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Annotation. The mechanisms of natural oscillations and resonance are described, considering the peculiarities of the 

transformation of elastic and kinetic energy in the implementation of the law of conservation of energy in local and 

integral volumes of the body, using the concept of mechanics based on the concepts of space, time and energy. When 

describing the motion in the Lagrange form, the elastic deformation energy of the particles is determined by the quadratic 

invariant of the tensor, whose components are the partial derivatives of Euler variables with respect to Lagrange variables. 

The increment of the invariant due to elastic deformation is represented as the sum of two scalars, one of which depends 

on the average value of the relative lengths of the edges of the particles in the form of an infinitesimal parallelepiped, the 

second is equal to the standard deviation of these lengths from the average value. It is shown that each of the scalars can 

be represented in the form of two dimensionless kinematic parameters of elastic energy, which participate in different 

ways in the implementation of the law of conservation of energy. One part of the elastic energy passes into kinetic energy 

and participates in the implementation of the law of conservation of energy for the body as a whole, considering external 

forces. The second part is not converted into kinetic energy but changes the deformed state of the particles in accordance 

with the equations of motion while maintaining the same level of the part of the elastic energy of the particles used for 

this. The kinematic parameters differ from the volume density of the corresponding types of energy by a factor equal to 

the elastic modulus, which is directly proportional to the density and heat capacity of the material and inversely 

proportional to the volume compression coefficient. Transverse, torsional, and longitudinal vibrations are considered free 

and under resonance conditions. The mechanisms of transformation of forced vibrations into their own after the 

termination of external influences and resonance at the superposition of free and forced vibrations with the same or similar 

frequency are considered. The formation of a new free wave at each cycle with an increase in the amplitude, which occurs 

mainly due to internal energy sources, and not external forces, is justified. 

Keywords: equations of motion, Lagrange variables, invariants, energy model of mechanics, superposition principle, 

kinematic parameters of energy, free oscillations, resonance. 

 

1. Introduction 

Vibrations are among the most common processes, and no phenomenon in nature or any of 

the created mechanisms can do without them. They should be considered when calculating, 

manufacturing and operating building structures, transport systems, and technological processes in 

mechanical engineering [1-7]. The most interesting and important for practical applications include 

free vibrations and resonance, which are used in physics, chemistry, biology, and engineering [5], 

including for measuring the elastic properties of materials [6] and as an energy source [1, 7].  

Many papers have been devoted to the study of vibrations [3-5]. The analysis is usually limited 

to the shape, frequency, and period of vibrations. As a rule, vibrations of material points are 

considered; for elastic bodies, the relations of the elasticity theory are used, but without analyzing the 

energy state of particles in the body volume [1, 5]. The Nature of free vibrations and resonance is still 

not fully understood. There are reasons to believe that the energy basis of free vibrations and 

resonance, along with the energy of external forces, are internal energy sources [8]. 

Free (natural) vibrations are called under the action of internal forces when the system is taken 

out of equilibrium. They occur at the expense of the initially reported energy from external sources 

without additional revenues to continue fluctuations. The resonance leads to a significant increase in 
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the amplitude when forced and free vibrations interact in an elastic body with the same or similar 

frequency [1-5]. 

The purpose of the work is to describe the mechanism of natural oscillations and resonance, 

considering the peculiarities of the transformation of elastic and kinetic energy in the implementation 

of the law of conservation of energy in local and integral volumes of the body, using the concept of 

mechanics based on the concepts of space, time, and energy [9-10].  

 

2. Fundamentals of the energy model of mechanics 

The energy model of mechanics [10-11] provides a description of the motion of material 

particles in the form of Lagrange 

( , )i i px x t=  ,      (1) 

where t is time, ( , , )ix x y z  – current coordinates (Euler), ( , , )p      – Lagrange variables 

uniquely associated with the initial coordinates of the particles. They are the arguments of all the 

equations used in the future. Partial derivatives , /i p i px x    of Euler variables ( , , )ix x y z  with 

respect to Lagrange variables ( , , )p      forming the Jacobi matrix of transformation (1) 

, p

i
i

p

x x x
x

x y y y

z z z

  

   

  

 
  

 =    
 

,     (2) 

together with the time derivatives ,/i i tdx dt x  and 2 2
,/i i ttd x dt x , the kinematic characteristics of 

motion are determined, including dimensionless parameters that characterize the parts of elastic 

energy that play a different role in the implementation of the conservation law in different volumes 

of the body, in particular under free vibrations [8] and resonance [12]. 

The different nature of the arguments in equations (1) leads to the need to use two independent 

infinitesimal operators: the operator d for infinitesimal increments in time, for example ,i i tdx x dt=  

and , ,i t i ttdx x dt=  – increments of coordinates and velocity components in the directions of the axes 

xi, the operator δ – for increments in space, for example, the volume of a particle 0V =  . 

When used simultaneously, the sequence of their writing can be changed d Е dЕ = . 

Any movement must comply with the law of conservation of energy. As a generalized scalar 

function [13], the energy of a moving particle movЕ  must consider the independent invariants i  of 

equations (1). As shown in [10-11], the energy movЕ  can be represented as the sum of the terms 

0i i iЕ k V =    associated with each of the invariants i , in which the coefficients ik  ensure equality 

of their dimensions 
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( ) ( )
n n

mov i i i i i
i i

E E k V k
= =

 =   =    .    (3) 

In particular, the invariant v2 on the right side of equation (3) determines the kinetic energy of a 

particle with a multiplier ( 0 / 2 ) 

2 2 2 2
0 0( ) / 2 ( ) / 2k t t tЕ m v V x y z =  =   + + .    (4) 

The increment of the energy of the external forces P when they move to dr 

еxt ( ) ( )d Е d dt =   =   P r P v  

for a particle with face dimensions , ,    for the force density 

, ,
i ii

i i i

P PP  
  

 
 =  =  =

  
 

is [10-11] 

0 , ,( )
p

pi

ext pi i t i t
p

d Е V x x dt


 =   +


.     (5) 

Considering (3) – (5) when the kinetic energy changes (4), 

2
0 0( ) / 2 ( )k t tt t tt t ttd Е md v V x x y y z z dt =  =   + +

 

the law of conservation of energy takes the form 

0 1 1, 2 2, 3 3, , , 0 ,[ ... ( / )] 0
pt t t pi i t i t pi p i ttV k k k x x x dt  +  +  + + +   − = .  (6) 

Because the condition (6) must be performed in any frame of reference velocity, movement (1) 

must satisfy the differential equation [9-11] 

, 0 , 0
pi

i t i tt
p

x x
 

− =   

,      (7) 

where ρ0 is the density of the material in the initial state, τpi – surface density of forces on the faces 

of the infinitesimal parallelepiped, the normal to which in the initial state specifies the first subscript 

( , , )p    , and the direction of the voltage – second index ( , , )i x y z . In essence, these are the 

Kirchhoff stresses for the space of Lagrange variables [10]. 

If we equate each bracket to zero (this assumption may lead to the loss of some possible 

solutions), we obtain analogs of the differential equations of motion of classical mechanics of a 

deformable solid [1-3] 

0 , 0
pi

i tt
p

x


− =


, 

which in the absence of accelerations ( ,i ttx = 0) are transformed into differential equations of 

equilibrium 

p

0
pi
=


. 
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The energy model of mechanics allows for a transition to a single modulus of elasticity and a 

new scale of average stresses, considered as the volume energy density of particles [14-15]. In this 

case, the concept of stresses τpi becomes redundant, since they differ from the components of the 

tensor (2) only by a constant factor equal to twice the elastic modulus κ 

τpi =2κ xi,p .      (8) 

The modulus of elasticity κ is directly proportional to the density ρ0 and the heat capacity c of the 

material, and inversely proportional to the volume compressibility β = 3α (α is the coefficient of linear 

expansion) 

κ = ρ0с/β = ρ0с/(3α).     (9) 

It is these physical properties that determine the behavior of materials in the region of reversible 

deformations [16]. Considering (8), instead of equation (7), we get 

2 2 2 0
p p p

t tt t tt t tt
p p p

x y z
x x y y z z

       
− + − + − =                 

,  (10) 

where μ2 = ρ0 /(2κ). If in (10) we equate each bracket to zero, the differential equations of motion are 

transformed into Poisson equations for each of the functions (1) 

2 2 2 2 2/ ( / )i p ix x t  =   .     (11) 

Solutions of any types of problems based on the energy model of mechanics with a single 

modulus of elasticity [10-11] do not contradict those known from classical mechanics. This model 

leads to a significant reduction in mathematical difficulties and will be used in the future to describe 

the mechanism of free oscillations and resonance. 

To achieve the goal set in this paper, the quadratic invariant of the matrix (2), which is equal 

to the sum of the squares of its elements, 

To achieve the goal set in this paper, particular importance the quadratic invariant of the 

matrix (2), which is equal to the sum of the squares of its elements, 

2 2 2 2 2 2 2 2 2 2
e x y z x y z x y z         = + + + + + + + + .   (12) 

It determines the volume density of elastic energy eE  considering the initial state of the particles 

[10-11] 
2

0/e eE V  =  . 

In the future, we will use dimensionless kinematic parameters of the volume density of the 

corresponding types of energy by type 0/ ( )i ie E V=   . The invariant (12) is a kinematic 

parameter of the volume density of the elastic energy of the particles 

2
0/ ( )e eE V =   .      (13) 
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The energy of the particle gained (edef > 0) or lost (edef <0) due to the reduction of elastic deformation 

δEdef = κ edef δV0, in comparison with the initial state, determines the local kinematic parameter 

2 3def ee =  − .      (14) 

The right part in equation (12) can be written in terms of the squares of the ratios of the lengths 

of the edges up to δl0 and after the deformation δl, initially oriented in the direction of the 

corresponding axes  

2 2 2 2 2
0( / )p p p p pl l l x y z=   = + + ,  ( , , )p    . 

Then parameter (14) can be represented in terms of other dimensionless scalars ee and es 

2 23 3( 1)def e s e se e e e e=  − = − + = +  ,   (15) 

( ) / 3e l l l  = + + ,     ee = 3(е2 -1) ,  2 2 2( ) ( ) ( )se l e l e l e  = − + − + − ,  (16) 

where e is the average of the relative lengths of the edges lp of an infinitesimal parallelepiped before 

and after the deformation; ee depends on the average length e, can be either positive or negative. The 

value of es is always positive and coincides with the standard deviation of the lengths of the edges of 

the parallelepiped lp from their average value e. Equation (15) allows for a change in the deformed 

state of the particles due to internal energy sources, if ee + es = const. 

For the oscillations considered below, the values of ee and es can be represented in terms of 

additional kinematic parameters of the type ee = ee1 + ee2 and es = es1 + es2, which play a different 

role in fulfilling the law of conservation of energy for particles and the body as a whole. In particular, 

the parameters eе1 and es1 will include the fractions of energy that are involved in the transformation 

of the kinetic energy of particles into elastic or vice versa, as well as in the implementation of the law 

of conservation of energy for an elastic body as a whole, considering external forces. The parameters 

eе2 and es2 consider the change only in elastic deformation within the particles, for example, the 

transition of the energy of volume change to the energy of shape change or vice versa. They do not 

require an influx of energy through its boundaries, ensure the implementation of the law of 

conservation of energy in the volumes of particles and do not affect the change in the energy of elastic 

deformation of the body. 

Considering the observations made and the initial state (
2 3e = ), the energy of the particle 

δЕdef with a volume of δV0, acquired due to deformation, can be represented as [9-11] 

2 2
0 0 0 0 1 2 1 2( 3) [3( 1) ] ( ) ( )def e s e s e e s sE V V e e V e e V e e e e =   − =  − + =  + =  + + + .   (17) 

The ratio of the particle volumes after V  and before the deformation 0V  determines the Jacobian 

of the transformation (1) or the cubic invariant of the tensor (2) 
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0/

x x x

R V V y y y

z z z

  

  

  

=   = .     (18) 

In all the cases discussed below, an elastic rod of length L with a cross-section S0 is considered 

as a physical body, the ends of which are fixed in fixed arrays that do not exchange energy with the 

oscillating system. 

For the energy justification of the resonance, the transformations of forced vibrations into free 

ones after the termination of the action of external forces, as well as the subsequent occurrence of the 

resonance when periodic external forces appear with the frequency of natural vibrations or close to 

it, are considered. 

 

3. Transverse vibrations 

Consider the energy features of transverse vibrations in accordance with the equations 

( , )px t =  ,  ( , ) ( , )py t v t = +  ,  ( , )pz t =  ,  (19) 

where ( , )v t  – moves in the direction of the y-axis. We start counting the time when there is no 

deformation ( , t) 0v  =  and the Lagrangian coordinates coincide with the initial ones. The vibrations 

allowed by the law of conservation of energy must correspond to equation (10), which is converted 

to the form  

0( , ) (2 / )tty t y =   .     (20) 

This equation under the initial condition ( , 0)i i px t =  =  and boundary conditions for 

displacements ( 0, t) 0v  = =  , ( , t) 0v L = = , is fulfill by the function  

( ) ( )0( , ) sin / siny t q L t = +   ,     (21) 

with derivatives 

( )
2

0( , ) sin siny t q t
L L



    
 = −     

   
, 

2
0( , ) sin sin( t)tty t q

L

 
 = −    

 
,  (22) 

where q is the maximum displacement of particles along the y axis in the cross section α = L/2. 

Natural frequency 

0 0( / ) 2 /L =         (23) 

considers the properties of the material and the size of the sample. Velocities of particles 

( ) ( )0 0( , ) ( , ) sin / cost ty t v t q L t =  =        (24) 

at the ends of the rod are equal to 0, at t = πn/ω0 they are maximal in each of the sections along its 

entire length. Considering (15) the tensor  
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( ) ( ), 0

1 0 0

/ cos / sin 1 0

0 0 1

i px q L L t

 
 =   
 
 
 

 

corresponds to the system (19). 

The deformation is carried out due to shifts /y y   . The quadratic invariant of the tensor 

determines the increment of the local energy defE  and power /def defW d E dt =   of the elastic 

deformation of the particles 

( ) ( ) ( )
22 2 2

0 0 0( 3) / cos / sindef eE V V q L L t =   −  =     , 

( ) ( ) ( ) ( )
2 2

0 0 0 0/ (2 ) / cos / sin cosdefW V q L L t t  =      .  (25) 

The energy for deformation in the volume of the rod is 

( ) ( )
2 2

0 0

1
/ sin

2
defE V q L t=    .    (26) 

For kinetic energy with velocity (24) 

( ) ( ) 
22

0 0 0 0 0 0

1 1
sin / cos

2 2
kin tE v V V q L t =   =         (27) 

after integration by volume, we get 

( ) ( )2 2 2 2 2
0 0 0 0 0 0cos 0,5 ( / ) cos

4
kin

L
E S q t V q L t=    =    .   (28) 

Total kinetic energy and strain energy in the volume of the oscillating rod 

( ) ( )
22 2

2 2
0 0 0 0

1
sin cos

2 2
sum dеf kin

q q
E E E S t t V const

L L

   = + =   +  =  =    
 (29) 

coincides with the kinetic energy available in the system (28) at the moment t = 0 and does not change 

in time, which indicates compliance with the law of conservation of energy, if there is no energy 

transfer to the fixed walls at the contacts with the ends of the sample or to the environment from the 

outer surface of the rod. 

Condition (23) corresponds to proper transverse vibrations in an elastic rod without energy 

consumption from external forces and without changing the volume of particles 

0

1 0 0

/ 1 0 1

0 0 1

R V V y=   = = . 

At the end of the cycle (t = T = 2π/ω0), the system returns to its initial state, the elastic energy is 

absent, and the kinetic energy (22) takes the maximum possible value. 
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To find out the energy features of the resonance, we consider vibrations with a driving force 

[1-2] 

( )0 sinF F t=        (30) 

acting in the Central section along the length α = L/2 with an amplitude F0 and a circular frequency 

ω, which does not necessarily coincide with ω0. The force F0 can be determined from the integral law 

of conservation of energy in the form of equality of the power of the external force and the rate of 

change of kinetic and elastic energy in the volume of the rod. 

Considering the velocity yt in the cross section α = L/2, where the force (30) is applied, we 

obtain the power 

( ) ( )/2 0W sin cosext t LFy F q t t== =    .   (31) 

The energy transferred to the system is converted into elastic (19) and kinetic (21) energy 

particles of the rod, which characterize the specific powers kinW  and defW   

2 2
0 0 0 0/ 0,5 / 2 /kin kin t t ttW d E dt V dy dt V y y =  =   =   ,  (32) 

( ) ( ) ( ) ( )
2 2

0

/ cos / sin cos
2

def

t

W
y y q L L t t

V
 


= =     


. 

In the expression for the rate of change of the kinetic energy of the particle kinW , the material 

constant is used 
2
0 02 / =   , which determines the circular frequency (23). The ratio 0/ =    

characterizes both the kinematic features of vibrations (ω) and the physical properties of the material 

(ω0). Considering the derivatives (22) and (24) of the function (21) in time and Lagrange variables at 

the force frequency ω, the local powers of the kinetic δWkin and elastic δWdef particle energy is 

determined by the equations 

( ) ( ) ( ) ( )
2 2

0

/ sin / sin cos
2

kinW
q L L t t

V


= −    


, 

( ) ( ) ( ) ( )
2 2

0

/ cos / sin cos
2

defW
q L L t t

V


=     


. 

The total power integral in the rod volume at any given time will be 

( ) ( ) ( )
2 2

0 0 0

0,5 / (1 )sin cos
2 2 2

defs kin
WW W

q L t t
V V V

= + =   −  
  

.   (33) 

Note that when describing the motion in the Lagrange form, it is not necessary to monitor the 

change in the contour of an elastic body during the oscillation, since for a Lagrangian coordinate 

system, it coincides with the original configuration and does not change in time. 
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Equating the powers of external (31) and internal (33) forces, we find the force 

F0   corresponding to the vibrations with the frequency and amplitude considered 

( )
22

0 0 (1 ) /F V q L=  −  .     (34) 

Depending on the frequency ratio, the force F0 can be positive ( 0  ), negative 

( 0   ), and zero ( 0=  ). the Positive force, as follows from equation (31), supplies energy to 

the rod in the first and third quarters of the cycle, when the kinetic energy is converted into elastic 

deformation of the particles. In the other two quarters, the power will be negative, the energy of elastic 

deformation of the particles is converted into kinetic energy and transmitted to an external source. A 

negative force F0 occurs when the circular frequency of the periodic external force exceeds the natural 

frequency of the system. Then, in the first and third quarters of the cycle, the power is negative, and 

the kinetic energy is spent on the deformation of the particles and transferred to an external source. 

Equations (30), (31) – (33) correspond to forced vibrations in an elastic rod with a period Т = 

2π/ω under the action of an exciting force (34). After the cycle is completed, the system returns to its 

original state and, if the force (30) continues to operate, the cycle repeats. 

If the external force ceases after the next cycle, regardless of the frequency ratio, the kinetic 

energy of the particles remains in the system 

( )  ( ) ( )
2 22 2

0 0 0 0 00,5 0,5 sin / / sin /kin tE v V V q L V q L L
t T

 =   =     =   
=

, 

which will lead to continued fluctuations. The frequency and amplitude may vary, but equations (32) 

– (33) remain valid. 

It follows from (3) that if the frequency of the external force is less than own 0   , then 

the positive power Ws > 0 in the first quarter of the cycle will increase the actual frequency ω. 

Similarly, when 0   the negative power of Ws < 0 will reduce the actual frequency. Only in the 

case that 0=   the volume integral power is equal to 0 over the entire cycle, the sum of kinetic 

and elastic energy in the system remains unchanged, which corresponds to the definition of free 

vibrations that can continue without energy input from external sources [1-5]. 

From the point of view of resonance, the case is interesting when a cyclic force (30) acts, 

creating a forced oscillation with a frequency of natural vibrations 0=   or close to it. Then the 

two waves will interact, forming a new wave. 

In accordance with the superposition principle [11, 17], to obtain the equations of joint motion, 

it is sufficient to replace the Lagrange variables of external (superimposed) motion with expressions 

for the corresponding Euler variables of internal (nested) motion. In our case, the equations for natural 

and forced oscillations may differ in the circular frequency ω and the amplitude q, but they are 
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equivalent in their effect on the resulting oscillation. Any of them can be considered external, the 

other internal. 

We choose the amplitude of natural oscillations by the lower index q0 

( , )px t =  , ( ) ( )0 0( , ) sin / siny t q L t =+   , ( , )pz t =  .  (35) 

For a forced oscillation taking into account the resonance, we use the equation 

( , )px t =  , ( ) ( )1 0( , ) sin / siny t q L t =+   , ( , )pz t =  .  (36) 

Replacing the variable β in the system (35) with the right part of the equations (36), for the 

joint motion we obtain 

( , )px t =  , ( ) ( )0 1 0( , ) ( )sin / siny t q q L t = + +   , ( , )pz t =  .  (37) 

If the frequencies of external and natural oscillations on the new cycle are equal, the amplitude 

will be equal to the sum of the amplitudes of forced (on the current cycle) and natural (on the previous 

cycle) oscillations of the system. To clarify the question of the energy possibility of such oscillations, 

it is necessary to additionally determine the kinetic and elastic energies using derivatives of equations 

(37) 

( ) ( )0 1 0 0( ) sin / costy q q L t= +    ,     ( ) ( )0 1 0( )( / L)cos / siny q q L t = +    . 

The integral values are equal to 

( ) ( )
22 2

0 0 1 00,5 ( ) / sindefE V q q L t=  +   , ( )2 2 2
0 0 1 00,5 ( ) ( / ) coskinE V q q L t=  +   . 

Only these equations, by analogy with (26), (28), can ensure the continuation of oscillations 

with the fulfillment of the law of conservation of energy for the system as a whole 

( )
22

0 0 10,5 ( ) /def kinE E V q q L const+ =  +  = .   (38) 

As a result, we get a new free oscillation with an increased amplitude, which can interact with 

a new cycle of forced oscillation. An increase in the amplitude of free vibrations due to interaction 

with forced vibrations with the frequency of natural vibrations or close to it is the basis of resonance 

[12]. Equation (38) can be considered the energy justification of the resonance. The kinetic and elastic 

energies in the body volume increase in proportion to the square of the new amplitude due to internal 

sources determined by the elastic modulus of the material. 

The superposition principle [17] and the new model of mechanics with a single elastic 

modulus (8) confirm the kinematic and energetic possibility of implementing joint motion (37) in 

compliance with the law of conservation of energy. At equal amplitudes q0 = q1, all energy 

characteristics of the combined oscillation increase by 4 times in relation to the initial free oscillation. 

To identify the role of internal energy sources, we pay attention to the kinematic parameters 

of the energy invariants (15) – (16), which depend on the relative average length e and standard 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 May 2021                   doi:10.20944/preprints202105.0696.v1

https://doi.org/10.20944/preprints202105.0696.v1


11 
 

deviations es. For each particle, you can point out specific 4 fractions of the dimensionless bulk 

energy density 

( ) ( )

1/22 2
2 2 2 2

1 2 0 0

1 4
cos sin 1 cos sin 1

3 3
e e e

q q
e e e t t

L L L L

             
= + = +  + +  −         

          
, 

( ) ( )

1/22 2
2 2 2 2

1 2 0 0

2 4
cos sin 1 cos sin 1

3 3
s s s

q q
e e e t t

L L L L

             
= + =   − +   −         

          
, 

( )
2

2 2
0cos sindef e s

q
e e e t

L L

    
= + =    

   
.   (39) 

They carry objective information, including about energy sources that are not related to 

external forces and are not converted into kinetic energy of particles. The most informative are the 

relative measures with respect to the total elastic energy of the particle (14). Considering the first two 

terms of the function expansion in a series 
21 1 1/ 2 1/ 8 ...x x x+ = + − + , these relations remain the 

same for all particles at any given time 

1 2 1 2

e e 3 3

e e

def def

e e
+ = + ,  

1 2 2 2

3 3

s s

def def

e e

e e
+ = − . 

As follows from equations (39), the fractions of its energy ее1 = 1/3еdef and еs1 = 2/3еdef change 

synchronously and participate in the transformation of elastic energy into kinetic energy. Their 

amount  

( )
2

2 2
1 1 0cos sindef e s e s

q
e e e e e t

L L

    
= + = + =    

   
  

ensures the implementation of the law of conservation of energy in the volume of the rod with an 

integral volume value (26) and a phase shift of π/2 with respect to the change in the kinetic energy of 

the particles (28). 

The energy shares of eе2 and es2 vary in opposite phases, the sum of these shares is always 0, 

although each of them is comparable to the total energy of edef. In other words, the energy eе2, 

determined by the change in the average length of the edges of the particle in the form of an 

infinitesimal parallelepiped, passes into the energy es2, associated with the standard deviation of the 

relative lengths of the edges of the particle from their average value, and Vice versa. Such 

deformations do not change the energy state of the particle and the body as a whole. 

The addition of velocities in accordance with the principle of superposition of motions (37) 

provides the necessary kinetic energy for the deformation of particles during the cycle and the 

fulfillment of the law of conservation of energy for the system as a whole, considering external forces. 

Further development of oscillation can occur in one of the following ways: 
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1) the appearance of a new oscillation with an amplitude depending on the frequency ratio, 

( ) ( )  ( )0 0( , ) sin sin sin /y t q t qn t L =+  +   , 

if, after the formation of free vibrations, the external force (30) begins to act again with a frequency 

ω significantly different from ω0. The influence of the free wave will decrease and forced oscillations 

(36) with the frequency of force (30) will continue, which require power (31); 

2) continuation of free oscillations with an increase in the amplitude q0+q1+…+qi after the next 

superposition, if the frequency of forced oscillations is close to its own and there is no energy 

exchange with the environment; 

3) decrease the amplitude if the resonant system is used as an accumulator energy and stored in 

the system energy will go into the environment, including due to displacement were considered 

stationary supporting walls of a perfectly rigid body, in which is fixed the elastic rod. 

The most dangerous is the continuation of vibrations in the conditions of resonance with the 

achievement and subsequent exceeding of the limit values of the stresses acting in the system, the 

occurrence of irreversible deformations or destruction of the system. 

 

4. Torsional vibrations 

During torsional vibrations, circumferential and radial movements of particles can occur. In 

this regard, under the condition of plane deformation in the Cartesian coordinate system, two of the 

three equations (11) must be considered 

2
tty y y y  + + = ,  

2
ttz z z z  + + = .   (40) 

If ignore the change in the radial coordinate and accept  

x =  , cos siny =  −   , sin cosz =  +   ,  (41) 

equations (40) take the form 

2 2 2 2
t tty z y z −  −  = −  −  , 

2 2 2 2
t ttz y z y −  +  = −  +  . 

Squaring and summing the left and right parts, we obtain an equation of degree 4 for the function 

ψ(α, t), 

4 2 4 4 4 2
t tt  + =   +  .    (42) 

The solution ( , ) sin( )t С qt  =   turns equation (42) into an identity, but it does not agree with the 

initial and boundary conditions 

( , t 0) sin( )
L


  = =   , ( / 2, t 0)L  = = =  , ( , t 0) 0t  = = , 
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( 0, t) 0  = = ,  . ( , t) 0L  = = .   (43) 

If we accept 
4 4 4

t =   , then for the function ( , )t =    we obtain an equation similar to 

(14) for transverse vibrations,  

2 4 2 0tt −  =      (44) 

with a solution  

 ( ) ( )0( , ) sin / sint L t  =    ,     (45)  

0 0( / ) 2 /L =    ,     (46) 

where ω0 is the frequency of natural vibrations, θ is the angle of rotation of the rod in the cross section 

with the coordinate α = L/2 at t = π/(2ω0). In this case, the equations (40), as well as the boundary 

and initial conditions (43) are fulfilled. 

Time and direction derivatives  

 ( ) ( )0 0( , ) sin / cost t L t  =    ,  ( ) ( )2
0 0( , ) sin / sintt t L t  = −   , 

( ) ( )0( , ) / cos / sint L L t  =    ,  ( ) ( ) ( )
2

0( , ) / sin / sint L L t  = −    , 

( ) ( )0 0( , ) / cos / cost t L L t  =     , 

determine the kinematic, deformation and energy characteristics of the particles and the body as a 

whole. Note that the obtained solution satisfies not only the system (6), but also the more general 

equation (5) 

2 2(y y y ) ( ) 0t tt t tty y z z z z z     + + − + + + − = . 

In the latter case, only the condition (44) in a simplified form should be met 

2 0tt −  = . 

This can be considered as an additional argument about the acceptability of the obtained 

solution for analyzing the energy features of free torsional vibrations. 

Considering the components of the tensor (2) 

,

1 0 0

cos sin

sin cos

i px z

y





 
 = −  − 
 
    

, 

we find the value of the quadratic invariant, the specific energy of elastic deformation, and the 

kinetic energy of particles  

2 2 2 2 2 2 2 23 3e l l l у z r      = + + = + + = + , 

( ) ( ) ( )
22 2 2 2 2 2

0 0 0/ cos / sindefE V r V r L L t =   =      , 
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( ) ( ) ( )
22 2 2 2 2 2 2

0 0 0/ sin / coskin tE V r V r L L t =    =      , 

which depend on the particle radius r. Volume-integral energy values 

( )
2

2 2 2
0 02

sin
4

def

R
E V t

L
=     ,  ( )

2
2 2 2

0 02
cos

4
kin

R
E V t

L
=     , 

in sum, they correspond to the law of conservation of energy in the volume of the oscillating rod and 

coincide with the work of external forces transmitted to the body at the time of the beginning of 

vibrations, which corresponds to the concept of natural vibrations 

2
2 2

0 24
sum def kin

R
E E E V const

L
= + =    = .    (47) 

In accordance with equations (41) and (45), as in the case of transverse vibrations, elastic 

deformation is carried out due to shifts, the volume of material particles and the density of the material 

remain unchanged, regardless of the magnitude of the rotation angle ψ 

0

1 0 0

/ cos sin 1

sin cos

x x x

R V V y y y z

z z z y

  

   

   

=   = = −  −  =

  

. 

The cause of forced torsional vibrations may be the moment  

( )0 sinM M t=       (48) 

with an amplitude 0M , that acts in a cross section with the coordinate α = L/2 with a frequency ω 

that does not necessarily coincide with the proper ω0. Considering (41), (45) and angular velocity 

( )/2 cost L t= =   , the moment (48) produces power 

( ) ( )/2 0W sin cosext t LM M t t==  =    ,    (49) 

converted into elastic and kinetic energy of particles, for the rate of change of which (taking into 

/i iW d E dt =  ) the equations are valid 

( ) ( ) ( ) ( )
22 2 2 2

0
0

/ cos / sin cos
2

def

t

W
r r L L t t

V
 


=   =      


, 

( ) ( ) ( ) ( )
22 2 2 2 2

02
0 0

1
/ sin / sin cos

2

kin
t tt

W
r r L L t t

V


=   = −      

 
. 

As in the case of transverse vibrations, the kinetic energy of particles depends on the density 

of the material ρ0, so it contains a multiplier η = ω/ω0, which characterizes the ratio of the frequencies 

of forced and natural vibrations.  

Integrating the powers by volume 

( ) ( ) ( )
22 2

00,5 / sin cosdefW V R L t t=       ,    (50) 
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( ) ( ) ( )
22 2 2

00,5 / sin coskinW V R L t t= −        ,   (51) 

and using the energy identity that includes the external moment (49), as well as the internal forces 

(50) and (51), we find the moment 

2 2 2
0 00,5 ( / ) (1 )M V R L=   − .     (52) 

The system (40) under the action of a moment (48) with an amplitude (52) corresponds to 

forced harmonic oscillations with a circular frequency of the external moment ω. If the external 

moment (48) ceases to act, for example, after the completion of the next cycle, the kinetic energy of 

the particles remains in the system, which causes its own vibrations. 

Sum of capacities (50) and (51)  

 ( ) ( )2 2 2 2
0 00,5 ( / ) (1 ) sin cosdef kinW W V R L t t+ =    −       (53)  

in the absence of external influence, it characterizes possible transitions of elastic energy to kinetic 

energy and Vice versa. Stationary mode occurs when ω/ω0 = 1. If the actual frequency of vibrations 

is lower than the proper ω0 determined by the elastic properties of the material (46), the positive 

power will lead to its increase by 1 and 3 quarters of cycles. Otherwise, the oscillation frequency will 

decrease, and the mode will correspond to its own oscillations. Equation (53) can be considered as a 

mechanism for converting forced oscillations into proper ones after the external influence ceases. 

This feature is confirmed by the analysis of the total elastic and kinetic energy in the rod 

volume, which depends on the frequency ratio 

( ) ( )
2

2 2 2 2 2
0 2

sin cos
4

def kin

R
E E V t t

L
 + =     +    

and only if they are equal (η = 1) remains constant, as follows from the definition of the system's 

natural oscillations [1-5]. 

Resonance is possible if the free vibrations are superimposed forced with a circular frequency 

of natural vibrations ω0. Let's use the equations for natural oscillations 

x =  , 0 0cos siny =   −   ,  0 0sin cosz =   +   ,  (54) 

and forced fluctuations 

x =  , 1 1cos siny =   −   ,  1 1sin cosz =   +   ,  (55) 

where 0  and 1  are the angles of rotation of the sections in free and forced oscillations 

( ) ( )0 0 0sin / sinL t =    , ( ) ( )1 1 0sin / sinL t =    . 

Using the general rule of superposition of motions [17], we replace the Lagrange variables in 

the equations for forced oscillations (55) with expressions for the corresponding Euler variables of 

natural oscillations (54) 
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1 1 0 0 1 0 0 1cos sin ( cos sin )cos ( sin cos )siny =   −   =   −    −   +    =  

0 1 0 1cos( ) sin( )=   + −   + . 

As a result, we obtain a system of type (34), in which the angle of rotation in the joint 

oscillation, instead of (38), is equal to the sum of the angles of rotation of the forced and free 

oscillations 

( ) ( )0 1 0( )sin / sinL t =  +    .    (56) 

The rationale for the energy feasibility of joint oscillations in accordance with equations (40) 

and (56) differs only slightly from the one given for transverse oscillations. In accordance with 

equations (40) and (56), particles of rod with volume 0V , density ρ0, and elastic modulus κ rotate 

relative to the x-axis with angular velocities 

( ) ( )0 1 0 0( , ) ( ) sin / cost t L t  =  +     

and due to this, the system acquires kinetic energy  

( )2 2 2
0 0 1 0

1
( / ) ( ) cos

4
kinE V R L t=    +  .     (57) 

Elastic energy for equations (40) with tensor (2) 

,

1 0 0

cos sin

sin cos

i px z

y





 
 = −  − 
 
    

 

considering the invariant (14) is equal to 

( ) ( ) ( )
22 2 2 2 2 2

0 1 0( ) / cos / sindef e se e e r r L L t= + =  =  +    . 

The elastic energy in the volume of the rod is 

( )2 2 2
0 0 1 0

1
( / ) ( ) sin

4
defE V R L t=    +  .   (58) 

Equations (57), (58) and (53) correspond to harmonic oscillations (40) with changes in angles 

(56). Kinetic and elastic energies provide a constant value of their sum at any moment 

2 2 2
0 0 10,25 ( ) ( / )kin defE E V R L const+ =    + = .    (59) 

Resonance from the point of view of the law of conservation of energy is possible and allows 

for a significant increase in the amplitude of the new phase of free oscillation and the energy 

parameters associated with the amplitude at the expense of internal forces [12]. 

Structure of local kinematic parameters of the volume energy density (15) – (16), which 

depend on the average value of its 

 2 22 / 3 1 / 3e r= + + , ( )2 2 2 2 2
1 2

1 4
3( 1) 1 1

3 3
e e ee e r r e e = − =  + + − = + , 
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and the standard deviation еs 

( )2 2 2 2
1 2

2 4
1 1

3 3
s s se r r e e =  + − + = + , 

the same as for transverse vibrations. Considering the series expansion of the function with a square 

root, we get 

2 2

2 2
1e

def

e r

e r






= =


, 

2 2
1

2 2

(1/ 3) 1

3

e

def

e r

e r






= =


 , 

2 2
2

2 2

(2 / 3) 2

3

e

def

e r

e r






= =


, 

2 2
0

3 3

s

def

e

e
= − = , 

2 2
1

2 2

2 2

3 3

s

def

e r

e r






= =


,  

2 2
2

2 2

(4 / 3)( / 2) 2

3

s

def

e r

e r





−
= = −


. 

As in the case of transverse vibrations, the energy fractions ee1 and es1 change synchronously 

and in total provide the elastic energy necessary to fulfill the integral conservation law, which is 

converted into kinetic energy. The components ee2 and es2 are 2 times larger than ee1, but do not 

participate in such transformations and determine the energy consumption only for changing the 

shape of the particles (16), associated with changes in the length of the edges of particles eе and their 

standard deviation from the mean es. Changes occur with the same frequency, but in opposite phases, 

energy costs are compensated by the opposite type of deformation. 

The analysis shows that part of the energy involved in free and combined vibrations is not 

associated with energy coming from external sources, is not converted into kinetic energy, but is an 

integral element of resonant phenomena. 

 

6. Discussion and conclusions 

The basis of resonance, as well as other physical phenomena, is the law of conservation of 

energy. The resonance involves two types of energy mentioned in the left-hand sides of equations 

(38), (59), and (81). They are defined by two invariants of the equations of motion: the square of the 

velocity (first derivatives of the coordinates in time) and the quadratic invariant (12) of the tensor (2) 

with the derivatives of the Euler coordinates by Lagrange variables. The experience of using kinetic 

energy in the mechanics of absolutely solid bodies does not allow us to doubt the correctness of the 

transition from the square of velocity to the corresponding type of energy. 

With elastic energy, the situation is more complicated. There is reason to assume that classical 

mechanics with three elastic modules does not explain the phenomena associated with resonance, 

because it does not consider the internal energy involved in the resonance. This energy is considered 

by the energy model of mechanics with a single elastic modulus with a new scale of average stresses 

that consider the initial energy state of particles [15]. The conversion of strain (12) to elastic energy 

according to equation (17) ensures the implementation of the law of conservation of energy both in 

the volume integral form, considering the transition of part of the elastic energy to kinetic energy, 
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and for subsystems with the transformation of deformation-related modifications of the internal 

elastic energy. 

Analysis of the structure of the invariant (12) shows that both external and internal energy 

sources are used to change the volume or shape of particles in resonance. Changes in the volume of 

particles in the regions of tension and compression during longitudinal vibrations do not require an 

influx of energy from outside, just as free vibrations occur in elastic bodies without external additional 

energy inputs. Similarly, part of the energy for changing the shape of particles during transverse and 

torsional vibrations comes from internal sources, including the elastic energy of the particles 

themselves when the deformed state is changed equivalently. 

In the mechanics of a deformable solid [10], terms are used about the energies associated with 

changes in the volume and shape of particles. With transverse and torsional vibrations, the volume of 

particles does not change, so a new terminology is proposed that clarifies the mathematical meaning 

of the components of deformation: parts of the energy that are associated either with changes in the 

average values of the particle edge lengths or with their standard deviations from the average values. 

The dimensionless local kinematic parameters of the energy (15) – (16), which differ from the 

volume density of the corresponding types of elastic energy by a constant factor equal to the elastic 

modulus of the material, as in equation (13), allow us to identify the features of the energy state of 

particles under free vibrations and resonance. The nature of the changes during the cycle allows us to 

judge the possibility of their transformation into kinetic energy with the implementation of the law of 

conservation of energy for the body as a whole, or only to change the elastic deformation of parts of 

the body (due to internal sources) without using the energy of external forces. They correspond to 

real deformations, have a clear geometric interpretation associated with changes in the average 

relative length of the sides of the particles (ее) and the standard deviation of these lengths from the 

average value for each particle (es). 

Equations (33), (53), (73) they reflect the features of the mechanism for converting forced 

vibrations with a frequency determined by external influences into their own after the termination of 

the driving force. This mechanism continues to operate with a superposition of free and forced 

oscillations, the frequency of which is close to its own, but does not coincide with it. 

Equations (33), (53), (73) correspond to the mechanism of transformation of forced vibrations 

with a frequency determined by external influences into their own after the termination of the driving 

force. This mechanism continues to operate with a superposition of free and forced oscillations, the 

frequency of which is close to its own, but does not coincide with it. 

Resonance is possible by of a superposition of both similar and different types of vibrations 

if their frequencies coincide with their own or are close to them [12]. For example, with the 

superposition of longitudinal and transverse vibrations at the same frequencies that coincide with the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 May 2021                   doi:10.20944/preprints202105.0696.v1

https://doi.org/10.20944/preprints202105.0696.v1


19 
 

frequencies of natural vibrations, the volume densities of kinetic and elastic energy, and therefore 

their volume integral values, have the property of additivity, the law of conservation of energy is 

fulfilled, and resonance is possible. 

The relations (29), (47) and (68) can be used to determine the elastic constant of a material 

from experimental studies with the main forms of free vibrations. 
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