that all zeros
of =, (t) are real.

We now start to prove that they are false.

Hypothesis 1.

Now, we consider the first hypothesis that the complex zeros for =, (t) can be
expressed in the form

(60) g = 09 + 1Ty

where 0y € R\ {0} and 7 € R\ {0}.
By (57) and (60), we now consider

= (t)
(61) ==, (0) e H ( m) git/po

=2 (0) e T (1= &) e/er.

9=1
Putting ¢t = (s — 6) /i into (6), we now give

& (s)=E (( 6) /1)
(62) — £, (6) 9 [] (1 - ﬁ) o(5=6)/po
=& (6) 7% 13( - ) (s=6)/ps
since =, (0) = &, (6).

Let py = Re(py) + ithy Tun all roots of &, (s) = 0, where Re(py) € R\ {0} and
1y € R\ {0}. Then, we have from (62) that

) Frlo =e 0 H< ) =0

where &, (6) # 0.
From (63) we show

(64) Gy + 7y — (py — 6) = 0

d0i:10.20944/preprints202105.0769.v1
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since &, (6) # 0 and €168 T[ eles=6)/eo £ ),

By (64), we present "~
(65) sy = Re (pg) + ity = 09 + 6 + 17y,
where gy € R\ {0} and 7y € R\ {0}.

By 0y € R\ {0} and (65), that the critical line is expressed as
(66) Re (s9) = 55 +6,

which is in contradiction with Lemma I (Lekkerkerker theorem), which states infin-
itely many zeros for &, (s) lie on the critical line Re (s) = 6.

Hypothesis 2.

Now, we give the hypothesis that =, (¢) has zeros

(67) g = Ly,

where £y € R\ {0}.
By inserting (67) into (57), we suggest that

" A
(68) = () =20 e"]] (1 - z_> citlpo.
d=1 v
Substituting t = (s — 6) /i and (68), we give
(s)

I

[1]

- ((s = 1/2) /i)

L(0) e ] [1 _ i[(s;ﬂﬁ)/il] cit/po
=1

— ¢, (6) 9 ] (1 _ %f) o(5=6)/po
v=1

[1]

(69)

since =, (0) = &, (6).
Let py = Re (pyg) + ity such that & (sy) = 0, where Re (py) € R\ {0} and ¢y €

R\ {0}.
From (69), we show that
- —6
(70) & (po) = & (6) PO (1 S ) o/ —
9
=1

From (70) we have that

(71) po —6— Ly = 0.
Since £y € R\ {0}, (71) implies

(72) py = 6+Ly € R,
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which is in contradiction with the well-known fact

(73) po = Re (py) + by € C,

where Re (py) € R\ {0} and ¢y € R\ {0}.
Moreover, (72) and Lemma 1 (Lekkerkerker theorem) conflict with each other.
In sum, all zeros of = (¢) are real since two cases are false.
Hence, we finish the proof. O

Remark. We have to point out that Corollary 3 is a sufficient condition for (9) to
have all infinitely many real zeros.

5. THE NONTRIVIAL ZEROS

In this section we present the detailed account of the proof of Conjecture 1.

To begin with, we consider the product of the Ramanujan =-function with the aid
of Corollary 3.

By Theorems 4 and 6, we now structure the entire Ramanujan Z-function by

(74) ET<t>=5T<6>eWH<1— U )eim:Z(—l)mﬁmﬁm,

¥=1 Py = 6 m=0

where (3, are the coefficients and ~ is the constant.

In view of Corollary 3, the second term of (74) gives us to show that all of the
zeros of =, (t) are real.

By (75), we have ¢y € C such that

(75) = (Yg) =0,
which leads to

(76) &6) e [ (1 — pzw—_ﬁG) et/Pr = 0,

or, alternatively,

(77) S (=D B () =D (=)™ Bt =0,

With (76) and Theorem 5 we arrive at
Wy
po —6

(78) 1- =0,

where &, (6) # 0 and ¥ € IN.
From (78) one gets

(79) po =6+ 11y
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for ¥ € IN.
Substituting (79) into (50) and (53), we have
=0
=& (6) e TT (1 ;i) /e
7.90101 po
_ iy it it/ (6+itp)
(50) =& (©) e I [1 - g e/
— & (6) e ] (1 _ %) it/ (6-+inhg)
190101
— & (6) e ] (1 _ wi) ot/ (6+ithg)
H=1 K
and
& (s)
=& (6) 70 ] (1 ps;;66) o(5=6)/ps
9=1
81 sg) 3 s . ;
(81) — & (6) 750 01:[1 [1 _ (6+w§)_6] o(5-6)/(6-+ithy)
— &, (6) Y0 1°—°[ [1 _ ﬂ] o(5—6)/(6+itb9)
e ithy

Similarly, by (79), (53) can be rewritten in the form

& (6) (2n)° 9 A { _ﬂ] (s—6)/(6-+ithg)
(82) G (s) = I (s) 11 1 ™ e :

From (81) and (82), one also has (78) and (79) once again.
Thus, we finish the proof of Conjecture 1.

6. THE EQUIVALENT THEOREMS

In this section we propose some equivalent theorems for the Ramanujan zeta-
function based on the true of Conjecture 1.

From (79) we find that py = 6 + iy, pg = 6 — ithy, 12 — py = 6 — by, and
1 —pyg = 6 4+ 1py are the zeros for the entire Ramanujan zeta-function and the
nontrivial zeros for the Ramanujan zeta-function.
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By (80) and ¢y = |¢y|, we have

=, (t) N
=& (6)e" ] (1 - ¢L> oit/ (6+itby)
190201 K .
(83) &(6)e 191;[1 <1 ‘pﬁ) ‘ 191;[1 (1 + w) ¢
— ¢ (6) e [] [(1 _ J_ﬂ) (1 n J_ﬂ)} 212/ (6-+ipg) (6-isp0)
9=1
. 0 2 i 5
=& (6) et 191;[1 (1 _ L_§> e 12t/(36+%).
Because (83) is valid for t € R and =, (¢) is the even function, one has
= t2 )
(84) = (—t) =& (6) e H (1 _ _2> o—i12t/(36+¢3 )
9=1 P
and
= +2 )
(85) = (1) =& (6) e ] (1 B _2) 12t/ (36+43)
v=1 )
such that
_ (2 - ©2
v=1 e
Thus, by (86), one gets
(87) o201 H ez‘24t/(36+<p39) —1,
v=1

which leads to

=1

88 iyt + 124t =0
(88) iyt +i ; 361 42
Thus,
(89) > s =——

= 36 + 5 12
and
(90) = (1) =6 6)]] (1 - ¢—)

[
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Moreover, (85) reduces to

(91) =, (0) = & (6) £ 0.

Corollary 4. Suppose that =, (t) is defined in (9), where t € R. Let 9 € N such
that 1y run the zeros for =, (t) and @y = |1y|. Then we have

92 === (1-%)
and
9) =0=-=0[(1- L)

Proof. Combining (90) and (85), we carry out (92).
In view of (92), we have

=0
= _ 2
== 011 (1-5)
(94) == I t —_t
== O 1 |(1+%) (1- ),
_= - __t
T (0) ,19];[1 < ¢ﬂ>
Thus, we finish the proof of Corollary 4. O
Theorem 8. Let ¥ € N and t € R. The following representations for =, (t) are
equivalent:
(1A):
(95) /wSHtA w) dw,
0
where A, (w) is defined in (11);
(2A):
(96) =, (1) =2 / cos (t) @’ A, (iw) dw,

1

where A, (w) is defined in (11);
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(3A):
(97) () =) (=)™ But™,
m=0

where B, is defined in (36);

(4A):
(98) = () =& (6) e ] (1 _ i) it/ G+i00).
ol Yo
where 1y run the zeros for =, (t) and v is defined in (89);
(5A):
(99 = -0 (1-5)
¥=1 Py
where Py = |Q/}19|7‘
(6A):
= m-zT(1-L
(100) === 0T (1- )

where 1y run the zeros for =, (t).

Proof. Eq. (95) (see (9) in Section 1) was proved by Conrey and Ghosh [12]. (96)
is shown in Theorem 3, and (97) was presented in Theorem 4. (98) was given by
Theorem 6 and Congjecture 1. (99) and (100) were presented in Corollary 4. Thus,
we finish the proof of Theorem 8. These are what we wanted to show. U

Theorem 9. Let ¥ € N and s € C. The following representations for & (s) are

equivalent:
(1B):
(101) & (s) = /ws_lAT (1w) dw,
where A, (w) is defined in (11);
(2B):
(102) € (s) =2 / cosh (1) X () dos,

1

where A, (w) is defined in (11);
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(3B):
(103) & ()= But™™,
m=0
where By, is defined in (306);
(4B):
. s—6 ity
(104) 6 (5) = & (6t~ H (1 - L0 oo,
where 1y run the zeros for =, (t) and v is defined in (89);
(5B):
oo 2
(105) &) =60)]] <1+ (s=5) )
=1 Yo
where vy = |y|;
(6B):
106 .
(106) =& g< Z% >

where 1y run the zeros for =, (t).

Proof. Eq. (101) (see (8) in Section 1) was proved in [12]. (102) was presented in
Theorem 1, and (103) was presented in Theorem 2. (104) was proved by Theorem 6
and Congecture 1. Putting t = —i (s — 6) into (99) and (100), one obtains

W07 == 0] (1 T ) e 0] (1 i) )

=1 v =1 Yo
and
st 5s—06 it 5s—6
108 () ==,(0 1— =& (6 1 —— ;
w9 ew==0l(1-5) =« oIl (1 -5)
since (91) is valid.
Hence we complete of the proof. O

Theorem 10. Let 9 € N and s € C. The following representations for L, (s) are
equivalent:
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(1C):

(109)

STIAL (iw) dw

where A, (w) is defined in (11);

(20):
21+S7TS
(110) L, (s)= D) 1/cos.h (t) X (w) dw,
where A, (w) is defined in (11);
(3C):
s) = (27T)S - 2m
(1) L ()= 0 2 ™
where By, is defined in (30);
(4C):
s _ &(6) (27)° <6 277 (5—6) (5—6)/(6+ithy)
(112) Ly (s) H( o ) ,
where 1y run the zeros for =, (t) and v is defined in (89);
(5C):
_ & (6)(2m)° 1y (s —6)°
(113) LT(S)_WL{(H 2 )
where vy = |y|;
(6C):
RACIEOR - T
(114) o) = S I (1 - )

where 1y run the zeros for =, (t).

Proof. By (4), we have

(115) Ly (s) =

and by (115) and Theorem 9, we obtain the required results.
Thus, the proof of Theorem 10 is finished. O
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We now define
. ( )G—H't . (27T)6+it _
11 M.,-tILT t) = ———&; t:—,ZTt,
(116) ()= Ly (64 i) = f o (6 4+i8) = o= ()

where (27)°"" /T (6 +it) # 0 for t € R.
Theorem 11. Let ¥ € IN and t € R. The following representations for M, (t) are

equivalent:
(1D):
o )0t ; .
(117) M- (t) = % / @A, (i) de,
0
where A, (w) is defined in (11);
(2D):
OT+it 6+it 7
(118) M, (t) = m/cos (t) X (@) dww,
1
where A, (w) is defined in (11);
(3D):
(27T 6+7,t o 2m
(119) M- () =56 i > (=)™ Bt
m:()
where B, is defined in (36);
(4D):
(2m)™" ¢ (6) € 1 ( : ) t/(6-+ith9)
120 M, (t) = . e LR
(120) ®) I (6 +it) g Yy
where 1y Tun the zeros for =, (t) and v is defined in (89);
(5D):
ET (0) (27T)6+it oo ( t2 >
121 M- (t) = —————5—11(1-=)
(121) =T g %5
where @y = |yl;
(6D):
a@@ﬁ””( )
122 M- (t) = ———5—11({1—7)
(122) ®) I' (6 +dt) ;_[1 Yy

where 1y run the zeros for =, (t).
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Proof. Combining (116) and Theorem 10, we arrive at the desired results. U

Now, we consider that the Hafner theorem was conjectured by Hafner in 1983, as
a statement equivalent to Conjecture 1 [13].

Theorem 12. (Hafner theorem)

Let
(123) No(T)=#{s=6+it:0<t<T & (s) =0}
and
(124) N(T)=#{s=0+it:0<t<T,11/2 <0 < 13/2,¢ (s) =0}.

Then we have
(125) No(T)=N(T).
Proof. Let 0 <t <T and 11/2 < 0 < 13/2. With the aid of (79), one has

(126) po = 6+ iy

such that

(127) =, (pg) = 0.

Thus, the result follows. U

Remark. By the above results, we show the following comments.

e By theory of the entire functions [20], it is observed that =, (f) is an even
entire function of order « = 1 with the exponent of convergence A = 1 and
genus = 0, and of growth (1,0). & (s) is an entire function of order v = 1
with the exponent of convergence A = 1 and genus = 0, and is of growth
(1,0).

e It was proposed in 1940 by Hardy [3] that the nontrivial zeros py for L, (s) lie
on the critical line Re (s) = 6 and in the critical strip 11/2 < Re (s) < 13/2,
and that the trivial zeros for L. (s) are s = —w with w € N U {0}. The
trivial and nontrivial zeros, critical line and critical trip for the Ramanujan
zeta-function in the entire complex plane are shown in Fig. 1. Thus, it is
clear to see that Conjecture 1 is true.
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F1GURE 1. The blue points are represented as the nontrivial zeros for
L, (s). The amaranth points are represented as the trivial zeros for
L. (s). All nontrivial zeros for L, (s) lie on the critical line Re (s) =6
and in the critical strip 11/2 < Re (s) < 13/2.
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