

1 Systematic Review of Centrifugal Valving 2 Based on Digital Twin Modelling towards 3 Highly Integrated Lab-on-a-Disc Systems

4 Jens Ducr  e, School of Physical Sciences, Dublin City University, Ireland, email:
5 jens.ducr  e@dcu.ie

6 Abstract

7 Current, application-driven trends towards larger-scale integration (LSI) of microfluidic systems for
8 comprehensive assay automation and multiplexing pose significant technological and economical
9 challenges to developers. By virtue of their intrinsic capability for powerful sample preparation,
10 centrifugal systems have attracted significant interest in academia and business since the early 1990s.
11 This review models common, rotationally controlled valving schemes at the heart of such “Lab-on-a-
12 Disc” (LoaD) platforms to predict critical spin rates and reliability of flow control which mainly depend
13 on geometries, location and liquid volumes to be processed, and their experimental tolerances. In
14 absence of larger-scale manufacturing facilities during product development, the method presented
15 here facilitates efficient simulation tools for virtual prototyping and characterization and algorithmic
16 design optimization according to key performance metrics. This virtual *in silico* approach thus
17 significantly accelerates, de-risks and lowers costs along the critical advancement from idea, layout,
18 fluidic testing, bioanalytical validation and scale-up to commercial mass manufacture.

19 Introduction

20 Since their inception in the early 1990s, an important design goal of microfluidic Lab-on-a-Chip, or
21 micro Total Analysis Systems (  TAS) [1-5], has been to “cram more components onto integrated
22 circuits”, and thus provide more functionality on a given piece of (chip) real estate. This objective is
23 somewhat on the analogy of Moore’s law [6] that has been guiding miniaturization of microelectronics
24 since the 1960s. Shrinking structural dimensions is reasoned by technical aspects, e.g., functional
25 integration for enabling modern, high-performance computers, smartphones and gadgets, as well as
26 economic incentives, as the cost of material and (typically pattern-transfer based) manufacturing
27 processes strongly scales with the surface area of the chip [7]. “Price per functional unit”, and thus
28 the packing density, may hence be deemed a paramount driver of technology development.

29 While the general wish lists for cost and capabilities are quite alike, microfluidics-enabled
30 (bio-)analytical technologies can often not be downsized towards the nanoscale; this is, for instance,
31 to still guarantee the presence of a minimum number of analyte molecules or particles in the
32 (bio-)sample for assuring sufficient statistics, for meeting limits of detection, for avoiding drastic
33 changes in dominant fluidic effects, such adverse surface interactions and evaporation, along
34 increasing surface-to-volume ratios towards miniaturization.

35 Over the recent decades, numerous “Lab-on-a-Chip” platforms have been developed, many of them
36 conceived for decentralized biochemical testing [8-13]. On the one hand, these microfluidic systems
37 may enhance the analytical performance, e.g., through expediting the completion of transport
38 processes, such driving diffusive mixing and heat exchange for short time-to-result, by imposing highly
39 controlled conditions under strict laminarity at low Reynolds numbers, or by scale-matching with bio-
40 entities such as cells. On the other hand, miniaturization resides at the backbone of sample-to-answer

41 automation and parallelization, e.g., as a crucial product requirement for deployment of bioassay
42 panels at the point-of-use / point-of-care (PoC), and patient self-testing at home.

43 Lab-on-a-Chip systems frequently feature a modular setup where a microfluidic chip is inserted into a
44 compact, rugged and potentially portable instrument equipped with a control unit, sensors, actuators,
45 and a pumping mechanism to process the liquid sample and reagents. The underlying, typically multi-
46 branched channel architecture can usually not be properly washed to assure full regeneration of fluidic
47 functionality, and also to avoid cross-contamination or carry-over of biosamples and reagents. Hence,
48 in most cases, the chip is devised as single-use. The cost of material, equipment, process development
49 and machine time of this disposable, which is normally mass-produced by tool-based polymer
50 replication schemes, such as injection molding, increases with the volume of bulk material and the
51 surface area; in addition, the price tag on postprocessing, e.g., coatings, barrier materials and
52 reagents, as well as assembly steps, e.g., alignment of inserts and a lid, might be considerable, and
53 may thus be commercially prohibitive for larger disc real estate.

54 Amongst various Lab-on-a-Chip technologies addressing comprehensive process integration of
55 bioanalytical protocols, we investigate here liquid handling by centrifugal microfluidics that has been
56 successfully advanced in industry and academia since the mid-1990s [14-28] for various use cases,
57 mostly in the context of biomedical *in vitro* diagnostics (IVD) for deployment at the PoC. Other
58 applications comprise liquid handling automation for the life sciences, e.g., concentration /
59 purification and amplification of DNA / RNA from a range of biosamples and matrices, process
60 analytical techniques and cell line development for biopharma, as well as monitoring the environment,
61 infrastructure, industrial processes and agrifood.

62 In most such “Lab-on-a-Disc” (LoaD) systems, biochemical assay kits are ported on the rotationally
63 controlled scheme by dissecting the often conventional, possibly volume-reduced protocol into a
64 sequence of Laboratory Unit Operation (LUOs) such as metering / aliquoting [29-31], mixing [32-35],
65 incubation, purification / concentration / extraction [36, 37], homogenization [38, 39], particle filtering
66 [40-45] and droplet generation [46-48]. These LUOs are overwhelmingly processed in a batch-wise,
67 rather than a continuous-flow fashion, by transiently sealing their fluidic outlet with a normally-closed
68 valve, thus intermittently stopping the flow while continuing rotation within certain boundaries, e.g.,
69 for vigorous agitation of the liquid sample. These centrifugal LUOs and their linked downstream
70 detection techniques have been comprehensive reviewed elsewhere [24-26, 49-67].

71 The various, rotationally controlled centrifugal platforms analyzed in this work are predominantly
72 distinguished by their valving mechanisms, which critically determine their capability for functional
73 multiplexing [68]. Most of these “passive” flow control schemes root in the interplay of the centrifugal
74 pressure exerted on a rotor-based liquid volume with a counteracting effect. Initial concepts were
75 mainly based on interfacial tension to create burst valves or siphons primed by capillary action, which
76 open by lifting [20], lowering [15] or accelerating [69] the spin rate across critical frequency thresholds.

77 Yet, at least as stand-alone, such capillary valving mechanisms tend to be hard to fine control and to
78 stabilize over the lifetime of the chip, ranging from production, packaging, storage and transport to
79 eventual handling by the user and processing on a PoC-compatible instrument; they also lack to
80 provide a physical vapor barrier, hence making them unsuitable for longer-term onboard storage of
81 liquid reagents as an important feature for many PoC scenarios.

82 To this end, several, normally-closed valving schemes employing sacrificial barriers for retention of
83 liquids and their vapor were introduced. In most of their implementations, the barrier is opened by an
84 instrument- or rotor-based power unit [70], e.g., for mechanical [71], laser- [72-77] or heat-induced

85 perforation of a film [78], melting of a wax plug [79-81], or magnetic and pressure-induced deflection
86 [82-84], either during rotation or at rest. Also, passive, solvent-selective barriers have been explored
87 [44, 70, 85], which only transmit flow upon distinct physico-chemical stimuli.

88 More recently, centrifugo-pneumatic (CP) siphon valves were developed [30, 69, 86-88] where air is
89 entrapped and centrifugally compressed by the incoming liquid during filling in a side chamber. Upon
90 lowering the spin rate ω , the expansion of the pressurised volume pushes a surface-tension stabilized
91 liquid “piston” within a microchannel across the crest point of their outlet siphon. This type of “Lab-
92 on-a-Disc” (LoaD) platform uses a gas-impermeable, dissolvable film (DF), which is initially protected
93 by a neighboring gas pocket. Once a geometry-dependent critical spin rate is surpassed, the forward
94 meniscus wets the DF to, at the same time, vent the compression chamber and open a downstream
95 outlet. Based on this conceptually simple CP-DF scheme, which can be solely controlled by the system-
96 innate spindle motor, the integration of LoaD systems has been substantially elevated [85, 89-91].

97 This work will significantly support systematic layouts by providing a “digital twin” [92, 93], i.e., a
98 virtual representation that serves as the real-time virtual, *in silico* counterpart of a physical object or
99 process, for optimizing fluidic performance, robustness, packing density and manufacturability of
100 rotationally controlled valving schemes for LoaD platforms [94-97]. The first section surveys the
101 fundamentals of centrifugal fields, continuity of mass and pressures contributing to hydrostatic
102 equilibria at the core of valving liquid samples and reagents during batch-wise processing of their
103 upstream LUOs. We then outline the concepts of critical spin rates and their associated band widths
104 as quantitative, key performance indicators for systematically assessing the impact of experimental
105 and geometrical tolerances on operational reliability at component- and system-level.

106 The next section covers the basic mechanisms underlying common, rotationally controlled valving
107 technologies; we distinguish between high- and low-pass actuation, depending on whether they
108 release their liquid upon increase or reduction of the spin rate, respectively. In addition to sacrificial
109 barriers, capillary and pneumatic principles, various techniques for priming and thus opening siphon
110 valves are surveyed. After pointing out their numerous synergistical benefits, we designate a full
111 section on siphon valves that run against the pneumatic counter pressure into an outlet chamber that
112 is initially sealed by a dissolvable-film (DF) membrane. Next, important performance metrics are
113 defined, which guide the algorithmic design optimization [94, 98] towards fluidic LSI at high
114 operational robustness before concluding with a comparison of passive valving techniques for LoaD
115 platforms.

116 Note that, for convenience, the term “disc” will be used in general for designating the microfluidic,
117 typically disposable device attached to the spindle motor. This alludes to the original idea to derive
118 LoaD systems from common optical data storage technologies like CD or DVD. Yet, centrifugal
119 microfluidic liquid handling does not depend on the outer shape of the usually polymeric “disc”, and
120 many other formats, like mini-discs, segments, microscope slides, foils, or tubes, have been attached
121 to the rotor in the meantime.

122 Flow Control

123 This paper focusses on rotationally controlled valving at the pivot of enhancing functional integration
124 and reliability of centrifugal LoaD systems operating in “stop-and-go” batch mode between
125 subsequent LUOs. We first look into the underlying general hydrostatic model before demonstrating
126 its implementation for common centrifugal valving schemes.

127 **Centrifugal Field**

128 Under rotation at an angular frequency $\omega = 2\pi \cdot \nu$, a particle of mass m experiences a centrifugal
 129 force $F_\omega = m \cdot \mathcal{R} \cdot \omega^2$ with its center of mass located at the radial position \mathcal{R} . Within continuum
 130 mechanics underlying the modelling of fluidic systems, we consider the centrifugal force density

$$f_\omega = \varrho \cdot \mathcal{R} \cdot \omega^2 \quad (1)$$

131 which applies to a fluid distribution Λ of density ϱ . Note that in a suspension, ϱ designates the
 132 difference of densities between the (bio-)particle and its surrounding medium.

133 Other pseudo forces (densities) arising in the non-inertial frame of reference, but of less relevance to
 134 this review, are the Euler force (density) $|f_E| = \varrho \cdot r \cdot d\omega/dt$ pointing against the (vector of) the
 135 angular acceleration $d\omega/dt$, and the Coriolis force (density) $|f_v| = 2\varrho \cdot \omega \cdot v$ acting on fluids moving
 136 at a (local) velocity v [99]; for common centrifugal systems, f_v aligns in the plane of the disc, and
 137 perpendicular to the flow, with its direction opposite to the sense of rotation [35, 100-102].

138 **Liquid Distribution**

139 More generally, we describe microfluidic systems by (contiguous) liquid segments of constant density
 140 ϱ , each containing a volume $U_{0,i}$ which assume distributions $\{\Lambda_i(t)\}$ within a given structure Γ at a
 141 time-varying spin speed $\omega(t)$. In the (quasi) static approximations assumed in this work, i.e., very slow
 142 changes $d\omega/dt \approx 0$, we substitute the dependency on the time t by ω . Furthermore, for the sake of
 143 clarity, we look at each volume distribution $\Lambda_i(\omega)$ individually, for which we apply the notation $\Lambda(\omega)$.
 144 In response to a centrifugal field f_ω (1), $\Lambda(\omega)$ assumes a radial extension $\Delta r(t) = r - r_0$ and mean
 145 radial position $\bar{r}(\omega) = 0.5 \cdot (r + r_0)$ between its confining upstream and downstream menisci r_0 and
 146 r , respectively.

147 Expressed in cylindrical coordinates with the radial position r and the (potentially disjunct) local cross
 148 section $A(r)$, the integral

$$U_0 = \int_{\Lambda(\omega)} dV = \int_{\check{r}(\omega)}^{\hat{r}(\omega)} A(r) dr = \text{const.} \quad (2)$$

149 corresponds to the total liquid volume U_0 contained in the segment. The conservation of U_0 requires
 150 that the volume between their inner- and outermost radial confinements $\check{r}(\omega)$ and $\hat{r}(\omega)$, respectively,
 151 within the fixed structure Γ of cross-sectional function $A(r)$ is preserved, i.e., $dU_0/d\omega = 0$. While
 152 equation (2) captures the general case of a randomly shaped liquid distribution Λ , we will later
 153 introduce simplified geometries, essentially composed of rectangular cuboids, for which the integral
 154 along the radial r -direction over Λ can be replaced by an analytical expression.

155 **Pressure Contributions**156 **Static Pressures**

157 Fluids shape according to the pressure distribution they are exposed to at a given location and time.
 158 The rotationally induced pressure head

$$p_\omega = \varrho \cdot \bar{r} \Delta r \cdot \omega^2 \quad (3)$$

159 derives from (1), and scales with the mean radial position $\bar{r} = 0.5 \cdot (r_0 + r)$ and the radial extension
 160 $\Delta r = r - r_0$ of the liquid segment $\Lambda(\omega)$. The product

$$\bar{r} \Delta r = \frac{1}{2} [r + r_0] \cdot [r - r_0] = \frac{1}{2} [r^2 - r_0^2] \quad (4)$$

161 in p_ω (3) can also be expressed by the front and rear radial positions of the menisci r and r_0 ,
 162 respectively. For typical values $\varrho = 10^3 \text{ kg m}^{-3}$, $\bar{r} = 3 \text{ cm}$, and $\Delta r = 1 \text{ cm}$, spin frequencies $\nu =$

163 $\omega/2\pi = 10$ Hz and 50 Hz roughly yield 12 hPa and 300 hPa, respectively. So even for the faster
 164 rotational speeds ω , p_ω (3) only reaches about 1/3 of the standard atmospheric pressure $p_{\text{std}} =$
 165 1013.25 hPa.

166 The pneumatic pressure

$$p_V = p_0 \cdot \frac{V_0}{V} \quad (5)$$

167 of a gas volume that is compressed from an initial volume V_0 at p_0 to $V < V_0$ (law of Boyle-Mariotte)
 168 is of particular importance for this paper. By sufficient reduction of the final volume V , p_V (5) can, at
 169 least theoretically, assume randomly high values.

170 Also relevant to the small feature sizes in centrifugal microfluidics is the capillary pressure

$$p_\Theta = \frac{4\sigma}{D} \cos \Theta \quad (6)$$

171 as expressed for a liquid of surface tension σ in a channel (of round cross section) with a diameter D
 172 and the contact angle Θ between the liquid and the solid surface. For typical of values, e.g., $\sigma =$
 173 72.8 mN m^{-1} , $\Theta = 120^\circ$ and a channel diameter $D = 100 \mu\text{m}$, the counterpressure p_Θ (6) can only
 174 sustain centrifugal pressure heads p_ω (3) in the range of $v = \omega/2\pi \approx 12$ Hz.

175 Dynamic Effects

176 In this work, we primarily look at the hydrostatic approximation $d\omega/dt \approx 0$ when dynamic pressure
 177 contributions are neglected. Yet, we briefly cover such effects on a semi-quantitative scale. During
 178 flow at a volumetric rate Q through a channel with round cross section $A = \pi \cdot (D/2)^2$, a pressure
 179 drop

$$p_Q = \frac{64}{\pi} \cdot \frac{\eta \cdot L \cdot Q}{D} \quad (7)$$

180 is experienced by a liquid of viscosity η across its axial extension L (law of Hagen-Poiseuille). For
 181 accelerating a liquid segment of volume U travelling at a speed v through a channel of cross section
 182 A at a rate $dv/dt = R \cdot d\omega/dt$ with $Q = A \cdot v$, a counterpressure

$$p_m = \frac{\varrho \cdot U \cdot R \cdot d\omega/dt}{A} \quad (8)$$

183 is to be provided by a valve to stay closed. The rotationally induced local acceleration $d\omega/dt =$
 184 $\tau_{\text{spindle}} / I_{\text{disc}}$ is limited by the (maximum) torque τ_{spindle} of the motor, and the moment of inertia
 185 of the disc (and its rotor) I_{disc} . For a solid disc of mass m_{disc} , (homogenous) density $\varrho_{\text{disc}} = \text{const.}$
 186 and radius R_{disc} , we obtain $I_{\text{disc}} \approx 0.5 \cdot m_{\text{disc}} \cdot R_{\text{disc}}^2$; however, strictly speaking, a LoD cartridge
 187 exhibits cavities (with $\varrho_{\text{disc}} \approx 0$) that are partially filled with a liquid distribution $\Lambda = \Lambda(t)$ with a
 188 density $\varrho \neq \varrho_{\text{disc}}$ and (a center of mass) moving radially outbound over time t .

189 Active Flow Control

190 Also externally powered and pneumatic controllers have been employed in centrifugal LoD platforms
 191 [68, 77, 82, 103-107]. The additional pressure $p_{\text{ext}}(t)$ has, for instance, been generated by external or
 192 rotor-based pressure sources and pumps [37, 68, 105], by thermo-pneumatic actuation (law of Gay-
 193 Lussac), i.e., $p_T(T) \propto T(t)$ (with the absolute temperature T) [31], and by chemical reactions entailed
 194 by the expansion of gas volumes $V(t)$, i.e., $p(t) \propto V(t)$ [106]. These techniques may readily be
 195 accounted for by including $p_{\text{ext}}(t)$ in the digital twin model. However, such active techniques tend to
 196 compromise the conceptual simplicity of the LoD platform; rotationally controlled valving is thus the
 197 main focus of this paper.

198 [Hydrostatic Equilibrium](#)

199 For the batch-mode processing considered in the majority of centrifugal LoAD systems, flow is
 200 intermittently stopped by normally-closed valves, i.e., the term $p_Q \propto Q$ (7) can be neglected. The
 201 spatial distribution of the liquid $\Lambda(\omega)$ is determined by the hydrostatic pressure equilibrium

$$\underbrace{\rho \cdot \bar{r}\Delta r \cdot \omega^2}_{p_\omega} + p_\rightarrow = p_\leftarrow \quad (9)$$

202 between $p_\omega \propto \omega^2$ (3), and further contributions p_\rightarrow and p_\leftarrow driving the liquid segment along or against
 203 the axial direction of the channel, respectively.

204 To trigger valving, the equilibrium distribution Λ resulting from (9) is modulated through at least one
 205 flexibly controllable pressure constituent p_ω , p_\rightarrow or p_\leftarrow . If the pressures p_\rightarrow and p_\leftarrow in the hydrostatic
 206 equilibrium (9) do not (explicitly) depend on ω , a spin rate

$$\omega = \sqrt{\frac{p_\leftarrow - p_\rightarrow}{\rho \cdot \bar{r}\Delta r}} \quad (10)$$

207 can be attributed to a given $\Lambda(\omega)$ of a coherent liquid volume U_0 within a structure Γ as a function of
 208 the radial product $\bar{r}\Delta r$ (4). A critical frequency $\omega = \Omega$ is defined for $\Lambda(\Omega)$ representing the ω -
 209 boundary for retention of liquid, which is linked to a position of the front meniscus $r = r(\Omega)$. Note
 210 that for spin protocols $\omega(t)$ displaying steep ramps $d\omega/dt \neq 0$, the inertial term p_m (8) will have to
 211 be incorporated in p_\leftarrow or p_\rightarrow or, depending on whether the disc is accelerated ($d\omega/dt > 0$) or slowed
 212 down ($d\omega/dt < 0$), respectively.

213 [Laboratory Unit Operations](#)

214 In batch-mode-processing, valves need to close the outlet of an upstream LUO between the points in
 215 time of loading T_{load} and release T_{open} , while agitating sample or reagents by a frequency protocol
 216 $\omega_{\text{LUO}}(T_{\text{load}} < t < T_{\text{open}})$. Most LUOs, such as plasma separation from whole blood, run fastest and
 217 most efficiently at high centrifugal field strengths $f_\omega \propto \mathcal{R} \cdot \omega^2$ (1) which, for a given layout Γ and its
 218 radial location \mathcal{R} , are established at high rates spin rates ω . Liquid retention is thus delineated by a
 219 threshold frequency Ω , and a resulting boundary for the field strength $f_\omega(\omega = \Omega)$ from (1), for which
 220 the conditions $\max[\omega_{\text{LUO}}(t)] < \hat{\Omega}$ or $\min[\omega_{\text{LUO}}(t)] > \check{\Omega}$ need to be met for high-pass and low-pass
 221 valving, respectively.

222 Likewise, resilience of the valve to angular acceleration ramps $\mathcal{R} \cdot d\omega/dt$ is important to agitate
 223 chaotic advection, as it is, for instance, required for liquid-liquid mixing [32], incubation of dissolved
 224 biomolecules with surface immobilized capture probes, resuspension of dry-stored reagents, or to
 225 support mechanical cell lysis through fixed-geometry obstacles or suspended (possibly magnetic)
 226 beads [108, 109].

227 Resulting, inertially induced pressure heads related to p_m (8) need to be factored into the calculation
 228 of the retention rates Ω . Also note that for supplying a given moment of inertia I_{rotor} of the rotor,
 229 such rotational acceleration $|d\omega / dt| \neq 0$ requires sufficient torque τ_{spindle} delivered by the spindle
 230 motor.

231 [Actuation](#)

232 For common rotational actuation by the spin rate ω through $p_\omega \propto \omega^2$ (3), the liquid segment is
 233 retained upstream of the valve until a certain frequency threshold $\omega = \Omega \in \{\hat{\Omega}, \check{\Omega}\}$ is crossed, either
 234 surpassed ($\omega > \hat{\Omega}$) or undershot ($\omega < \check{\Omega}$) for high-pass and low-pass valves, respectively. In some
 235 valving schemes presented later, the rotational actuation may not be achieved immediately after

236 crossing Ω ; proper (high-pass) valving is only assured once a (slightly) elevated actuation frequency
 237 $\Omega^* > \Omega$ is reached.

238 Alternatively, other, non-centrifugal pressure contributions to the equilibrium (9) may be modulated
 239 to prompt valving. Of particular interest for this work will be the venting of the compression chamber
 240 to level the pneumatic p_V (5) and atmospheric pressures p_0 , i.e., $p_V \mapsto p_0$, and normally $p_0 \approx p_{\text{std}}$.
 241 Note also that in absence inbound pressure gradients, e.g., created by capillary pressure p_Θ (6) or
 242 active sources $p(t)$, the center of gravity \bar{r} (4) of the liquid distribution Λ may only move radially
 243 outwards due to the unidirectional nature of the centrifugal field f_ω (1) in the aftermath of valving.

244 Reliability

245 Tolerances and Band Width

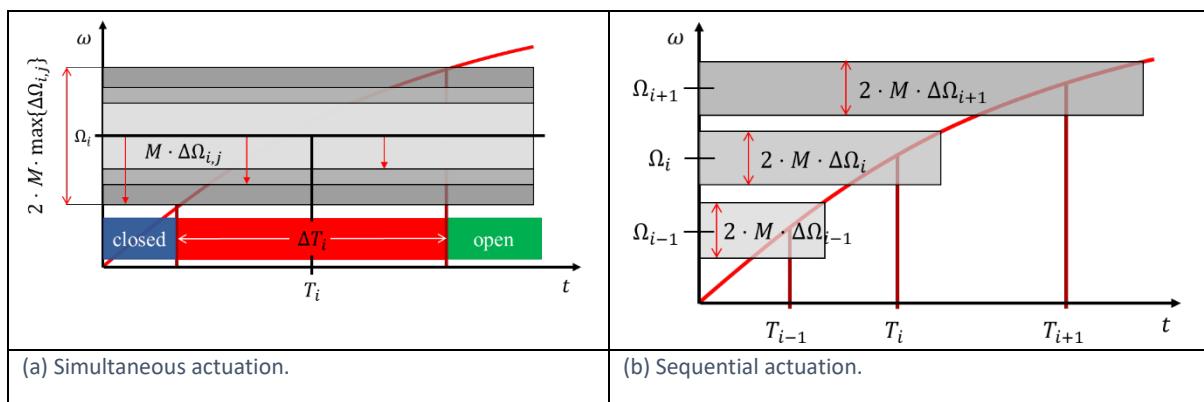
246 Due to statistical deviations $\{\Delta\gamma_k\}$ in its input parameters $\{\gamma_k\}$, the experimentally observed retention
 247 frequency Ω (and Ω^*) extends over an interval of standard deviation $\Delta\Omega(\{\gamma_k, \Delta\gamma_k\})$. In the digital twin
 248 concept presented here, the spread of the critical spin rate Ω (10)

$$\Delta\Omega(\{\gamma_k, \Delta\gamma_k\}) \approx \sqrt{\sum_k \left(\frac{\partial\Omega}{\partial\gamma_k} \Delta\gamma_k \right)^2} \quad (11)$$

249 can be calculated (and then systematically be optimized) by Gaussian error propagation, or through
 250 Monte-Carlo methods mimicking a large number of (virtual) test runs.

251 Using (11), we can directly relate the standard deviations $\Delta\Omega$ in the critical spin rates Ω (10) to (the
 252 partial derivatives of) the fundamental experimental parameters $\{\gamma_k\}$ and their precision for the
 253 pipetting or metering U_0 , or for radial, vertical and lateral dimensions R, d and w , resulting cross
 254 sections $\Delta A = \sqrt{(w \cdot \Delta d)^2 + (d \cdot \Delta w)^2}$ and (dead) volumes $\Delta V =$
 255 $\sqrt{(wh \cdot \Delta d)^2 + (dh \cdot \Delta w)^2 + (dw \cdot \Delta h)^2}$, delineating the valve structure Γ .

256 To avoid premature opening at $\omega < \widehat{\Omega}$ (or $\omega > \widecheck{\Omega}$ or in low-pass valving), the spin rate ω should be
 257 spaced by $M \cdot \Delta\Omega$ on either side of the nominal threshold value Ω , where M relates to the desired
 258 level of confidence; the aggregate rate of operational robustness P_M is mathematically evaluated by
 259 $\text{erf}[M/\sqrt{2}]$, with “erf” representing the error function; so, for $M \in \{1, 2, 3, 4, \dots\}$, valving reliability can
 260 be gauged at $P_M \approx \{68\%, 95\%, 99.7\%, 99.99\%, \dots\}$. Hence, in the spirit of Six Sigma, these
 261 probabilities imply that, above $M \approx 6$, the reliability of this (single) valving step is situated in the range
 262 of 1 to 10 defects per million opportunities (DPMO), for $M \geq 7$, DPMOs are practically absent. The
 263 system level reliability for N (independently operating) valves is calculated by $(P_M)^N$, e.g., $P_M^N \approx 77\%$
 264 for $M = 2$ and $N = 5$.


265 Limited Frequency Space for Multiplexing

266 The maximum degree of multiplexing is confined by the practically allowed range of spin rates ω [95].
 267 At its lower end, the rotationally induced pressure head p_ω (3) still has to dominate capillary effects
 268 to keep the liquids at bay, which tends to require $\omega \geq \omega_{\min} \approx 2\pi \cdot 10 \text{ Hz}$. On its upper end, motor
 269 power and concerns of lab safety may impose $\omega \leq \omega_{\max} \approx 2\pi \cdot 60 \text{ Hz}$. Independent rotational
 270 actuation of concurrently loaded valves $\{i\}$ requires non-overlapping bands $\{\Omega_i \pm M \cdot \Delta\Omega_i\}$ (assuming
 271 $\Omega^* \approx \Omega$); the finite extent of the practical range $\omega_{\max} - \omega_{\min}$ thus restricts the highest number of
 272 rotationally triggered sequential valving steps to N as calculated from $\omega_{\max} - \omega_{\min} \geq 2 \cdot M \cdot$
 273 $\sum_{i=1}^N \Delta\Omega_i$. Consequently, the available frequency envelope $\omega_{\min} < \omega < \omega_{\max}$ for fluidic multiplexing
 274 is best exploited by minimizing $\Delta\Omega_i$, and to stagger the bands $\{\Omega_i \pm M \cdot \Delta\Omega_i\}$ as closely as possible
 275 while avoiding overlap.

276 So, for example, a practically allowable ω -range within $\omega_{\min} = 2\pi \cdot 10 \text{ Hz} \leq \omega \leq \omega_{\max} = 2\pi \cdot 60 \text{ Hz}$
 277 and a mean $\Delta\Omega_i/2\pi = 1 \text{ Hz}$, and a 99.99% reliability expressed by $M = 4$ at component level would
 278 imply an (average) band width of $2 \cdot M \cdot \Delta\Omega_i/2\pi = 2 \cdot 4 \cdot 1 \text{ Hz} = 8 \text{ Hz}$, and thus provide proper
 279 operation of 50 Hz/8 Hz ≈ 6 concurrently loaded and serially triggered valving steps i ; the reliability
 280 at system level would amount to $0.9999^3 \approx 99.97\%$. For $M = 2$, the width of the required frequency
 281 bands halves to provide space for of 50 Hz/4 Hz ≈ 12 frequency bands, at the expense of a drop in
 282 system-level robustness to $0.95^3 \approx 86\%$. Note that for the sake of simplicity, these back-of-the-
 283 envelope calculations were based on fixed $\Delta\Omega_i(\{\gamma_k, \Delta\gamma_k\})$, while these standard deviations actually
 284 tend to broaden towards higher spin rates ω .

285 Multiplexing

286 The digital twin approach will support the design of LoaD structures implementing multiplexed liquid
 287 handling protocols. Key flow control capabilities are the simultaneous and sequential release of
 288 several liquid volumes $\{U_{i,j}\}$ loaded to rotational valving structures $\{\Gamma_{i,j}\}$ located at radial positions
 289 $\{R_{i,j}\}$. During their concurrent retention, the common spin rate needs to follow $\omega < \min\{\Omega_i - M \cdot$
 290 $\Delta\Omega_i\}$ for high-pass and $\omega > \max\{\Omega_i + M \cdot \Delta\Omega_i\}$ for low-pass valves. The order of release by venting
 291 simply relates to the sequence of the removal of the seals.

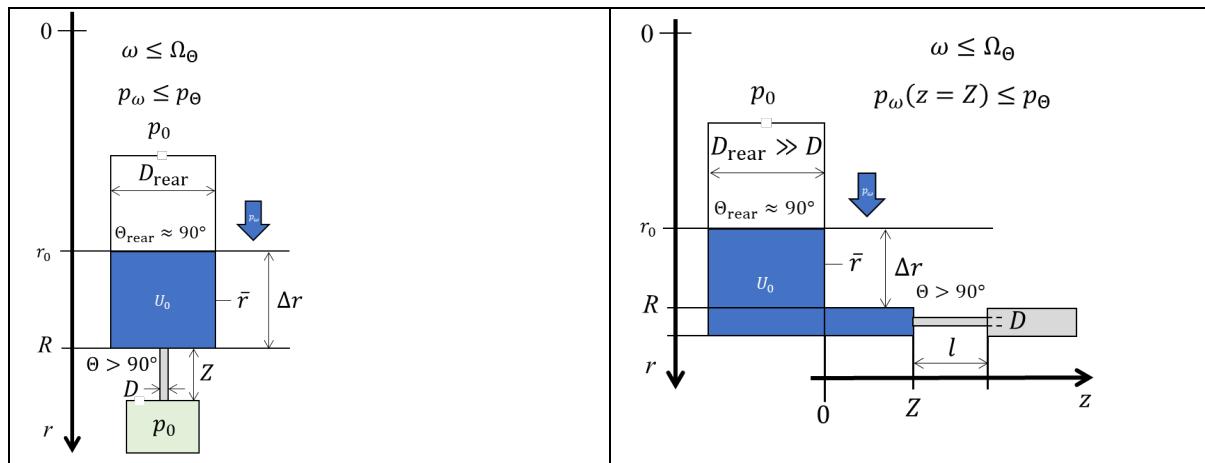
292 Figure 1 Fluidic multiplexing of rotationally actuated high-pass valving on the LoaD platform. (a) Robust concurrent actuation
 293 of valves $\{i, j\}$ of a step i sharing the critical spin rate Ω_i at a time T_i requires lifting of the spin rate ω across the interval of
 294 width $2 \cdot M \cdot \max\{\Delta\Omega_{i,j}\}$, which takes a time span ΔT_i . (b) In serial actuation of steps $\{i\}$, the frequency intervals $\{\Omega_i \pm M \cdot$
 295 $\Delta\Omega_i\}$ around the actuation frequencies $\{\Omega_i\}$ need to be separated in order to assure the correct order of release at times
 296 $\{T_i\}$.

297 For rotationally actuated, simultaneous release of high-pass valves $\{i, j\}$ in the same step i at time T_i
 298 (Figure 1a), the spin rate $\omega(t)$ needs to cross a zone $\min\{\Omega_{i,j} - M \cdot \Delta\Omega_{i,j}\} < \omega < \max\{\Omega_{i,j}^* + M \cdot$
 299 $\Delta\Omega_{i,j}^*\}$ centered at the (ideally identical) nominal critical rates $\Omega_i = \{\Omega_{i,j}\}$ and $\Omega_i^* = \{\Omega_{i,j}^*\}$ within an
 300 interval ΔT_i . For sequential actuation of valves $\{i\}$ at times $\{T_i\}$ (Figure 1b), the critical spin rates $\{\Omega_i\}$,
 301 with $\Omega_{i-1} < \Omega_i$ and $T_{i-1} < T_i$, must be spaced so that (the outer boundaries of) their tolerance-
 302 related bands $\{\Omega_i \pm M \cdot \Delta\Omega_i\}$ and $\{\Omega_i^* \pm M \cdot \Delta\Omega_i^*\}$ do not overlap for all $\{i\}$.

303 Basic Centrifugal Flow Control Schemes

304 Sacrificial Barriers

305 Apparently, straight-forward implementation of normally-closed valves are removable materials for
 306 intermittently blocking liquids and gases. Various types of such sacrificial-barrier valves have been
 307 developed [110-112]. However, most of them require external actuation by an instrument-based
 308 module. Examples are wax plugs [73-75, 80] and barrier films that are disrupted by knife cutters
 309 (xurography) [71], pressure sources, heat [73, 79, 113], ice [114], or (laser) irradiation [76]. Such flow


310 barriers may be trivially included in the pressure equilibrium (9) by a counter pressure jumping to
 311 infinity when the liquid arrives at the sacrificial material.

312 In rotationally controlled, sometimes also referred to as “passive” LoaD systems that are mainly
 313 considered here, a sealing membrane opens once the rotationally induced pressure head $p_\omega(R_{\text{seal}}) \propto$
 314 $\Omega_{\text{seal}}^2 > p_{\text{seal}}$ (3) applying at the location of the seal R_{seal} exceeds a minimum threshold p_{seal} . Yet, the
 315 typically large magnitude and sensitivity of the release frequency Ω_{seal} on manufacturing tolerances
 316 $\{\Delta\gamma_k\}$ tends to result in large spreads $\Delta\Omega_{\text{seal}}$.

317 More recently, dissolvable films (DFs) that selectively disintegrate or become permeable upon contact
 318 with a specific solvent, e.g., of aqueous or organic nature, have been utilized for flow control [44, 70,
 319 89, 115]. It has been shown for a wider range of assays that the dissolved molecules do not interfere
 320 with bioanalytical protocols or detection, or, even if, could be effectively removed from the flow path
 321 into a side chamber under the prevalent laminar flow conditions. To provide timing of their upstream
 322 LUOs according to the programmable spin protocol $\omega(t)$, DF valves have been combined with
 323 centrifugo-pneumatic valving.

324 Centrifugo-Capillary Burst Valves

325 Hydrophobic constrictions, and also hydrophilic expansions with sharply defined edges, have been
 326 frequently used in centrifugal microfluidic system to stop the flow at a well-defined (axial) position
 327 $r = R$ along a channel [20, 50, 99, 116]. For a liquid segment driven by the centrifugal pressure p_ω (3)
 328 down a channel, such barriers exert a net counterpressure p_\leftarrow composed of the capillary pressures p_Θ
 329 (6) of its radially outbound, front and rear menisci $p_{\Theta,\text{front}}$ and $p_{\Theta,\text{rear}}$, respectively (Figure 2).

330 Figure 2 Centrifugo-capillary burst valve (not to scale). In this hydrophobic constriction, a centrifugal pressure head $p_\omega \propto$
 331 $\bar{r}\Delta r$ (3) runs against the capillary counterpressure $p_\leftarrow = p_\Theta$ (6) calculated by the contact angles $\Theta > 90^\circ$ and $\Theta_{\text{rear}} \approx 90^\circ$,
 332 and their channel diameters $D \ll D_{\text{rear}}$ for their front and rear menisci, respectively. The valve stays closed until a critical
 333 spin rate Ω_Θ (12) is surpassed. (Left) Radial alignment. (Right) Isoradial alignment where radial “squeezing” of the liquid
 334 within the isoradial outlet may become an issue.

335 In the hydrostatic approximation (9), a threshold frequency for a hydrophobic constriction

$$\Omega_\Theta = \sqrt{\frac{4\sigma}{\varrho \cdot \bar{r} \cdot \Delta r} \left(\frac{\cos \Theta_{\text{rear}}}{D_{\text{rear}}} - \frac{\cos \Theta}{D} \right)} \approx \sqrt{-\frac{4\sigma}{\varrho \cdot \bar{r} \cdot \Delta r} \frac{\cos \Theta}{D}} \quad (12)$$

336 is obtained from inserting $p_\leftarrow = p_\Theta(D, \Theta)$ and $p_\rightarrow = p_\Theta(D_{\text{rear}}, \Theta_{\text{rear}}) \approx 0$ (6) into (10), which needs
 337 to be exceeded for the liquid volume to progress to $r > R$. Note that with $\Theta > 90^\circ$ for a hydrophobic
 338 coating, $\cos \Theta < 0$. Often, hydrophobic barriers are designed with $D/D_{\text{rear}} \ll 1$ and / or $\Theta_{\text{rear}} \approx 90^\circ$,
 339 so that the contribution from the rear meniscus becomes negligible. Assuming a density $\varrho =$
 340 1000 kg m^{-3} and surface tension $\sigma = 75 \text{ mN m}^{-1}$ of water, its contact angle $\Theta \approx 120^\circ$ with Teflon,

341 a mean radial position $\bar{r} = 3$ cm and radial extension $\Delta r = 1$ cm, and a constriction diameter $D =$
 342 100 μm , we obtain threshold spin rates in the region of $\Omega_\Theta/2\pi \approx 10$ Hz. Note that at such low spin
 343 speeds $\omega < \Omega_\Theta$, detachment of a droplet, as outlined later in the context of the centrifugo-pneumatic
 344 valve in (15), is not expected as typically $\Omega_\Theta \ll \Omega_{\text{drop}}$ (Figure 2).

345 Hydrophilic expansions with $\Theta < 90^\circ$ also produce a capillary stop. However, their retention
 346 frequencies Ω tend to be much smaller, and they sensitively depend on the exact shape, surface
 347 tension σ and contact angle Θ at the solid-liquid-gas interface. Similar geometrical features are thus
 348 often used for transient pinning of the meniscus, or, as so-called “phase guides” for shaping the front
 349 of creeping flows, e.g., during capillary priming of microfluidic chips.

350 Moreover, note that both types of capillary valves do not curb evaporation, which leads to volume
351 loss and exposure of the connected fluidic network to humidity; these valves are thus unsuitable for
352 use in longer-term liquid storage. Also, capillary barriers often involve significant manufacturing and
353 assembly challenges, as all four walls, with one of them usually represented by a flat lid, need to
354 display homogeneous, well-localized coatings. Otherwise, retention rates Ω might shift, or flow might
355 still creep, instead of being cleanly halted, as required for proper batch-mode processing.

356 Centrifugo-Pneumatic Burst Valves

357 Pneumatic Retention

358 For rotational flow control, the centrifugal pumping by p_ω (3) can be opposed by a pneumatic pressure
 359 $p_\leftarrow = p_V$ (5) arising from the compression of a gas volume from V_0 to $V < V_0$ enclosed at the
 360 downstream end of the structure Γ . As outlined in Figure 3a, this counter pressure p_V may differ from
 361 its initial value $p_0 + \delta p_0 = p_0 \cdot (1 + \chi)$ at $\omega \approx 0$; the small offset δp_0 with $\delta p_0/p_0 = \chi \ll 1$ of the
 362 gas pressure p_0 at the volume $V_C + A \cdot Z$ represents a departure from the hydrostatic approximation
 363 attributed to dynamic effects during filling. It may be explained by air that is drawn with the flow of
 364 liquid into the compression chamber, and either needs to be quantified empirically, or by advanced
 365 simulation.

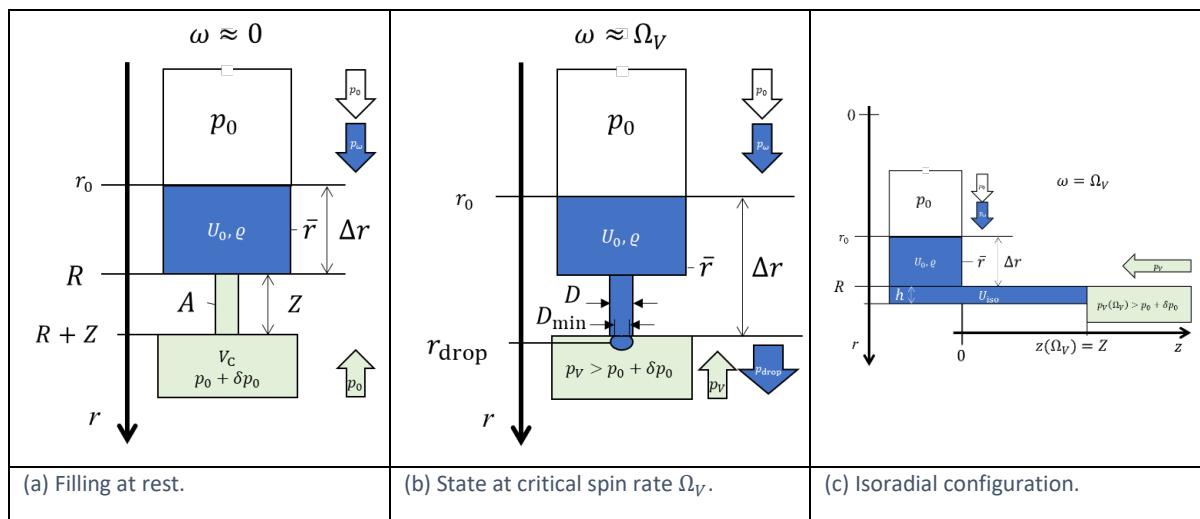


Figure 3 Centrifugo-pneumatic valving (not to scale). (a) At rest ($\omega \approx 0$), the liquid stops at $r = R$ in front of the radial outlet of length Z and a sufficiently narrow cross section A , which is followed by a compression chamber. At this point, the gas volume $V_C + A \cdot Z$ is at ambient pressure p_0 , plus a small contribution δp_0 with $\chi = \delta p_0/p_0 \ll 1$ linked to (dynamic) filling effects. (b) At a critical spin rate Ω_V , the meniscus protrudes to $r = R + Z$ at the transition to the pneumatic chamber. Now the pneumatic counterpressure has increased to $p_V = p_0 \cdot (1 + \chi) \cdot (V_C + A \cdot Z)/V_C$, and a droplet of volume $V_{\text{drop}} \approx (4/3)\pi(D/2)^3$ located at $r = r_{\text{drop}} \approx R + Z$ emerges from the orifice. Centrifugo-pneumatic valving is triggered once the weight force $F_m = V_{\text{drop}} \cdot f_\omega$ (1) of the droplet exceeds the counteracting surface tension force $F_\sigma = \pi D_{\min} \cdot \sigma$ at its minimum diameter $D_{\min} = D/\kappa$ with $\kappa > 1$. While the exact dynamics of its detachment are unclear and hard to quantify, it is assumed that the hydrodynamic agitation caused by the detaching droplet disrupts the integrity of the liquid plug, thus

375 causing successive release of the entire liquid into the compression chamber, while gas gradually escapes in the reverse
 376 direction to atmosphere. (c) CP valving with an isoradial outlet pinned at $r = R$. A minimum liquid volume $U_0 \geq U_{\text{iso}}$ is
 377 required for generating $\Delta r > 0$, and thus $p_\omega > p_V(\Omega_V)$ for opening. Towards high field strength f_ω (1), the shape of the
 378 front meniscus progressively distorts.

379 At $\omega = \Omega_V$ (Figure 3b), the original gas volume is reduced by $A \cdot Z$ to V_C , thus increasing its pressure
 380 to $p_V = p_0 \cdot (1 + \chi) \cdot (V_C + A \cdot Z)/V_C$ (5). The cross section A needs to be sufficiently small so that
 381 the surface tension sustains “piston-like” characteristics of the liquid plug. Under these conditions, we
 382 set

$$p_\leftarrow = p_V = p_0 \cdot (1 + \chi) \cdot \left(1 + \frac{A \cdot Z}{V_C}\right) \quad (13)$$

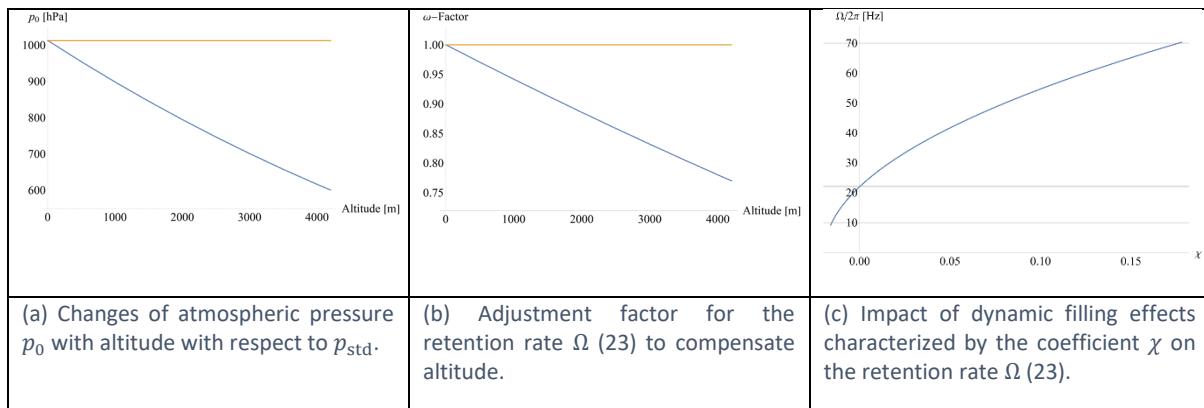
383 and $p_\rightarrow = p_0$ to obtain a critical spin rate (10)

$$\Omega_V = \sqrt{\frac{p_0}{\varrho \cdot \bar{r} \cdot \Delta r} \cdot \left[(1 + \chi) \cdot \left(1 + \frac{A \cdot Z}{V_C}\right) - 1 \right]} \approx \sqrt{\frac{p_0}{\varrho \cdot \bar{r} \cdot \Delta r} \cdot \frac{A \cdot Z}{V_C}} \quad (14)$$

384 to position the front meniscus at $r = R + Z$. For typical values, $\bar{r} \approx R = 3 \text{ cm}$, $\Delta r = 1 \text{ cm}$, a volume
 385 ratio $A \cdot Z/V_C \approx 1/10$ and $\delta p_0 \approx 0$, this estimate provides a release threshold in the region of
 386 $\Omega_V/2\pi \approx 22 \text{ Hz}$. An isoradial variant of the valve (Figure 3c) tends to display a tilted meniscus surface,
 387 thus compromising the validity of the formula for Ω_V (14) towards large ω .

388 Droplet Release

389 To effectuate basic centrifugo-pneumatic valving, a droplet of volume $V_{\text{drop}} \approx (4/3)\pi(D/2)^3 \ll V_C$
 390 located at the radial position $r_{\text{drop}} \approx R + Z$ is pulled by the centrifugal force $F_m = V_{\text{drop}} \cdot f_\omega =$
 391 $V_{\text{drop}} \cdot \varrho \cdot r_{\text{drop}} \cdot \omega^2$ (1) out of the orifice to the compression chamber. While the exact mechanism is
 392 somewhat obscure, we consider a simplified model akin to goniometric measurement of surface
 393 tension; detachment of the hanging droplet is suppressed until its surface tension force $F_\sigma = \sigma \cdot$
 394 πD_{\min} applying at its minimum cross section of diameter $D_{\min} = D/\varepsilon$ with $\varepsilon > 1$ cannot support its
 395 weight force $F_m \approx \varrho \cdot V_{\text{drop}} \cdot r_{\text{drop}} \cdot \omega^2$ anymore. This model leads to a critical spin rate


$$\Omega_{\text{drop}} \approx \sqrt{\frac{\sigma \cdot \pi D_{\min}}{\varrho \cdot (4/3)\pi(D/2)^3 \cdot r_{\text{drop}}}} \approx \frac{1}{D} \sqrt{\frac{6\sigma}{\varepsilon \cdot \varrho \cdot (R + Z)}} \quad (15)$$

396 for droplet release with $D_{\text{drop}} \approx D$.

397 Inserting typical values $D \approx 200 \mu\text{m}$, $\sigma \approx 75 \text{ mN m}^{-1}$, $\varepsilon \approx 1.5$, $\varrho \approx 1000 \text{ kg m}^{-3}$ and $R \approx 3 \text{ cm}$ in
 398 (15), we obtain $\Omega_{\text{drop}}/2\pi \approx 80 \text{ Hz}$. This very coarse “back of the envelope” calculation reveals that
 399 the threshold spin rate for droplet release Ω_{drop} (15) sensitively depends on the diameter of the outlet
 400 D .

401 Compensation of Ambient Pressure

402 The main systematic error in the threshold spin rate Ω_V (14) is introduced by its dependence on the
 403 actual ambient (atmospheric) pressure p_0 from its nominal (standard) value $p_{\text{std}} = 1013.25 \text{ hPa}$ at
 404 sea level, which remains rather constant at a given geolocation, and over the course of a bioassay,
 405 typically minutes to an hour. By timely local measurement of p_0 , e.g., by a commodity pressure sensor
 406 mounted to the instrument, the spin protocol $\omega(t)$ can be flexibly adjusted by the factor $\sqrt{\Delta p_0/p_{\text{std}}}$
 407 to compensate the dependency $\Omega = \Omega(p_0)$.

408 Figure 4 Variation in the atmospheric pressure p_0 . (a) Barometric formula quantifies the decrease in atmospheric pressure
 409 from sea level to roughly the limit of habitable space on earth at roughly 4000 m altitude. (b) Compensation factor of the
 410 spin rate ω for altitude adjusted (standard) pressure p_0 . For the given example, the critical spin rate would need to be
 411 lowered by about 20% from $\Omega/2\pi = 25$ Hz at sea level to about 20 Hz in high altitude. In general, any known local pressure
 412 p_0 , either caused by altitude or weather, can be flexibly accommodated by adjusting the spin rate ω according to $\sqrt{p_0/p_{\text{std}}}$
 413 (23). (c) Shift of the retention rate Ω (23) with the (dimensionless) coefficient χ (14) representing potential dynamic effects
 414 entailing deviations of the effective pressure in the gas volume enclosed in the compression chamber from ambient p_0 at
 415 the point when it is pneumatically isolated from the liquid in the isoradial channel.

416 Figure 4a shows the reduction of the atmospheric pressure with altitude up to the highest human
 417 settlements by about 30% (left), and the required compensation of the spin rate ω to assure proper
 418 retention of liquid volumes by about 3%, 6%, 9% and 12% at 500 m, 1000 m, 1500 m and 2000 m,
 419 respectively (Figure 4b). Note that a tolerance-forgiving design would then make sure that the (lower)
 420 centrifugal field f_ω (1) would still be sufficient to carry out the upstream LUO, possibly by also
 421 extending the length of its correlated time interval $T_{\text{open}} - T_{\text{load}}$ in the spin protocol $\omega(t)$.

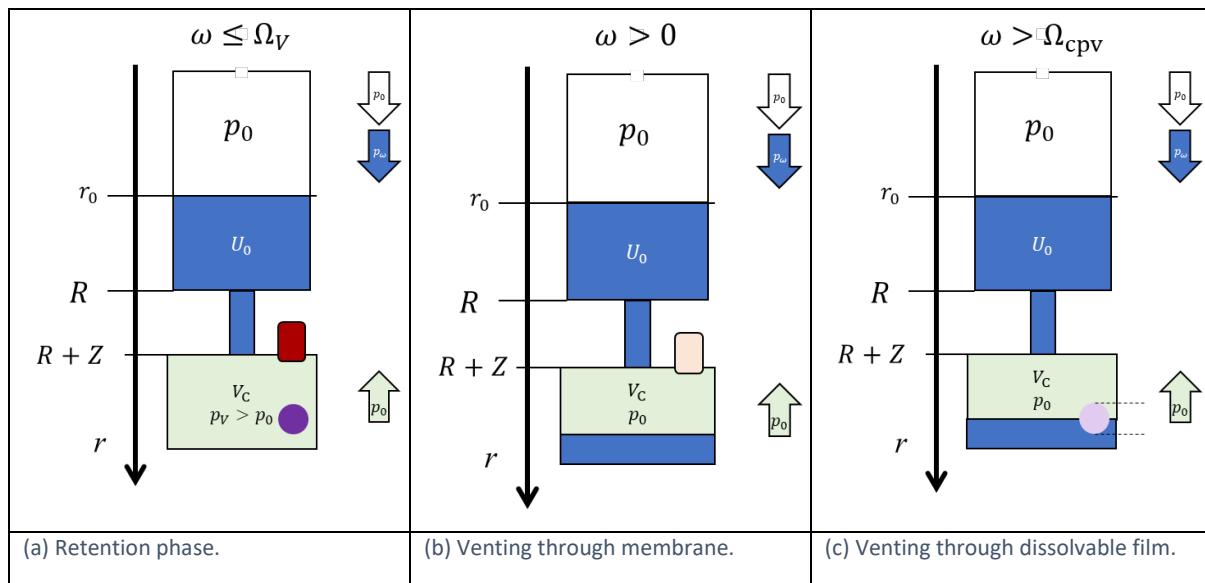
422 Similar considerations can be applied for the compensation of $\chi \neq 0$ (14). As portrayed in Figure 4c,
 423 the valve geometry should either be tuned to widely suppress such dynamic effects, i.e., $\chi \approx 0$, or to
 424 at least stabilize χ , i.e., $\Delta\chi \approx 0$; a finite, but constant χ can thus be accounted for by an adjusted spin
 425 rate protocol $\omega(t)$, as already described above for compensating deviations of the local ambient from
 426 standard atmospheric pressure p_{std} .

427 Rotational Actuation

428 Followingly, droplet release triggering the opening of centrifugo-pneumatic valves essentially
 429 proceeds at frequencies

$$\Omega_{\text{cpv}} = \min\{\Omega_V, \Omega_{\text{drop}}\} \quad (16)$$

430 and may be associated with rather large uncertainties $\Delta\Omega_{\text{cpv}}$ caused by effects that are hard to
 431 quantify by the simple (hydrostatic) modelling presented here.


432 It is surmised that the detachment of a (first) hanging drop above Ω_{cpv} (16) severely disrupts the
 433 surface of the liquid plug, so that a certain portion of the compressed air can escape through the
 434 narrow outlet, and thus gradually vent the compression chamber. This partial pressure release has a
 435 bigger impact on the pneumatic counter pressure p_V (5) than the loss of liquid volume to the chamber
 436 on the radial product $\bar{r}\Delta r$ in p_ω (3). Consequently, more liquid will protrude into the compression
 437 chamber to progressively complete the transfer. Such step-wise liquid transfer has indeed been
 438 experimentally observed (qualitatively) in the region $\omega \approx \Omega_{\text{cpv}}$. It was accompanied by a large spread
 439 $\Delta\Omega_{\text{cpv}}$, which may reflect the sensitivity of Ω_{drop} (15) to its experimental input parameters.

440 Their comparatively high burst frequencies Ω_{cpv} in (16), combined with their large spread $\Delta\Omega_{\text{cpv}}$,
 441 make such basic centrifugo-pneumatic flow control schemes mainly suitable for final valving steps into

442 a dead-ended cavity, e.g., for aliquoting of liquid sample or reagents into detection chambers [117].
 443 Moreover, centrifugo-pneumatic valving requires powerful spindle motors, aerodynamic optimization
 444 and mechanically well-balanced rotors, and may raise concerns about lab safety.

445 Venting

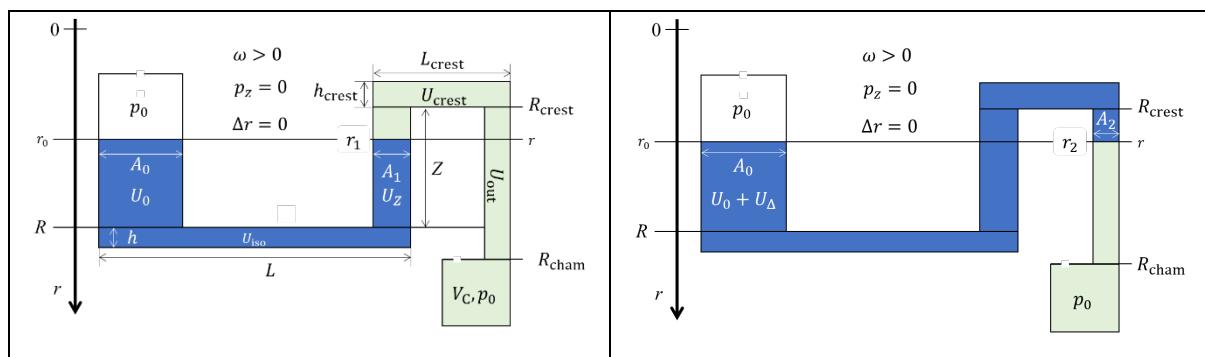
446 Opening the compression chamber to atmosphere, i.e., $V_C \mapsto \infty$ leading to $p_V \mapsto p_0$ (5), constitutes
 447 an alternative actuation mechanism for these CP-valves. While this principle would allow high
 448 retention frequencies Ω_V (14), and thus vigorous agitation for its upstream LUO (Figure 5a), it turned
 449 out to be challenging to provide a conceptually simple mechanism for perforating the pneumatic
 450 chamber during high-speed rotation (Figure 5b). Especially in the context of “event-triggered” valving
 451 concepts [90, 91, 118], venting of compression chambers, which are initially by sealed dissolvable film
 452 (DF) membranes, has been implemented through arrival of a sufficient volume of ancillary liquid at
 453 strategic locations on the disc (Figure 5c).

454 Figure 5 Centrifugo-pneumatic valving by venting. (a) Below the retention rate $\omega \leq \Omega_V$ (14), the liquid is kept outside the
 455 pneumatic chamber, which is closed by gas-impermeable or dissolvable film (DF) membranes. (b) Upon its dissolution, the
 456 pneumatic counter pressure p_V converges to the atmospheric pressure p_0 , thus releasing the liquid at any $\omega > 0$. (c) For this
 457 high-pass valve, liquid enters the compression chamber above a retention frequency Ω_{cpv} (16). After a sufficient volume
 458 $U_{DF} = \beta \cdot V_C$ with $0 < \beta < 1$ has entered the compression chamber of (dead) volume V_C , the liquid wets and thus opens the
 459 DF to trigger flow at any $\omega > 0$ through an outlet, which is, e.g., located in a lower layer connected through a vertical via
 460 concealed underneath the DF.

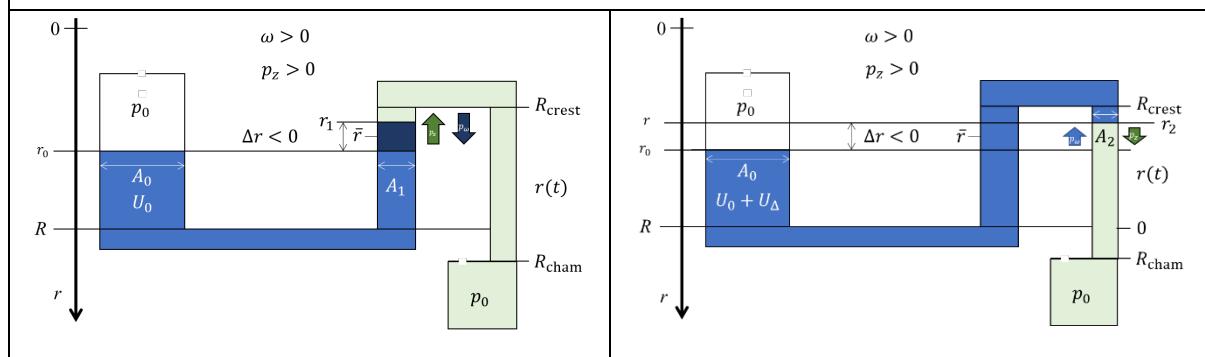
461 Centrifugal Siphon Valving

462 Layout and Liquid Distribution

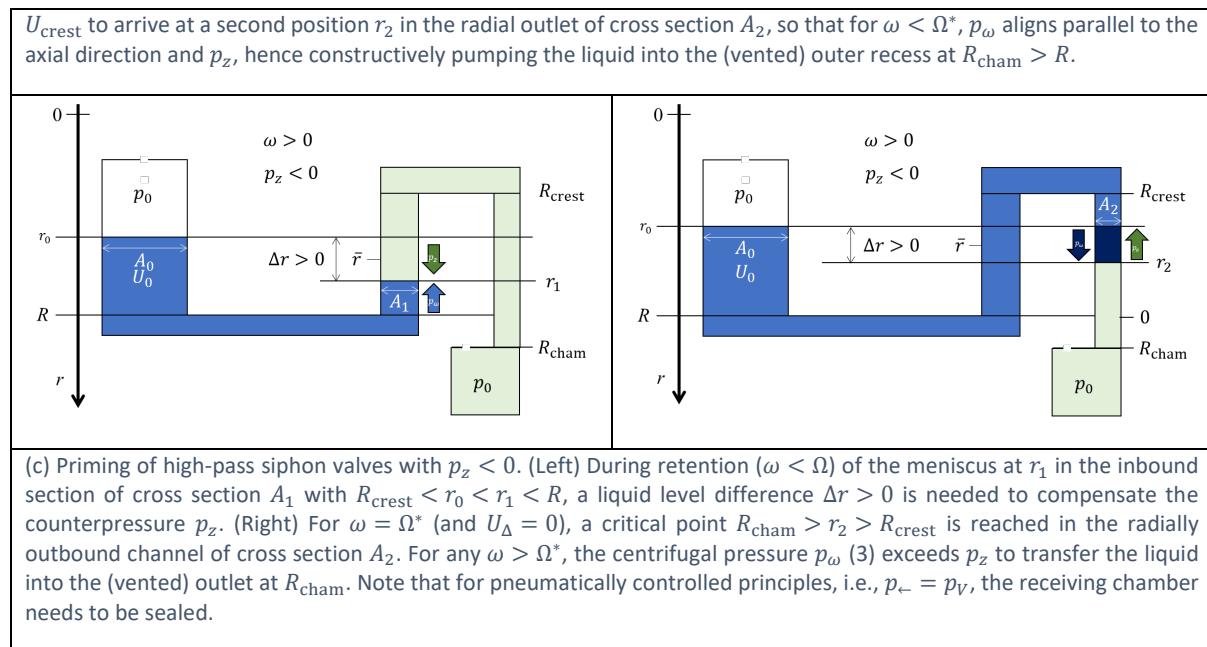
463 For understanding the core principle underlying centrifugal siphoning, Figure 6 displays a basic design
 464 Γ with an inner reservoir of cross section A_0 , and a bottom at R which is connected by an isoradial
 465 segment of volume U_{iso} of radial length L_{iso} and height h_{iso} to a siphon channel of (constant) cross
 466 section $A < A_0$. Its isoradial section at the crest point $R_{crest} = R - Z$ has a volume capacity U_{crest} ,
 467 axial length L_{crest} and radial height h_{crest} . The radially directed outlet channel of volume U_{out} extends
 468 between R_{crest} and the final receiving chamber starting at $R_{cham} > R$. All parts of the siphon structure
 469 up to the crest point are, for the sake of simplicity, chosen to have the same depth d , typically 1 mm,
 470 and a small fraction of that beyond that point.


471 We consider adjustment of the liquid distribution $\Lambda(\omega)$ between (hydrostatic) equilibria $p_\omega(\omega) +$
 472 $p_z(\omega) = 0$, with p_ω from (3), and an axially directed pressure head $p_z = p_\rightarrow - p_\leftarrow$, with forward and

473 reverse contributions p_{\rightarrow} and p_{\leftarrow} , respectively, in response to a (slowly) changing spin rate $\omega = \omega(t)$.
 474 A first equilibrium distribution $\Lambda(\Omega)$ can be found in the inbound segment at $r = r_1$ with $R_{\text{crest}} < r_1 <$
 475 R for a loaded liquid volume $U_0 > U_{\text{iso}}$. The retention rate Ω is usually set so that the meniscus r_1
 476 stays well below R_{crest} to factor in a safety margin $M \cdot \Delta\Omega$ (11) resulting from tolerances $\{\Delta\gamma_i\}$ in the
 477 input parameters $\{\gamma_i\}$, and the targeted level of reliability denoted by M . Optionally, the meniscus in
 478 the inbound segment may be “pinned” to a fixed target position r_1 by a low capillary barrier, or by a
 479 local widening of the channel cross section (which would only slightly change the following
 480 calculations).


481 A second critical point $R_{\text{crest}} < r_2 = r(\Omega^*) < R_{\text{cham}}$ is situated in the outbound channel beyond
 482 which any further increase in $\Delta r = r_2(\omega) - r_0(\omega)$, e.g., induced by topping up a liquid volume U_{Δ} or
 483 modulating ω , leads to a growth in Δr , and hence the pumping force p_{ω} (3). Different types of siphon
 484 valves can be categorized by their priming mechanism to assure $p_{\omega}(\omega) + p_z(\omega) > 0$ for migrating
 485 between $r_1 = r(\Omega)$ in the inbound and $r_2 = r(\Omega^*)$ in the outbound segments.

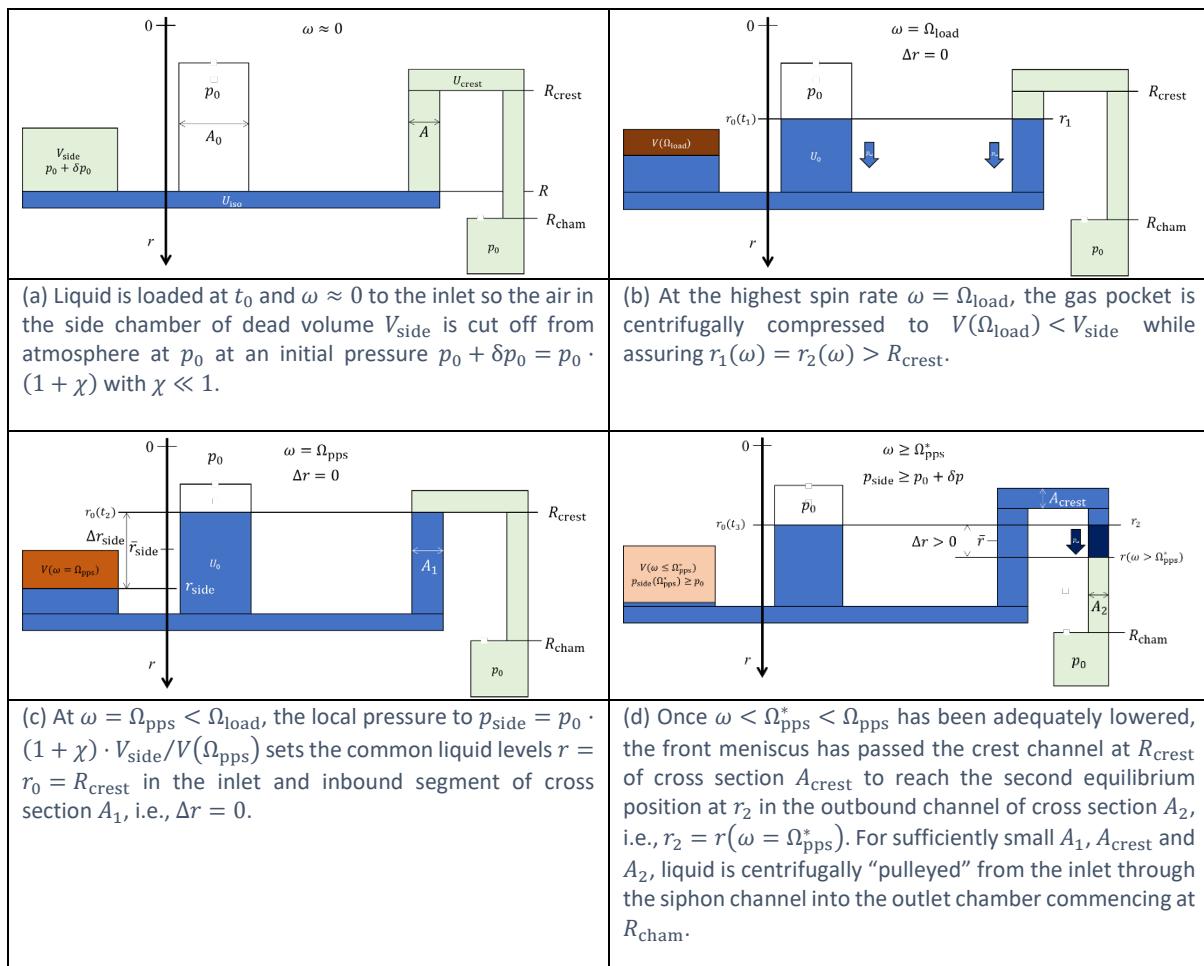
486 Priming


487 In volume addition mode, priming is triggered by topping up U_0 with $U_{\Delta} > 0$. Figure 6a shows the
 488 simplest case for $p_z = 0$, so pumping initiates at any spin rate $\omega > 0$ once the outlet channel is
 489 reached to assure $\Delta r > 0$, so that the liquid level r in the radially outbound channel has fallen below
 490 the inner meniscus in the inlet reservoir r_0 , i.e., $r > r_0$.

(a) Priming by volume addition. For $p_{\rightarrow} = p_{\leftarrow} = p_0$, and thus $p_z = 0$, and $\Delta r = 0$ for all spin rates $\omega > 0$. The front meniscus resides at $r = r_1 > R_{\text{crest}}$ in the inbound segment of cross section A_1 for all liquid volumes U_0 within $0 < U_0 - U_{\text{iso}} < (A_0 + A_1) \cdot Z$. Then, an amount $U_{\Delta} > 0$ with $U_0 + U_{\Delta} = (A_0 + A_1) \cdot Z + U_{\text{iso}} + U_{\text{crest}} + A_2 \cdot (r_2 - R_{\text{crest}})$ needs to be added to shift the meniscus across the crest channel of volume U_{crest} to $r_2 > R_{\text{crest}}$ in the outbound channel of cross section A_2 . The conservation of liquid volume U_0 between Ω and Ω^* demands $U_0 = A_0 \cdot [R - r_0(\Omega)] + U_{\text{iso}} + A_1 \cdot [R - r_1(\Omega)] = A_0 \cdot [R - r_0(\Omega^*)] + U_{\text{iso}} + A_1 \cdot Z + U_{\text{crest}} + A_2 \cdot [R_{\text{crest}} - r_2(\Omega^*)] - U_{\Delta}$. After a critical position $R_{\text{crest}} < r_2 = r_0 < R_{\text{cham}}$ is reached, $\Delta r > 0$ holds for all $\omega > 0$ without further volume addition U_{Δ} , so centrifugally driven forward pumping into the vented receiving chamber situated at $R_{\text{cham}} > R$ kicks in.

(b) Priming of low-pass siphon valves occurs for $p_z > 0$. (Left) At the retention rate $\omega = \Omega$, the front meniscus resides in the inbound section of cross section A_1 at r_1 with $R_{\text{crest}} < r_1 < R$, so that $\Delta r < 0$ and $p_{\omega} = p_z$. (Right) At a second hydrostatic equilibrium defining release at $\Omega^* < \Omega$ (and $U_{\Delta} = 0$), the meniscus has passed the crest channel of volume

491 Figure 6 Centrifugally controlled siphon valving with distributions Λ for retention (left) and release (right) (linearized display,
492 not to scale). The layout Γ features an inlet reservoir of cross section A_0 and a bottom at R , connected to an isoradial outlet
493 of length L_{iso} , radial height h_{iso} and volume U_{iso} . The following siphon channel starts with an inbound segment of radial
494 length Z and cross section A_1 between R and a crest point $R_{\text{crest}} = R - Z$, an inner isoradial channel of axial length L_{crest} ,
495 radial height h_{crest} and volume U_{crest} , and an outlet channel of cross section A_2 and volume U_{out} along the interval $R_{\text{crest}} < r < R_{\text{cham}}$ leading to a collection chamber at $R_{\text{cham}} > R$. The ambient pressure p_0 in the vicinity of p_{std} applies to all vented
496 chambers. The meniscus positions confining the liquid U_0 in the inlet, the inbound and outbound sections are $r_0(\omega)$, $r_1 = r(\omega = \Omega)$ and $r_2 = r(\Omega^*)$, respectively. A net centrifugal pressure $p_\omega \propto \Delta r \cdot \omega^2$ (3) with $\Delta r(\omega) = r_i(\omega) - r_0(\omega)$ and $i \in \{1,2\}$ plus an axially directed pressure difference $p_z = p_\leftarrow - p_\rightarrow$ (assumed here as constant along the axial direction), which
497 is composed of forward and backwards contributions p_\rightarrow and p_\leftarrow , shape the liquid distribution $\Lambda(\omega)$. A first critical retention
498 frequency Ω is set with $p_\omega(\Omega) + p_z(\Omega) = 0$ at $R_{\text{crest}} < r_1 < R$ in the inbound segment. Ω is usually chosen so that $r_1(\Omega)$
499 settles sufficiently below R_{crest} to account for $M \cdot \Delta\Omega$ (11) linked to tolerances $\{\Delta\gamma_i\}$. A second critical position r_2 is found in
500 the outlet segment at a second spin rate Ω^* at $p_\omega(\Omega^*) + p_z(\Omega^*) = 0$, possibly after adding a liquid volume U_Δ to U_0 (a).
501 Valving is practically possible if the calculated Ω and Ω^* reside within the frequency envelope between ω_{min} and ω_{max} ,
502 suitable $U_0 > U_{\text{iso}}$ and Γ , so the radial positions r_0 , r_1 and r_2 are located within their allowed radial intervals $R_{\text{min}} < r_0 < R$,
503 $R_{\text{crest}} < r_1 < R$ and $R_{\text{crest}} < r_2 < R_{\text{cham}}$.


504 For low-pass siphon valving (Figure 6b), $p_z > 0$ and $U_\Delta = 0$, a threshold $\Omega^* < \Omega$ can be determined
505 to guarantee pumping for $\omega < \Omega^*$. Conversely, according to the basic high-pass siphoning concept
506 illustrated in Figure 6c, liquid is released when $p_\omega + p_z > 0$ along the entire path of the front meniscus
507 to the end of the outlet at R_{cham} , and during release into the chamber.

508 Note that, for a given design Γ , the liquid distributions $\Lambda(\omega)$ need to obey the continuity of volume
509 (2) as expressed by $A_0 \cdot [R - r_0(\Omega)] + U_{\text{iso}} + A_1 \cdot [R - r_1(\Omega)] = A_0 \cdot [R - r_0(\Omega^*)] + U_{\text{iso}} + A_1 \cdot$
510 $Z + U_{\text{crest}} + A_2 \cdot [r_2 - R_{\text{crest}}] - U_\Delta$ (Figure 6). Moreover, for valid solutions $\Lambda(\Omega)$ and $\Lambda(\Omega^*)$, the
511 menisci at r_i with $i \in \{0, 1, 2\}$ need be situated within the corridors $R_{\text{min}} < r_0 < R$, $R_{\text{crest}} < r_1 < R$
512 and $R_{\text{crest}} < r_2 < R_{\text{cham}}$, while $\omega_{\text{min}} \leq \omega \leq \omega_{\text{max}}$ needs to hold for both critical spin rates $\omega = \Omega$
513 and $\omega = \Omega^*$.

514 Pneumatic Priming

515 The same principle used for generating the counterpressure p_\leftarrow in the basic pneumatic valving mode
516 (Figure 3) can also be sourced for priming the siphon valve [86, 119], i.e., $p_\rightarrow = p_V$ (5). To this end, a
517 side chamber of dead volume V_{side} is laterally connected to the inlet reservoir (Figure 7). In a
518 (somewhat idealized) multi-step procedure, a first liquid volume U_{iso} is loaded at small $\omega \approx 0$ (Figure
519 7a). At this stage, a gas volume V_{side} of the same size as the side chamber is disconnected from the

523 main valving structure by the incoming liquid, which experiences a pressure $p_0 + \delta p_0$, with $\delta p_0 = \chi \cdot$
 524 p_0 and $\chi \ll 1$.

525 Figure 7 Pneumatic siphon priming with $p_z = p_→ = p_V$ and a vented outlet, i.e., $p_← = p_0$ (not to scale).

526 In the next stage (Figure 7b), the spin rate ω is (steeply) increased to Ω_{load} for shrinking the enclosed
 527 gas volume to $V(\Omega_{\text{load}}) < V_{\text{side}}$, while $r_0(\omega) = r_1(\omega) = r(\omega) > R_{\text{crest}}$. Then (Figure 7c), a retention
 528 rate $\Omega_{\text{pps}} \ll \Omega_{\text{load}}$ is set so that the enclosed gas expands to $V(\omega = \Omega_{\text{pps}})$ expands, while $r_1(\Omega_{\text{pps}})$
 529 stays well below R_{crest} to allow for tolerances $\Delta\Omega$ (11), thus still preventing overflow. At $\omega = \Omega_{\text{pps}}^* <$
 530 Ω_{pps} (Figure 7d), the liquid level arrives above the crest channel, i.e., $r_2(\Omega_{\text{pps}}^*) \leq R_{\text{crest}}$. Mainly
 531 depending on the cross sections A_1 , A_{crest} and A_2 of the inbound, crest and outlet sections,
 532 respectively, liquid is either transferred into the outer chamber at R_{cham} by overflow, or liquid pulley
 533 mechanisms.

534 In more detail, the gas pressure in the side chamber amounts to

$$p_{\text{side}}(\omega) = \rho \cdot \bar{r}_{\text{side}} \Delta r_{\text{side}} \cdot \omega^2 + p_0 = p_0 \cdot (1 + \chi) \cdot \frac{V_{\text{side}}}{V(\omega)} \quad (17)$$

535 with the mean value and difference \bar{r}_{side} and Δr_{side} deriving from the liquid levels r_0 and r_{side} in the
 536 inlet and the side chamber, respectively (Figure 7). For pneumatic siphon priming to unfold, i.e., to
 537 reach $\Delta r > 0$, the geometry Γ and liquid volume U_0 have to be configured so

$$V(\Omega_{\text{pps}}^*) - V(\Omega_{\text{pps}}) \geq [r_1(\Omega_{\text{pps}}) - R_{\text{crest}}] \cdot (A_0 + A_1) + U_{\text{crest}} + [r_2(\Omega_{\text{pps}}^*) - R_{\text{crest}}] \cdot A_2 \quad (18)$$

538 holds for the gas volume displaced from the side chamber into the main structure while reducing the
 539 spin rate ω from Ω_{pps} to Ω_{pps}^* .

540 Capillary Priming

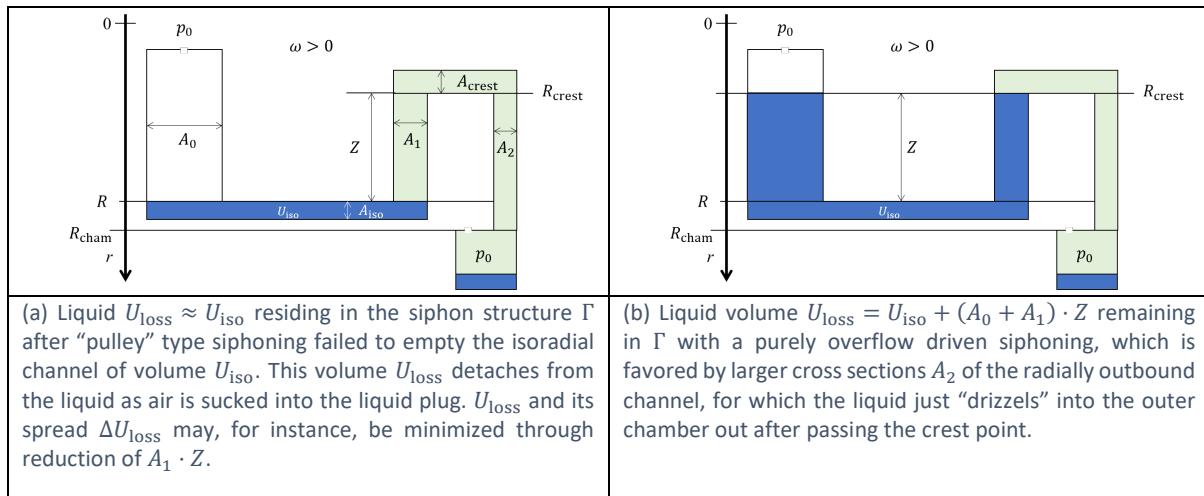
541 For priming by capillary pressure p_Θ (6), the outlet displays a hydrophilic coating to provide a
 542 (constant) contact angle $0 < \Theta \ll 90^\circ$ at all interfacial surfaces, and hence $p_z = p_\rightarrow = p_\Theta > 0$. In such
 543 a siphon valve (Figure 6b), the meniscus stops at a first equilibrium position $R_{\text{crest}} < r_1(\Omega_{\text{cps}}) < R$ in
 544 the inbound segment of cross section A_1 with a negative offset $\Delta r < 0$, i.e., $r_1 < r_0$. This distribution
 545 $\Lambda(\Omega_{\text{cps}})$ relates to a retention rate

$$\Omega_{\text{cps}} = \sqrt{\frac{4\sigma \cos \Theta}{\varrho \cdot \bar{r} \Delta r \cdot D}} \quad (19)$$

546 (neglecting the small capillary pressure at the meniscus in the large inlet reservoir for $A_1/A_0 \ll 1$),
 547 which results in $\Omega_{\text{cps}}/2\pi \approx 10$ Hz and 16 Hz for water under typical conditions, and $\Theta = 70^\circ$ and 0° ,
 548 respectively; any spin frequency $\omega > \Omega_{\text{cps}}$ will retain the liquid.

549 The second equilibrium position r_2 establishes at $\omega = \Omega_{\text{cps}}^*$ with the meniscus at $r_2 > R_{\text{crest}}$ in the
 550 outlet segment of cross section A_2 . Any further progression $r > r_2$ of the meniscus for $\omega < \Omega_{\text{cps}}^*$ will
 551 then grow Δr to set $p_\omega + p_\Theta > 0$, and thus trigger continuous siphoning. As for the other mechanisms
 552 for siphon priming, the choice of the critical rates Ω and Ω^* needs to consider their standard deviations
 553 $\Delta\Omega$ and $\Delta\Omega^*$ (11) induced by experimental tolerances $\{\Delta\gamma_i\}$, and the required reliability quantified by
 554 the factor M .

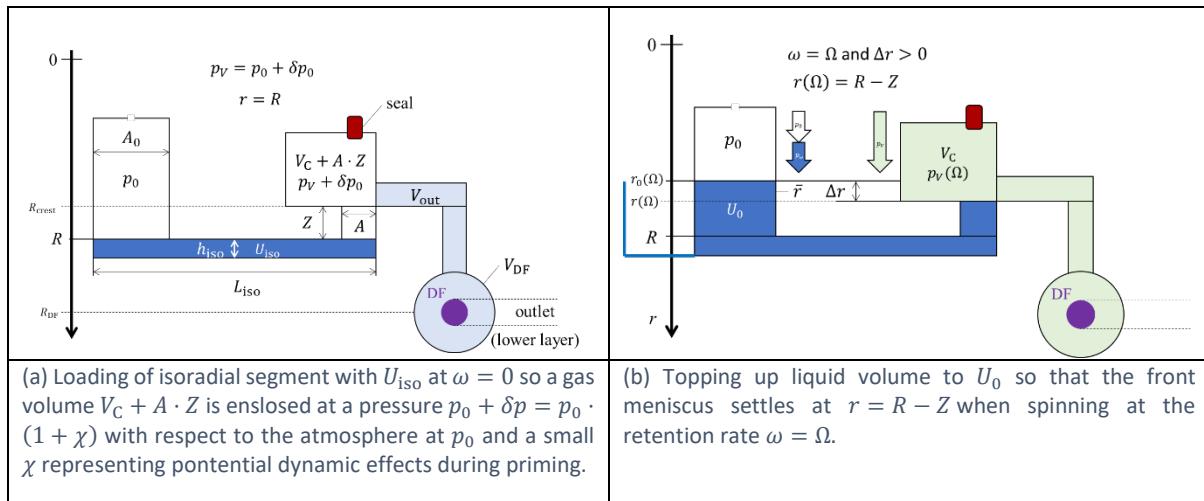
555 As a low-pass valve, capillary-action primed siphons are particularly suitable for LUOs requiring strong
 556 centrifugal fields f_ω (1). The spread $\Delta\Omega_{\text{cps}}$ of the threshold frequency Ω_{cps} (12), which might be
 557 related to poor definition of the diameter D contact angle Θ , is normally of minor practical relevance,
 558 as long as Θ stays well below 90° .

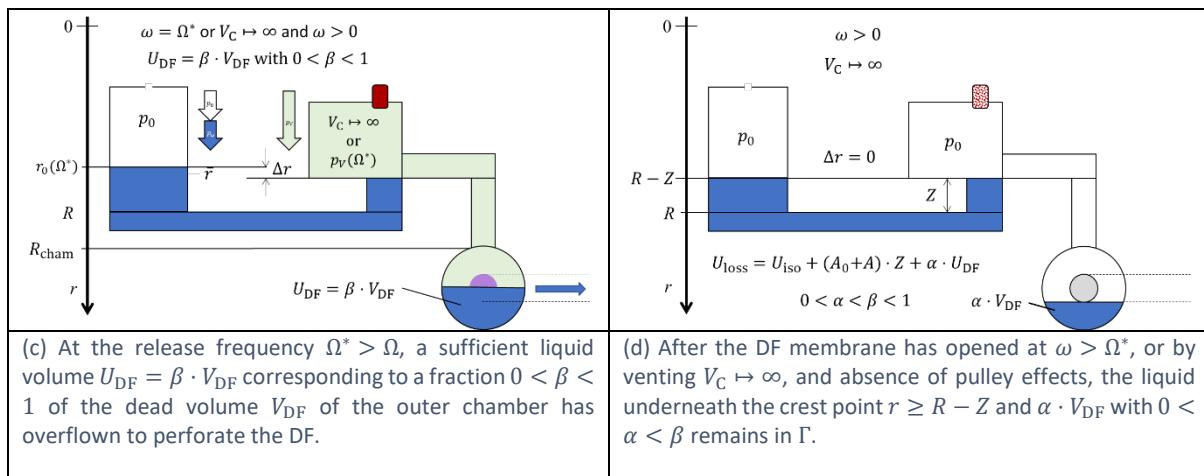

559 In purely capillary-driven priming at $\omega = 0$, the time

$$T_\Theta = \frac{4\eta \cdot l^2}{D \cdot \sigma \cos \Theta} \quad (20)$$

560 for covering the axial distance $l \approx L + Z + L_{\text{crest}} + (R_{\text{cham}} - R_{\text{crest}})$ scales with l^2 , the viscosity of
 561 the liquid η , and inversely with its surface tension σ , $\cos \Theta > 0$, and the cross-sectional diameter of
 562 the (round) channel D .

563 Lost Volume


564 Transfer by centrifugal siphoning (Figure 6) is usually accompanied by a loss $U_{\text{loss}} < U_0 + U_\Delta$ of the
 565 original liquid volume U_0 , plus U_Δ for the case of priming by volume addition (Figure 8). In “pulley”-
 566 type of siphoning, the separation of this residual volume U_{loss} occurs when air is drawn into the filled
 567 outlet channel during forward pumping, so the initially coherent liquid plug tears apart (Figure 8a).
 568 This residual volume ideally vanishes $U_{\text{loss}}/U_0 \ll 1$, or exhibits a small spread $\Delta U_{\text{loss}}/U_{\text{loss}} \ll 1$;
 569 however, in practice, U_{loss} and ΔU_{loss} sensitively depend on the hydrodynamic processes and the
 570 shape of Γ , and tend to decrease with the cross sections A_1 , A_{crest} and A_2 . Overflow driven liquid
 571 transfer running without a pulley mechanism (Figure 8b) tends to reduce the spread ΔU_{loss} , while
 572 producing larger absolute losses U_{loss} .



573 Figure 8 Residual volume in centrifugal siphoning. After the transfer, part of the liquid U_0 is left in the siphon structure. This
 574 $U_{\text{loss}} < U_0$ sensitively hinges on the dynamics of flow, and the shape of critical parts of Γ , for instance, on the cross sections
 575 $A_0, A_1, A_2, A_{\text{iso}}$ and A_{crest} of the radial and isoradial segments; U_{loss} would ideally be 0, or at least reproducible, i.e., $\Delta U_{\text{loss}} \approx$
 576 0.

577 Centrifugo-Pneumatic Dissolvable-Film Siphon Valving

578 The geometry Γ in Figure 9 constitutes a hybrid of centrifugo-pneumatic (CP) valves (Figure 3),
 579 sacrificial dissolvable-film (DF) barriers (Figure 5) and centrifugal siphoning (Figure 6). Its transition
 580 between the two hydrostatic equilibrium distributions $\Lambda_{i \in \{1,2\}}$ results from a centrifugally induced
 581 pumping pressure p_ω (3) running against a pneumatic back pressure $|p_z| = p_\leftarrow = p_V$ (9) from the
 582 (initially) sealed receiving chamber. This configuration thus eliminates the need for priming by interim
 583 addition V_Δ (Figure 6a), hard to manufacture and define circumferential hydrophilic coating $\Theta < 90^\circ$
 584 of the narrow outlet channel (Figure 6b), and difficult to control pneumatic charging of a side chamber
 585 (Figure 7). Liquid transfer merely relies on volume overflow through channel segments exhibiting
 586 sufficiently large cross sections A .

587 Figure 9 Operational principle of the siphon-shaped CP-DF siphon valve (linearized display, not to scale). The structure Γ
 588 features a constant depth d .

589 During retention of this high-pass siphon valve $\omega < \Omega$, the meniscus stabilizes in the radially inbound
 590 section of the siphon channel, thus effectively dampening inertial overshoot propelled by inertia p_m
 591 (8) at finite flow rates $Q > 0$, suppressing premature droplet break-off of CP valves (Figure 3), and
 592 radial squeezing of the meniscus for alternative layouts with isoradially directed outlets (Figure 2, right
 593 & Figure 3, right). Even without direct experimental data, the scheme provides better overall
 594 management of loading U_0 with smaller and more reproducible pressure offset δp_0 (and thus $\Delta\chi \mapsto$
 595 0) than for the basic CP-DF valve (Figure 3). The gas-tight DF initially isolating the final pneumatic
 596 chamber allows for rotationally controlled opening without external actuators, as well as venting
 597 mode, while also removing the end-point character of the receiving chamber familiar from basic CP
 598 valves (Figure 3).

599 By virtue of these manifold, synergistical benefits, we consider CP-DF siphon valves as a key enabler
 600 for microfluidic large(r)-scale integration (LSI) at high operational reliability, and thus designate a
 601 separate section for them. For sake of clarity, we use a simplified geometry Γ (Figure 9) to represent
 602 the valving structures and the resulting, quasi static liquid distributions Λ that lend themselves to a
 603 description by closed-form analytical formulas, rather than the previous integrals as, e.g., occurring in
 604 (2). The basic concept has been outlined and experimentally validated in a series of prior publications
 605 [89, 90, 120].

606 Functional Principle

607 Loading

608 To best illustrate the basic principle of the CP-DF siphon valving, a somewhat hypothetical, multi-step
 609 loading procedure is portrayed in Figure 9. At rest $\omega \approx 0$, a liquid volume U_{iso} completely fills the
 610 isoradial section of radial position R , length L and height h . This way, a pneumatically isolated gas
 611 pocket occupies a volume $V_C + A \cdot Z$. The product $A \cdot Z$ represents the volume of the inbound siphon
 612 segment of cross section A and length Z , while V_C is mainly composed of the volumes $V_{C,0}$ of the large
 613 chamber at its inner end, the segmented internal channel V_{int} , and the final, shallow recess chamber
 614 volume V_{DF} positioned at R_{cham} , i.e., typically $V_{int} + V_{DF} \ll V_{C,0} < V_C$. The pressure in this gas pocket
 615 corresponds to $p_0 + \delta p_0 = p_0 \cdot (1 + \chi)$ with $0 \leq \chi \ll 1$, and the ambient pressure p_0 applying to the
 616 inlet, which is open to atmosphere, often at $p \approx p_{std}$.

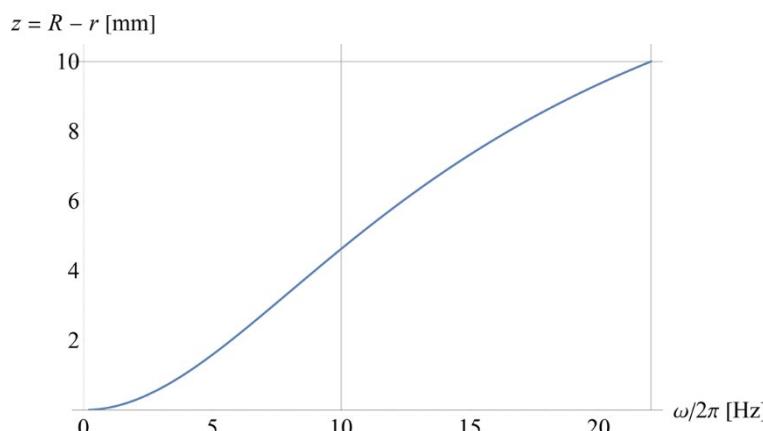
617 The total liquid volume is then topped up to $U_0 = U_{iso} + A_0 \cdot [R - r_0(\Omega)] + A \cdot [R - Z]$, so that, at
 618 the retention rate $\omega = \Omega$, the liquid distribution $\Lambda(\Omega)$ places its front meniscus in the inbound

619 segment at $r = r_1(\Omega) = R_{\text{crest}} = R - Z$ (Figure 9b). For $\omega < \Omega$, r stays in the interval $R - Z < 620 r(\omega) < R$.

621 Pneumatic Pressure

622 Due to the compression of the enclosed gas volume by $A \cdot (R - Z)$, the resultant increase in the 623 pneumatic counterpressure

$$p_V(R, \Gamma, U_{\text{DF}}, p_0, \chi, r) = p_{\leftarrow} = p_0 \cdot (1 + \chi) \cdot \left(\frac{V_C + A \cdot Z}{V_C + A \cdot [Z - (R - r)] - U_{\text{DF}}} \right) \quad (21)$$


624 can hence be expressed by r , with the liquid volume in the DF chamber $U_{\text{DF}} = 0$ vanishing during 625 retention at $\omega \leq \Omega$.

626 Meniscus Position

627 Considering that the position of the rear meniscus in the inlet reservoir

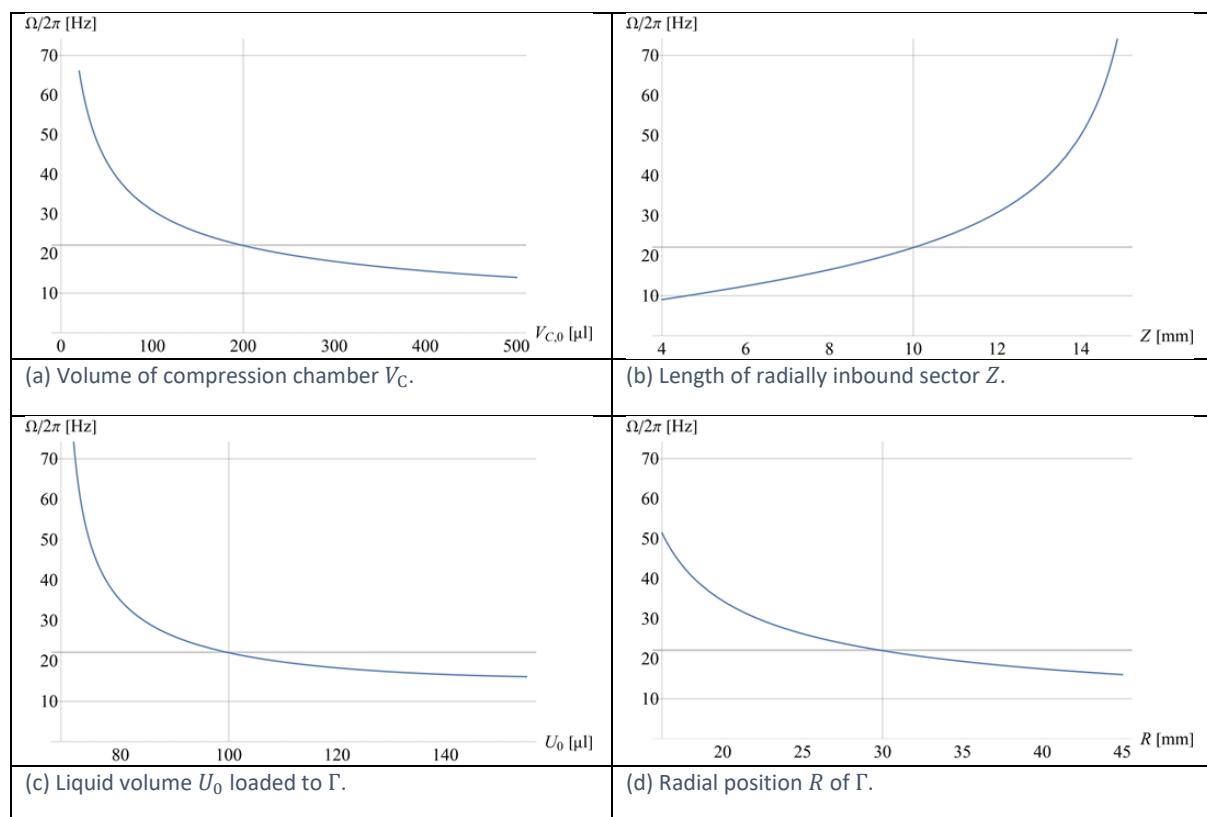
$$r_0[R, \Gamma, U_0, U_{\text{DF}}, r(\omega)] = R - \frac{U_0 - U_{\text{iso}} - A \cdot [R - r(\omega)] - U_{\text{DF}}}{A_0} \quad (22)$$

628 is linear in r , the radial product $\bar{r}\Delta r$ in (4), and thus also the driving pressure $p_{\omega} \propto \bar{r}\Delta r$ (3), are square 629 functions in r . With $p_{\rightarrow} = p_0 = \text{const.}$, the hydrostatic equilibrium for the CP-DF siphon valves $p_{\omega} + 630 p_0 = p_V$ (9) can be written as a cubic function in r . Given the algebraic nature of the equation, any 631 advanced symbolic or generic numerical solver can readily produce the results shown.

632

633 Figure 10 Meniscus position $z = R - r$ as a function of the spin rate $\nu = \omega/2\pi$. With growing ω , the meniscus rises in the 634 radially inbound channel until it arrives at $R_{\text{crest}} = R - Z$ when $\omega = \Omega/2\pi \approx 22$ Hz.

635 Consequently, algebraic solutions $r = r(R, \Gamma, U_0, U_{\text{DF}}, p_0, \chi, \omega)$ can be found (in principle) for a given 636 geometry of the CP-DF siphon valve Γ , which are parametrized by common experimental parameters, 637 such as the spin rate ω , the radial position R of Γ , its compression volume V_C and the loaded liquid 638 volume U_0 . Figure 10 displays the rise of the meniscus $z = R - r$ in the inbound segment of the siphon 639 channel until the crest point $R_{\text{crest}} = R - Z$ is reached at the critical frequency $\omega = \Omega \approx 22$ Hz.


640 Liquid Retention

641 Critical Spin Rate

642 When the front meniscus of Λ assumes $r = R_{\text{crest}}$ at the upper end of the inbound segment (Figure 643 9a), inserting p_V (21) into (10) provides

$$\Omega(R, \Gamma, U_0, \chi) = \sqrt{\frac{p_0 \cdot \left[(1 + \chi) \cdot \frac{V_C + A \cdot Z}{V_C} - 1 \right]}{\varrho \cdot \bar{r}\Delta r}} \approx \sqrt{\frac{p_0}{\varrho \cdot \bar{r}\Delta r} \cdot \frac{A \cdot Z}{V_C}} \quad (23)$$

644 for the critical retention rate Ω of the CP-DF siphon valve.

645 Figure 11 Critical spin frequency $\Omega/2\pi$ as a function of individual experimental input parameters (for $\chi \approx 0$).
 646 According to (23), Ω depends on (a) the compression volume V_C , roughly merging to $\Omega \propto 1/\sqrt{V_C}$. As for a given U_0 , Δr
 647 rapidly shrinks with growing Z , while less affecting \bar{r} , Ω increases steeply towards large Z (b). For $r_1(\Omega) = R - Z$, increasing
 648 the volume U_0 enlarges Δr faster than \bar{r} decreases, so the retention rate Ω reduces with U_0 (c) and the radial position R (d).

649 Figure 11 examines the dependence of the critical spin rate Ω on key experimental parameters. The
 650 retention rate Ω is highly configurable, reducing with growing volume $V_{C,0}$ of the permanently gas-
 651 filled compression chamber (Figure 11a). Ω also increases by extending the length of the radially
 652 inbound segment Z (Figure 11b). As r_0 is linear in R and U_0 (22), the radial product $\bar{r}\Delta r$ is a square
 653 function in r_0 , so Ω decreases with U_0 (Figure 11c) and R (Figure 11d), roughly following $1/U_0$ and
 654 $1/R$, respectively.

655 Tuning of the Critical Spin Rate

656 As $r_0(\Omega)$ (22) is linear in U_0/A_0 , also the radial product $\bar{r}\Delta r$ (4), and thus Ω (23), remain unaltered for
 657 $U_0/A_0 = \text{const}$. Hence, an LUO requiring retention of a different liquid volume U_0 preserves the same
 658 critical spin rate Ω (23) as long as the cross section of the inlet A_0 is adjusted by the same factor. (Γ
 659 might also feature a partitioned inlet reservoir in which compartments are flexibly connected by
 660 individually configurable barriers.)

661 Figure 11 also reveals that the retention rate Ω (23) may be tuned in the range $10 \text{ Hz} < \Omega/2\pi <$
 662 70 Hz . Considering the effort to optimize manufacture processes to a specific design, it is usually wise
 663 to leave the essential, liquid carrying parts of Γ unaltered when adjusting the critical spin rate Ω (23)
 664 to the requirements of the assay protocol. Therefore, tuning of Ω (23) is preferentially implemented
 665 by the rather large volume of the main compression chamber $V_{C,0}$, while preserving the other sectors
 666 of Γ . In situations when the radial position R needs to be moved, e.g., through spatial requirements,
 667 the relation (23) provides a recipe for compensating the shift in R by adjusting $V_{C,0}$.

668 Note that the permanently gas-filled sections only contribute with their total (dead) volume V_C to Ω
 669 (23), but they can be partitioned, distributed and located anywhere, as long as being in unfettered
 670 pneumatic communication with each other. For instance, the compression volume V_C might be
 671 constituted by a smaller “attachment” to the inner end of the radially inbound section which is
 672 connected through a channel of tiny cross section to a larger chamber placed where space would still
 673 be available in a multiplexed (disc) layout (see also the advanced geometry in the supplementary
 674 Figure A1).

675 Liquid Release

676 Modes

677 Up to now, the considerations have primarily focused on the barrier function of CP-DF valving for $0 <$
 678 $R - r < Z$ by keeping $\omega < \Omega$. The opening condition is captured by the overflow of a minimum
 679 volume $U_{DF} = \beta \cdot V_{DF}$ with $0 < \beta < 1$ to sufficiently wet and disintegrate the DF, hence venting the
 680 outer chamber of total volume V_{DF} ; Figure 9c represents the example of $\beta = 0.5$ for a central location
 681 of the DF in a recess of round cross section. After opening the DF at $\omega > \Omega^* > \Omega$ (Figure 9, bottom,
 682 left), or by perforation of a seal (Figure 9c), the pneumatic compartment is vented, i.e., $V_C \mapsto \infty$ and
 683 $p_V \mapsto p_0$, and, consequently, any spin rate $\omega > 0$ will propel further liquid transfer. On the analogy of
 684 Figure 5, an additional seal, or the DF, might be opened by an external actuator [71, 121], or by a
 685 preceding liquid handling step, e.g., through “event-triggering” [90].

686 This transfer of $U_{DF} = \beta \cdot V_{DF}$ into the recess reduces the original liquid and gas volumes U_0 and $V_C +$
 687 $A \cdot Z$, respectively, by U_{DF} , and typically $U_{DF} \ll U_0$, while the forward meniscus remains pinned to
 688 $r = R - Z$. We calculate the release rate

$$\Omega^* = \sqrt{\frac{1}{\varrho \cdot \bar{r}(U_0 - \beta \cdot V_{DF})\Delta r(U_0 - \beta \cdot V_{DF})} \cdot p_0 \cdot \left[(1 + \chi) \cdot \frac{V_C + A \cdot Z}{V_C - \beta \cdot V_{DF}} - 1 \right]} \quad (24)$$

689 from (23) by considering the cutback of the loaded volume U_0 upstream of the crest point and the
 690 compression volume by $U_{DF} = \beta \cdot V_{DF}$ in $\bar{r}\Delta r$ (4) and $V = V_C - \beta V_{DF}$ in p_V (5), respectively. These
 691 volume reductions lead to a defined increment of the spin rate $\Omega_{step} = \Omega^* - \Omega$, which grows with
 692 U_{DF} . The gap Ω_{step} can thus be tuned for CP-DF siphon valves through Γ , for instance, by the dead
 693 volume of the DF chamber outside $r \geq R_{DF}$. For common CP-DF siphon valves, $\beta \cdot V_{DF}/V_C \ll 1$, so
 694 that the $0 < \Omega_{step}/\Omega \ll 1$.

695 The opening mechanism of the CP-DF siphon valve (Figure 9) imposes the general volume condition
 696 $A_0 \cdot [R - Z - r_0(\Omega)] \geq U_{DF}$ for both, actuation by rotation or venting, to assure $\Delta r > 0$, and thus a
 697 non-vanishing centrifugal field $p_\omega \propto \Delta r$ (3), to drive liquid transfer through the outlet for any $\omega > 0$
 698 subsequent to the removal of the DF or seal of the compression chamber. Note that strictly speaking,
 699 $\omega < \Omega$ describes “clean” retention without overflow into the DF chamber while, in principle, $\omega < \Omega^*$
 700 would be sufficient, as long as $\{\Delta\gamma_k\} = 0$.

701 Reliability

702 For consistent CP-DF siphon valving, the forward meniscus needs to stay at $r(\omega = \Omega - M \cdot \Delta\Omega) >$
 703 $R - Z$ during retention; for reliable rotational actuation, $\omega \geq \Omega^* + M \cdot \Delta\Omega^*$. Beyond the factors
 704 impacting the standard deviation $\Delta\Omega$, the uncertainty $\Delta\Omega_{step}$ is thus mainly determined by the
 705 definition of the volume fraction $\beta \cdot V_{DF}$. For typical experimental conditions $\Omega_{step}/\Omega \ll 1$ and $\Delta\Omega \approx$
 706 $\Delta\Omega^*$, so robust rotational actuation comes down to $\omega \geq \Omega^* + M \cdot \Delta\Omega^* \approx \Omega + M \cdot \Delta\Omega$; hence, a
 707 “forbidden” frequency band of approximate width $2 \cdot M \cdot \Delta\Omega$ around $\omega = \Omega$ must be crossed for
 708 reliable switching the CP-DF siphon valve (see also Figure 1).

709 Residual Volume

710 As already investigated in the context of basic siphon valving (Figure 8), the accuracy and precision of
 711 the transferred liquid volume directly enters the mixing ratios underpinning bioanalytical quantitation,
 712 and also the Ω (23) and Ω^* (24) for subsequent valving steps, and, consequently, critically impacts
 713 system level reliability of microfluidic LSI.

714 Neglecting inertial and interfacial effects, and assuming purely $\Delta r > 0$ driven overflow across the crest
 715 channel, and a fraction $\alpha \cdot V_{DF}$ with $0 < \alpha < \beta < 1$ remaining in the recess for the DF, the volume

$$U_{loss} = (A_0 + A) \cdot Z + U_{iso} + \alpha \cdot V_{DF} \quad (25)$$

716 constitutes an (approximate) upper boundary of liquid “swallowed” after the transfer (Figure 9d), with
 717 $\alpha \approx \beta$ in common application cases. U_{loss} (25) displays a direct contribution of U_{iso} , and increases
 718 linearly with Z as well as the cross sections A_0 and A . Note that, especially for the here assumed,
 719 sufficiently large cross section A , “pulley”-type siphoning is largely suppressed, therefore optimizing
 720 volume precision by minimizing ΔU_{loss} ; such metering might be further improved via proper definition
 721 of a liquid “cut-off”, e.g., by placing a sharp-edged “liquid knife” within a low dead-volume section.

722 Rotational Valving Schemes

723 The objective of the digital twin concept presented here is to advise the choice and layout of
 724 rotationally controlled valving techniques at the pivot of LoaD systems featuring high functional
 725 integration density with “*in silico*” predictable, system-level reliability for rapid and cost-efficient
 726 scale-up of manufacture from prototyping (for initial fluidic testing) to pilot series (for initial
 727 bioanalytical testing) and commercial mass fabrication. This section proposes a repertoire of
 728 quantitative metrics which guide the selection of the type and layout of rotationally controlled valving
 729 for a given scenario. Note that the model underlying the digital twin presented here contains various
 730 simplifications, so experimental verification is still needed.

731 Performance Metrics

732 Critical Frequencies and Field Strengths

733 For a given high-pass valve, maximum field strengths $f_\omega(\hat{\Omega}) \propto \hat{\Omega}^2 \sqrt{\Delta r}$ for capillary burst (12)

$$f_\Theta \approx \varrho \cdot \bar{r} \cdot \Omega_\Theta^2 \approx \frac{4\sigma(-\cos\Theta)}{\Delta r} \frac{D}{D} \quad (26)$$

734 and basic CP valves (16)

$$f_{CP} \approx \varrho \cdot \bar{r} \cdot \Omega^2 \approx \frac{p_0}{\Delta r} \cdot \frac{A \cdot Z}{V_C} \quad (27)$$

735 as well as for the CP-DF siphoning structure (23) of retention rate $\hat{\Omega}$ cannot be exceeded during
 736 processing of an upstream LUO. For the low-pass mechanisms, there is, *per definition*, only a critical
 737 rate $\check{\Omega}$ for valve opening at $\omega < \check{\Omega}$. In case of the capillary primed siphoning (Figure 6b), there is a
 738 minimum field strength

$$f_{cps} \approx \varrho \cdot \bar{r} \cdot \Omega_{cps}^2 \approx \frac{4\sigma \cos\Theta}{\Delta r \cdot D} \quad (28)$$

739 which will have to be calculated numerically for the pneumatic priming mechanism (Figure 7). In most
 740 LUOs, such a minimum field strength f is of minor practical relevance. Note that for particle separation
 741 by f_ω (1), ϱ represents the density differential to the suspending medium.

742 For the CP valves (with $\chi = 0$), we find, by revisiting at (16) and (23), that the difference $p_{\leftarrow} - p_{\rightarrow}$
 743 becomes $p_0 \cdot A \cdot Z / V_C$, so $\widehat{\Omega} \propto \sqrt{A \cdot Z / V_C}$. Mathematically, its scaling with $1/\sqrt{V_C}$ allows raising the
 744 retention rate $\widehat{\Omega}$ to any required value by simply downsizing the compression volume V_C . The same
 745 holds for capillary burst valves with $p_{\leftarrow} = p_0 \propto \sigma \cdot \cos \theta / D$ (6) with vanishing $p_{\rightarrow} \approx 0$ when shrinking
 746 the diameter of the constriction D . However, in practice, reducing V_C and D is limited by the minimum
 747 feature sizes of the manufacturing technologies, and growing spread $\Delta\Omega$ (11), and also the product
 748 $\sigma \cdot \cos \theta$ has upper limits for capillary valves.

749 Apart from its linearity in $\sqrt{p_{\leftarrow} - p_{\rightarrow}}$, we also observe that the retention rate $\widehat{\Omega} \propto 1/\sqrt{\bar{r}\Delta r}$ (10) can be
 750 increased by minimizing the geometrical product $\bar{r}\Delta r$ representing the radial coordinates of the liquid
 751 distribution Λ within the valving structure Γ . This dependence unravels a clear advantage of siphoning
 752 strategies where the Δr and \bar{r} only refer to the radial distribution of Λ between the menisci r_0 and r
 753 in the inlet and inbound section, respectively, while the outer volumes extending between r and R
 754 (plus U_{iso}) do not enter $\widehat{\Omega}$ (10), and can thus be sized “randomly”.

755 Hence, in contrast to the basic capillary (Figure 2) or CP (Figure 3) modes where $\Delta r = R + Z - r_0$ and
 756 $\bar{r} = 0.5 \cdot (R + Z + r_0)$ must hold during retention, siphon valving can be geared for high retention
 757 rates $\widehat{\Omega}$ (10) by “hiding” the bulk liquid volume outside r , while minimizing the radial extension Δr or
 758 the mean position \bar{r} of the inner liquid distribution Λ in the radial interval between r_0 and r . Note,
 759 however, that maximization of $\Omega \propto 1/\sqrt{\Delta r}$ (23) hits a limit as the volume $A_0 \cdot \Delta r$ has to be sufficient
 760 to effectuate complete filling of the channel section extending between the position r_1 during
 761 retention to r_2 for still being able to trigger liquid release.

762 Band Width

763 The metric

$$\overline{\Delta\Omega} = \frac{\Delta\Omega}{\omega_{\max} - \omega_{\min}} \quad (29)$$

764 reflects the statistical spread of the critical frequency Ω to variations in the experimental input
 765 parameters with respect to the practically available spin rate corridor between ω_{\min} and ω_{\max} .
 766 Minimisation of $\overline{\Delta\Omega}$ (29) can thus guide the development of tolerance-forgiving designs.

767 For rotationally actuated siphon valving (Figure 6), the retention and release frequencies Ω and
 768 release Ω^* can be modified separately. Both spin rates need to be suitably spaced to account for their
 769 individual spreads $\Delta\Omega$ and $\Delta\Omega^*$; in addition, the differential in the spin rate ω needs to allow lifting
 770 the meniscus past the second (unstable) equilibrium distribution Λ to r_2 beyond the crest point at
 771 R_{crest} , or even further to deliver a minimum liquid volume U_{DF} to the outer chamber for ushering CP-
 772 DF siphon valving (Figure 9). This requires reserving a band $\Omega - M \cdot \Delta\Omega < \omega < \Omega^* + M \cdot \Delta\Omega^*$ for the
 773 spin rate ω . Towards LSI, it is thus favorable to minimize the metric

$$\overline{\Delta\Omega^*} = \frac{(\Omega^* + M \cdot \Delta\Omega^*) - (\Omega - M \cdot \Delta\Omega)}{\omega_{\max} - \omega_{\min}} \approx \frac{2 \cdot M \cdot \Delta\Omega}{\omega_{\max} - \omega_{\min}} \quad (30)$$

774 in order to be able to “squeeze” as many fluidic operations as possible into the available frequency
 775 range.

776 Volume Loss

777 Upon completion of valving, a part $U_{loss} = \zeta \cdot U_0$ with $0 \leq \zeta < 1$ of the originally loaded volume U_0
 778 might remain in the structure Γ (Figure 8). While $\zeta \mapsto 0$ for the basic valve setups implementing
 779 radially directed flow (Figure 2 and Figure 3), the emptying of the siphon structures (Figure 6) runs

780 against the centrifugal pressure head p_ω (3) in the inbound section once gas has compromised the
 781 integrity of the liquid plug to create a segment characterized by $\Delta r < 0$.

782 As sketched in Figure 9, such volume loss U_{loss} may be approximated by (25) for CP-DF valving. In
 783 some bioassays, a systematic loss can be factored in by loading more liquid volume U_0 to the inlet.
 784 Still, accommodating U_{loss} (25) tends to increase the footprint of liquid handling structures decisively
 785 enters the output volume $U_0 - U_{\text{loss}}$, and thus the frequencies Ω (23) and Ω^* (24) of subsequent
 786 valving steps in LSI. A metric guiding design optimization might thus be

$$\overline{U}_{\text{loss}} = \frac{U_{\text{loss}}}{U_0} \quad (31)$$

787 which obviously vanishes when minimizing U_{loss} (31).

788 Volume Precision

789 In the same way as the absolute amount of liquid determines the critical frequencies Ω (23) and Ω^*
 790 (24) of subsequent flow control operations and concentrations in assays, their statistical spreads ΔU_0
 791 and ΔU_{loss} impact the precision of the inlet volume U_0 in the next step. While, again, systematic losses
 792 may be factored into the valve design Γ and spin protocol $\omega(t)$, stochastic fluctuations may even
 793 interrupt liquid handling sequences as the minimum amount of liquid needed to reach Ω^* (24) may
 794 not be available in the inlets of a subset of valves. We define the dimensionless ratio

$$\overline{\Delta U}_{\text{loss}} = \frac{\Delta U_{\text{loss}}}{U_{\text{loss}}} \quad (32)$$

795 as the metric to be minimized, i.e., $\overline{\Delta U}_{\text{loss}} \mapsto 0$, for enhancing reliability of multiplexed valving.
 796 Alternatively, U_{loss} may also be referenced in (32) to U_0 .

797 Radial Extension

798 Radial space is precious on centrifugal LoaD systems. To illustrate this, we consider that the centrifugal
 799 field f_ω (1) is unidirectional, i.e., it cannot (directly) pump liquids towards the center of rotation; such
 800 centripetal pumping would require provision of power, e.g., connection of a pressure source [105],
 801 chemical reaction [111, 118], imbibition [91, 122], or potential energy in the centrifugal field, e.g.,
 802 through simultaneous displacement of a centrally stored (ancillary) liquids [123] or centrifugo-
 803 pneumatic siphoning [69]. Such methods, while technically feasible and successfully demonstrated,
 804 would somewhat compromise the conceptual simplicity of the LoaD paradigm.

805 In purely rotationally controlled LoaD systems considered in this work, the LUOs of (serial) assay
 806 protocols are therefore typically aligned in a radially outbound sequence arranged in the order of their
 807 execution. This also implies that the reservoirs taking up the sample and reagents to be processed
 808 may need to be located centrally. In multi-step assay protocols, the radial confinement of the disc
 809 between R_{min} , e.g., given by the size of an inner hole to clamp the disc to the spindle ($R_{\text{min}} = 75$ mm
 810 for optical data storage media), plus some space for bonding to a lid, and the largest radius R_{max} (in
 811 the range of 55 mm for a CD format) at which structures can still be placed, limits the number of LUOs
 812 that can be automated. A design goal may therefore be to radially compress each structure of
 813 extension ΔR_Γ of the LUO and its downstream control valve. $\Delta R_\Gamma = \hat{r} - \check{r}$ will often correspond to the
 814 difference between the minimum radial position of the inner meniscus [$\check{r} = \min[r_0(\omega)]$] over the
 815 course of valving $\omega(t)$, and the radially outer edge \hat{r} of the final receiving chamber. The metric

$$\overline{\Delta R} = \frac{\Delta R_\Gamma}{R_{\text{max}} - R_{\text{min}}} \quad (33)$$

816 might thus be chosen to guide optimization of radial space for a rotationally valved LUO.

817 Real Estate

818 The total area available on the round LoaD device $A_0 = \int_{R_{\min}}^{R_{\max}} 2\pi \cdot r dr = \pi(R_{\max}^2 - R_{\min}^2)$ is shared
 819 between LUOs and their intermittent valves. Therefore, any space savings through clever design of Γ
 820 will enhance the potential for multiplexing. Furthermore, the unidirectional nature of liquid transport
 821 implies that the reservoirs taking up the sample and reagents to be processed may need to be located
 822 near the axis of rotation.

823 Overall, these boundary conditions, which are intrinsic to LoaD systems, make central real estate more
 824 scarce and thus precious, which we reflect by the metric (“price tag”)

$$\bar{A} = \frac{1}{R_{\max} - R_{\min}} \cdot \int_{R_{\min}}^{R_{\max}} \frac{W(r)}{2\pi \cdot r} dr \quad (34)$$

825 where $W(r)$ represents the total azimuthal width of the valve structure Γ at a radial location r , e.g.,
 826 the length of the isoradial channel L in the simplified geometry of the CP-DF siphon valve (Figure 9).
 827 Note that for finite thickness of the fluidic substrate, typically on the order of 1.2 mm for optical
 828 storage media derived formats, the area of sectors containing the liquid volume U_0 loaded to the valve
 829 cannot be arbitrarily reduced.

830 Valving Time

831 The interval between prompting the opening of a valve and the completion of the liquid transfer
 832 through its structure Γ to the subsequent stage involves different processes, which depend on the
 833 selected valving mechanism. For the core modes of hydrophobic barriers (Figure 2) and CP valving
 834 (Figure 3), a transfer time

$$T_Q \approx \frac{U_0}{Q} = \frac{8\pi\eta}{A^2} \cdot \frac{U_0 \cdot l}{\varrho \cdot \bar{r}\Delta r \cdot \Omega^2} \quad (35)$$

835 is obtained for a centrifugally driven flow propelled by a pressure differential $p = p_\omega = \varrho \cdot \bar{r}\Delta r \cdot \Omega^2$
 836 (3) of a liquid of density ϱ and viscosity η through the radial outlet of length l and cross section A .

837 The approximation (35) neglects start up and exit effects when the channel is only partially filled, and
 838 assumes constant $\bar{r}\Delta r$ to deliver a stable pumping pressure p . However, the product $\bar{r}(t)\Delta r(t)$
 839 changes over the course of liquid transfer. As previously outlined, for siphon valving, \bar{r} and Δr are
 840 calculated from r_0 and r , l refers to the aggregate axial length of the siphon and outlet channels, and
 841 Ω needs to be replaced by the release frequency Ω^* for rotational actuation modes.

842 By assuming typical values $U = 10 \mu\text{l}$, $A = (100 \mu\text{m})^2$, $l = 1 \text{ cm}$, a mean radial position $\bar{r} = 3 \text{ cm}$,
 843 $\Delta r = 1 \text{ cm}$, $\Omega = 2\pi \cdot 25 \text{ Hz}$, and a density $\varrho = 1000 \text{ kg m}^{-3}$ and viscosity $\eta = 1 \text{ mPa s}$ roughly
 844 corresponding to water, we arrive at an order of magnitude for $T_Q \approx 3.4 \text{ s}$ (35) for the basic radial
 845 valve configurations. When extending l by a factor of 5 and reducing Δr by the same factor to account
 846 for siphoning, T_Q (35) increases by a factor of 25 to about 1.5 min.

847 For release mechanisms implementing DFs, the dissolution time T_{DF} of the membrane adds to T_Q (35).
 848 T_{DF} can be set by the formulation and thickness of the film, and may further require a minimum
 849 pressure p_{DF} on the film located at R_{DF} during wetting. Values for T_{DF} can range from seconds to
 850 minutes, and may display large standard deviation ΔT_{DF} . Note that various “timing” modules have
 851 been developed for LoaD systems, e.g., to delay or synchronize liquid handling time spans required
 852 for assay biokinetics [91, 119].

853 **Configurability**

854 The previous deliberations and formulas allowing to maintain or tune the retention, burst and release
 855 rates $\Omega = \Omega(R, \Gamma, U_0)$ and Ω^* , and their associated band widths $\Delta\Omega$ and $\Delta\Omega^*$ of rotationally controlled
 856 valves through the shape and location R of Γ and U_0 , play an important role for assay automation and
 857 parallelization. This digital twin will enable *in silico* tools offering high predictive power for configuring
 858 designs Γ that are optimized for functional integration, reliability and manufacturability [94]. For CP-
 859 DF siphon valves (Figure 9), the far-ranging configurability of the retention rate Ω through the volume
 860 of the permanently gas filled compression chamber $V_{C,0}$, which can be located “anywhere” on the disc,
 861 and through reduction of Δr by “hiding” liquid volume on the outer part of the structure Γ , provide
 862 major benefits (Figure 11).

863 Configurability might also be vital regarding other, collective aspects of LSI, such as mechanical
 864 balancing of the disc featuring cavities with moving liquid distribution $\Lambda(t)$, minimizing its moment of
 865 inertia $I_m = 0.5\pi \cdot \rho_{\text{disc}} \cdot R_0^4$, increasing heat transfer, optimization of mold flow for its mass
 866 replication, and interfacing that is compatible with standard liquid handling robotics and workflows.

867 **Comparison**

868 Table 1 compiles select metrics with their typical scaling behavior and value ranges for the previously
 869 outlined valving schemes. Note that, due to the plethora of parameters, their wide value ranges, and
 870 refined designs, absolute assessments cannot be made; yet the digital twin concept presented here
 871 will help choosing and optimizing the valving concept for a given LoD application.

Valving Principle	Retention	Release	Retention: high Ω	Band Width: low $\Delta\Omega$	Spatial Footprint	Configurability	Low U_{loss}	Low ΔU_{loss}	Transfer to next LUO	Manufacturability
Hydrophobic constriction	$\omega \leq \Omega_\Theta$ (12)	$\omega > \Omega_\Theta$ (12)	—	—	+	●	+	+	+	—
Centrifugo-pneumatic	$\omega \leq \Omega_{\text{cpv}}$ (14)	<u>Rotational</u> $\omega > \Omega_{\text{cpv}}$ $\omega > \Omega_{\text{cpv}}$ (16) $U_{\text{DF}} > \beta \cdot V_{\text{DF}}$	++	—	+	●	+	+	—	+
		<u>Direct Venting</u> $\omega > 0$ $V_C \mapsto \infty$								
Siphoning	$\Delta r(U_0) \leq 0$	<u>Volume priming</u> $\Delta r(U_0 + U_\Delta) > 0$	++	++	●	++	—	++	++	++
	$\omega > \Omega_{\text{pps}}$ (18)	<u>Pneumatic priming</u> $\omega < \Omega_{\text{pps}}$ (18)			—	—	—	●	+	++
	$\omega > \Omega_{\text{cps}}$ (19)	<u>Capillary priming</u> $\omega < \Omega_{\text{cps}}$ (19)			—	●	●	+		—
CP-DF siphon valving	$\omega < \Omega$ (23) $U_{\text{DF}} < \beta \cdot V_{\text{DF}}$	<u>Rotational</u> $\omega > \Omega^*$ (24)	++	+	●	++	—	+	+	●
		<u>Direct Venting</u> $V_C \mapsto \infty$								—

872 Table 1 Overview of rotationally controlled valving schemes according to common criteria represented by metrics. Each
 873 principle distinguishes by its retention and release mechanism. This benchmarking exercise depends on the particular
 874 implementation, so its assessment indicates trends for typical parameters, i.e., R, Γ and U_0 , rather than claiming absolute

875 validity for all possibly geometries Γ and application scenarios. The rating ranges from very good (++) over good (+) and
876 neutral (●) to unfavorable (−).

877 Summary & Outlook

878 Summary

879 We have surveyed basic, rotationally controlled valving techniques and modelled their critical spin
880 rates Ω and other performance metrics as a function of their radial positions R , geometries Γ and
881 loaded liquid volumes U_0 . The underlying digital twin approach allows to efficiently select, configure
882 and optimize the valve towards typical design objectives, such as retention at high field strength
883 during processing of a Laboratory Unit Operation (LUO) in the inlet reservoir, or to accommodate
884 different reagent volumes U_0 .

885 The modelling presented here specifically correlates retention rates Ω and their standard deviations
886 $\Delta\Omega$ with experimental input parameters displaying statistical spreads resulting from pipetting,
887 material properties, ambient conditions, and, in particular, the lateral and vertical precision of the
888 manufacturing technique. As a major benefit, this digital twin allows to engineer tolerance-forgiving
889 valve designs displaying predictable functionality along scale-up from prototyping for demonstrating
890 proof-of-concept to pilot series and, eventually, mass manufacture and extended bioanalytical testing.
891 Experimental validation should be implemented once a production technology becomes available that
892 can supply a sufficiently large, and thus statistically relevant number of LoaD devices for thorough
893 characterization on the path to regulatory compliance.

894 Towards large(r)-scale integration (LSI) of fluidic function underpinning comprehensive sample-to-
895 answer automation of multi-step / multi-reagent bioassay panels, the design-for-manufacture (DfM)
896 capability of the digital twin thus allows maximizing the packing density in real and frequency space
897 while assuring reliability at system level.

898 The high predictive power of the *in-silico* approach can thus substantially curb the risk, cost and time
899 for iterative performance optimization towards high technology readiness levels (TRLs), and thus
900 efficiently supports systematic Failure Mode & Effects Analysis (FMEA), and advancement towards
901 commercialization. The general formalism developed for functional and spatial optimization may well
902 be adopted for other Lab-on-a-Chip platforms and applications.

903 Outlook

904 Several extensions of the rudimentary digital twin approach are proposed, e.g., inclusion of previously
905 introduced flow control by event-triggering, rotational pulsing and delay modules, or further increase
906 of real estate by vertical stacking of multiple fluidic layers. Valving performance can be improved by
907 sophistication of valve layouts [94, 95], e.g., with refined shapes, rounded contours, and anti-
908 counterfeit features [96], and migration from the hydrostatic model to computational fluidic dynamic
909 (CFD) simulation. An advanced design tool could also include the bioassay kinetics. Moreover, virtual
910 prototyping could be extended by including the simulation of the manufacturing processes of the
911 layouts themselves. This would be particularly suitable for more complex methods like mold flow for
912 injection molding or 3D printing.

913 Regarding the bigger picture, the ability to create larger-scale integrated, fluidically functional designs
914 with predictable reliability may enable foundry models that are commonplace in mature industries
915 such as microelectronics and micro-electro-mechanical systems (MEMS) [7]. These efforts might be
916 supported by existing initiatives aiming at standardization of interfaces, manufacture and testing [124-
917 126]. As valving assumes a similar role on centrifugal LoaD platforms as transistors for the emergence

918 of integrated circuits (ICs) in (digital) electronics, the community is well equipped with the presented
 919 digital twin approach to develop large(r)-scale integrated “bioCPUs” – Centrifugal Processing Units for
 920 implementing multi-step, multi-reagent and multi-analyte bioassay panels.

921 Follow-up work is already planned on computer-aided, possibly automated optimization of integration
 922 density, robustness and manufacturability. As an open platform concept [127], the work is meant to
 923 encourage honing of design, modelling, simulation and experimental verification, for instance, within
 924 a blockchain-incentivized participatory research model involving crowdsourcing by means of
 925 hackathons, citizen science, and fab / maker labs [128-130]. Such community-based organization of
 926 research, which are already well-established in the thriving field of blockchain, are particularly
 927 attractive for centrifugal microfluidic technologies as key intellectual property (IP), that was mainly
 928 filed throughout the 1990s and early 2000s, has now entered the public domain.

929 Appendix

930 A1. Default Geometry

931 The structure Γ , loaded liquid volumes U_0 and radial positions R can be varied across a multi-
 932 dimensional parameter space, e.g., to tune retention rates Ω , or other key performance indicators.
 933 Table A1 gives of overview or generic values which can be used to initiate optimization.

$R = 3 \text{ cm}$	$R_{\min} = 1.5 \text{ cm}$	$R_{\max} = 5.5 \text{ cm}$	$R_{DF} = 3.15 \text{ cm} > R$
$A_0 = d_0 \cdot w_0$	$d_0 = 1 \text{ mm}$	$w_0 = 5 \text{ mm}$	
$U_0 = 100 \mu\text{l} < A_0 \cdot (R - R_{\min})$			
$U_{iso} = d_0 \cdot h \cdot L \ll U_0$	$d_{iso} = 1 \text{ mm}$	$h_{iso} = 1 \text{ mm}$	$L_{iso} = 15 \text{ mm} > w_0 + w$
$U_z = d \cdot w \cdot Z$	$d = 500 \mu\text{m}$	$w = 800 \mu\text{m} \ll w_0$	$Z = 10 \text{ mm}$
$V_{C,0} = d_C \cdot w_C \cdot h_C \gg U_z$	$d_C = 1 \text{ mm}$	$w_C = 20 \text{ mm}$	$h_C = 10 \text{ mm}$
$V_{int} = d_{int} \cdot h_{int} \cdot L_{int} \ll V_C$	$d_{int} = 200 \mu\text{m}$	$h_{int} = 300 \mu\text{m}$	$L_{int} = 1 \text{ cm} > 2w$
$V_{DF} = 0.25\pi \cdot d_{DF} \cdot D_{DF}^2 \ll V_C$	$d_{DF} = 190 \mu\text{m}$	$D_{DF} = 3 \text{ mm}$	$\alpha = 0.45, \beta = 0.5$

934 Table A1 Default geometrical parameters and relationships of CP-DF siphon valves (Figure 9). The resulting critical spin rate
 935 $\Omega(R, \Gamma, U_0)/2\pi \approx 22 \text{ Hz}$. Minimum lateral dimensions are given by the smallest practical diameter of milling head (200 μm).
 936 As tools for injection molding are often adopted from optical data storage (e.g., CD, DVD, Blu-ray), a central, 1.5-cm diameter
 937 hole and a disc radius of 6 cm with thickness near 1.2 mm, fluidic structures Γ may need to stay within the radial interval
 938 between $R_{\min} = 1.5 \text{ cm}$ and $R_{\max} = 5.5 \text{ cm}$ (plus bonding surface), and an upper limit for the depth of about 1 mm. The
 939 minimum depth of cavities is often restricted by the sealing technology; for large lateral extensions or small aspect ratios,
 940 sagging of the lid, which is often a foil, may significantly change the nominal volume capacity, also in response to the pressure,
 941 and might even lead to sticking to the bottom of the cavity. Economically reasonable mass replication by injection molding
 942 typically imposes additional requirements regarding mold flow, e.g., on minimum wall thicknesses δW , a rather
 943 homogeneous distribution of cavities across the disc, and avoidance of shadowing by structures for central injection.

944 A2. Consistency Checks

945 Not all *in silico* designed structures Γ turn out to provide proper valving with given volumes U_0 and
 946 critical spin rates Ω . One reason is manufacturability, the other fluidic function. Table A1 already
 947 introduces some rudimentary sanity checks as necessities, but not guaranteeing sufficiency for proper
 948 valving. As for other parts of this work, we exclude analysis of biochemical function, which may, for
 949 instance, be related to surface adsorption of (bio-)molecules in high surface-to-volume ratio channels,
 950 denaturing of biomolecules due to chemical agents leaching from bulk materials and assembly
 951 processes, viability of cells or reaction kinetics.

952 Fluidic Function

953 A common design goal is to set a certain retention and release rates Ω and Ω^* that are consistent with
 954 the valving sequence in frequency space for a liquid volume U_0 prescribed by the assay protocol. At
 955 least when discarding manufacturing restrictions, the basic radial layouts Γ displayed in Figure 2 and

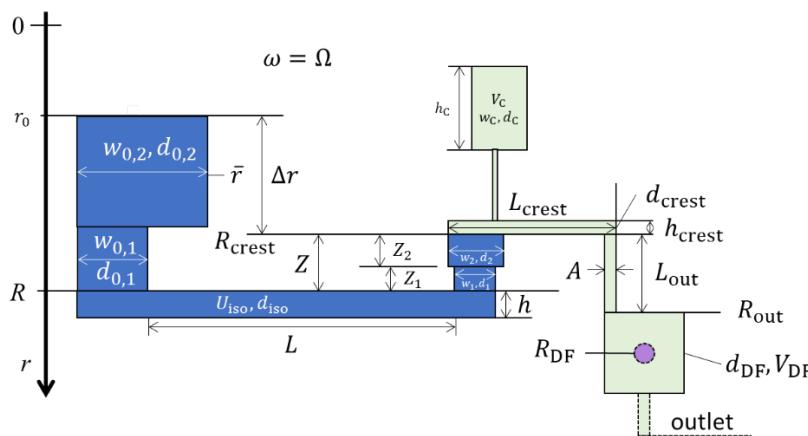
956 Figure 3 may be configured to any given critical frequencies Ω , as long as the inlet reservoir can
957 accommodate U_0 , i.e., $U_0 < A_0 \cdot (R - R_{\min})$ for the hydrophobic barrier. Furthermore, the cross
958 section of the outlet A needs to be sufficiently small to that surface tension maintains the integrity of
959 the liquid plug.

960 However, proper functioning of the siphon-type valves (Figure 6) requires more complex design rules,
961 such as fundamental correlations between radial positions, linear dimensions and volumes are already
962 included for (CP-DF) siphon valves. For example, to allow centrifugally driven outflow, the key radial
963 positions of Γ need to be staggered according to $R_{\text{crest}} < R < R_{\text{out}}$ for transitioning between the
964 hydrostatic equilibria at $r_1 = r(\omega)$ and $r_2 = r(\Omega^*)$ in the inbound and outbound segments at $\omega = \Omega$
965 and Ω^* , respectively. So $R_{\text{crest}} < r_1 < R$ and $R_{\text{crest}} < r_2 < R_{\text{out}}$ needs to hold for the two targeted
966 equilibrium positions of the front menisci. These conditions imply ranges $0 < U_0 - A_0 \cdot$
967 $r_0(R, \Gamma, U_0, \Omega) - U_{\text{iso}} \leq A \cdot (R - R_{\text{crest}})$ and $0 < U_0 - A_0 \cdot r_0(R, \Gamma, U_0, \Omega^*) - U_{\text{iso}} - A \cdot Z -$
968 $U_{\text{crest}} \leq A \cdot (R_{\text{out}} - R_{\text{crest}})$ for the loaded liquid volume U_0 . In addition, the priming pressure
969 $p_{\text{prime}} = p_{\omega} + p_{\rightarrow} - p_{\leftarrow}$ needs to stay positive along the entire, ω -controlled changeover of high-pass
970 ($\Omega < \omega < \Omega^*$) and low-pass ($\Omega^* < \omega < \Omega$) siphon valves between the two equilibrium positions $r_1 =$
971 $r(R, \Gamma, U_0, \Omega)$ to $r_2 = r(R, \Gamma, U_0, \Omega^*)$ of their front meniscus.

972 Manufacturability

973 The choice of the valving technology must also comply with manufacturing restrictions [131, 132] of
974 each scheme availed of during scale-up from prototyping to pilot series production and mass
975 fabrication. While early centrifugal microfluidic platforms were often based on capillary pumping and
976 valving, the local definition of contact angles Θ on all walls including the lid and its stabilization over
977 time under different ambient conditions during storage, transport and deployment at the end user
978 proves to be challenging. This work therefore emphasized valving schemes that would not require a
979 coating step during manufacture.

980 For each manufacturing technique, there are also technical and economical limitations regarding
981 shapes, aspect ratios, geometrical feature sizes, and their tolerances. For instance, minimum (lateral)
982 dimensions of precision milling (of channels) are imposed by practicable tool diameters, in many cases
983 about 200 μm , but rarely smaller than 100 μm ; the tool radius furthermore determines the minimum
984 curvature of (lateral) corners. As milling is a common way to prototype polymer LoD substrates, and
985 also for patterning replication tools, these restrictions apply to positive and negative, i.e., tool-based
986 structures of the original design. Note also that while milling offers a powerful structuring in a wide
987 range of materials, machine times, tooling cost (and wear) and process development of subsequent
988 replication can go rampant when increasing demands on specifications such as surface quality (on
989 floor and side walls), optical finish, wobble, tool wear other deviations from “native” 2.5- to 3-
990 dimensional geometries.


991 Especially for common polymer mass replication schemes like injection molding, a minimum wall
992 thickness δW between all cavities needs to be enforced. For instance, in the CP-DF siphoning valve in
993 Figure 9, amongst the distances to be monitored are $Z > \delta W$ and $L = w_0 - w > \delta W$. Smooth
994 demolding sets upper limits on aspect ratios, and commonly necessitates the inclusion of draft angles,
995 i.e., wall inclinations of the order of 5° to 15°. More complex criteria may need to be accounted for,
996 like an even distribution of the hydrodynamic resistance in the tool to avoid shadowing and
997 inhomogeneous solidification during mold flow for the typically central, (compression-)injection of the
998 hot melt. Such collective mechanisms may induce adverse effects, such as wobble and eccentricity of
999 the disc, ridges to compromise pressure-tight bonding, or optical artifacts possibly interfering with
1000 detection and customer expectation.

1001 In addition to such “design-for-manufacture” (DfM) considerations of each scheme individually, it also
1002 needs to be factored in that the technology along manufacturing scale-up might involve significantly
1003 diverging capabilities in (techno-economically) achievable tolerances or shapes; therefore, the design
1004 restrictions introduced by the least capable scheme will have to be accounted for to assure seamless
1005 scale-up from prototyping to commercial production .

1006 In particular tool making and optimization of mold flow are decisive cost drivers for microfluidic
1007 systems; layouts for new applications, i.e., centrifugally automated assay protocols, should ideally be
1008 derived, as much as possible, from designs that have already been previously validated, while only
1009 varying parameters that are assumed to be less critical on behalf of fluidics, biology and
1010 manufacturing.

1011 A3. Advanced Design

1012 In Figure A1, we fine-structure the original geometry for CP-DF siphoning of Figure 9; each
1013 compartment may have its specific depth, width and height to allow a wider space for multi-parameter
1014 optimization according to the performance metrics (26-35). Note that permanently gas-filled parts of
1015 the compression volume V_C may be moved to “any” location available on the disc as long as it is
1016 connected by a pneumatic conduit to the DF chamber.

1017

Figure A1 Advanced geometry Γ with partitioned inlet reservoir and inbound segments, each having its individual depth, width, height and radial position for optimization of key performance metrics (26-35). Note that any permanently gas filled part of the compression chamber can be randomly shaped and located “anywhere” on the disc (while still pneumatically connected to the liquid Λ).

1022 Further variations might include inclination angles with respect to the radial and azimuthal directions,
1023 rounded shapes, branched structures to prevent blockage of air flow by residual liquid, liquid knives
1024 for accurate metering of dispensed liquid volumes, low-threshold capillary stops for transient pinning
1025 of the meniscus, and draft angles for proper demolding.

1026 References

1027 1. Manz, A., N. Graber, and H.M. Widmer *Miniaturized total chemical analysis*
1028 *systems: A novel concept for chemical sensing*. Sensors and Actuators B:
1029 Chemical, 1990. **1**, 244-248 DOI: 10.1016/0925-4005(90)80209-I.
1030 2. Auroux, P.-A., D. Iossifidis, D.R. Reyes, and A. Manz *Micro Total Analysis Systems*.
1031 *2. Analytical Standard Operations and Applications*. Analytical Chemistry, 2002.
1032 **74**, 2637-2652 DOI: 10.1021/ac020239t.

1033 3. Reyes, D.R., D. Iossifidis, P.-A. Auroux, and A. Manz *Micro Total Analysis Systems.*
1034 *1. Introduction, Theory, and Technology.* Analytical Chemistry, 2002. **74**, 2623-
1035 2636 DOI: 10.1021/ac0202435.

1036 4. Whitesides, G.M. *The origins and the future of microfluidics.* Nature, 2006. **442**,
1037 368-373 DOI: 10.1038/nature05058.

1038 5. Janasek, D., J. Franzke, and A. Manz *Scaling and the design of miniaturized*
1039 *chemical-analysis systems.* Nature, 2006. **442**, 374-380 DOI:
1040 10.1038/nature05059.

1041 6. Moore, G.E. *Cramming more components onto integrated circuits.* Electronics,
1042 1965. **38**, DOI: 10.1109/N-SSC.2006.4785860.

1043 7. Ducrée, J. *Efficient development of integrated Lab-On-A-Chip systems featuring*
1044 *operational robustness and nanufacturability.* Micromachines, 2019. **10**, 12 DOI:
1045 10.3390/mi10120886.

1046 8. Gijs, M.A.M., F. Lacharme, and U. Lehmann *Microfluidic Applications of Magnetic*
1047 *Particles for Biological Analysis and Catalysis.* Chemical Reviews, 2010. **110**,
1048 1518-1563 DOI: 10.1021/cr9001929.

1049 9. Nge, P.N., C.I. Rogers, and A.T. Woolley *Advances in Microfluidic Materials,*
1050 *Functions, Integration, and Applications.* Chemical Reviews, 2013. **113**, 2550-
1051 2583 DOI: 10.1021/cr300337x.

1052 10. Liu, Q., C. Wu, H. Cai, N. Hu, J. Zhou, and P. Wang *Cell-Based Biosensors and Their*
1053 *Application in Biomedicine.* Chemical Reviews, 2014. **114**, 6423-6461 DOI:
1054 10.1021/cr2003129.

1055 11. Mauk, M., J. Song, H.H. Bau, R. Gross, F.D. Bushman, R.G. Collman, and C. Liu
1056 *Miniaturized devices for point of care molecular detection of HIV.* Lab on a Chip,
1057 2017. **17**, 382-394 DOI: 10.1039/c6lc01239f.

1058 12. Yuan, X. and R.D. Oleschuk *Advances in Microchip Liquid Chromatography.*
1059 Analytical Chemistry, 2018. **90**, 283-301 DOI: 10.1021/acs.analchem.7b04329.

1060 13. Olanrewaju, A., M. Beaugrand, M. Yafia, and D. Juncker *Capillary microfluidics in*
1061 *microchannels: from microfluidic networks to capillaric circuits.* Lab on a Chip,
1062 2018. **18**, 2323-2347 DOI: 10.1039/c8lc00458g.

1063 14. Schembri, C.T., V. Ostoich, P.J. Lingane, T.L. Burd, and S.N. Buhl *Portable*
1064 *Simultaneous Multiple Analyte Whole-Blood Analyzer for Point-of-Care Testing.*
1065 Clinical Chemistry, 1992. **38**, 1665-1670 DOI: 10.1093/clinchem/38.9.1665.

1066 15. Schembri, C.T., T.L. Burd, A.R. Kopfsill, L.R. Shea, and B. Braynin *Centrifugation*
1067 *and Capillarity Integrated into a Multiple Analyte Whole-Blood Analyzer.* Journal
1068 of Automatic Chemistry, 1995. **17**, 99-104 DOI: 10.1155/S1463924695000174.

1069 16. *Abaxis (Piccolo Express).* Accessed: 14/06/2021; Available on:
1070 <https://www.abaxis.com/>.

1071 17. Andersson, P., G. Jesson, G. Kylberg, G. Ekstrand, and G. Thorsen *Parallel*
1072 *nanoliter microfluidic analysis system.* Analytical Chemistry, 2007. **79**, 4022-4030
1073 DOI: 10.1021/ac061692y.

1074 18. Inganas, M., H. Derand, A. Eckersten, G. Ekstrand, A.K. Honerud, G. Jesson, G.
1075 Thorsen, T. Soderman, and P. Andersson *Integrated microfluidic compact disc*

1076 device with potential use in both centralized and point-of-care laboratory
1077 settings. Clinical Chemistry, 2005. 51, 1985-7 DOI:
1078 10.1373/clinchem.2005.053181.

1079 19. Gyros Protein Technologies. Accessed: 14/06/2021; Available on:
1080 <https://www.gyrosproteintechnologies.com/>.

1081 20. Madou, M.J. and G.J. Kellogg *The LabCD (TM): A centrifuge-based microfluidic*
1082 *platform for diagnostics*. Systems and Technologies for Clinical Diagnostics and
1083 Drug Discovery, Proceedings Of, 1998. 3259, 80-93 DOI: 10.1117/12.307314.

1084 21. Shea, M. *ADMET Assays on Tecan's LabCD-ADMET System*. Journal of the
1085 Association for Laboratory Automation, 2003. 8, 74-77 DOI: 10.1016/s1535-
1086 5535(04)00260-6.

1087 22. Smith, S., D. Mager, A. Perebikovsky, E. Shamloo, D. Kinahan, R. Mishra, S.M.T.
1088 Delgado, H. Kido, S. Saha, J. Ducrée, M. Madou, K. Land, and J.G. Korvink *CD-*
1089 *Based Microfluidics for Primary Care in Extreme Point-of-Care Settings*.
1090 *Micromachines*, 2016. 7, DOI: 10.3390/mi7020022.

1091 23. Kong, L.X., A. Perebikovsky, J. Moebius, L. Kulinsky, and M. Madou *Lab-on-a-CD: A Fully Integrated Molecular Diagnostic System*. Journal of the Association for
1092 Laboratory Automation, 2016. 21, 323-355 DOI: 10.1177/2211068215588456.

1093 24. Maguire, I., R. O'Kennedy, J. Ducrée, and F. Regan *A review of centrifugal*
1094 *microfluidics in environmental monitoring*. Analytical Methods, 2018. 10, 1497-
1095 1515 DOI: 10.1039/c8ay00361k.

1096 25. Gorkin, R., J. Park, J. Siegrist, M. Amasia, B.S. Lee, J.M. Park, J. Kim, H. Kim, M.
1097 Madou, and Y.K. Cho *Centrifugal microfluidics for biomedical applications*. *Lab*
1098 *on a Chip*, 2010. 10, 1758-1773 DOI: 10.1039/b924109d.

1099 26. Burger, R., L. Amato, and A. Boisen *Detection methods for centrifugal microfluidic*
1100 *platforms*. *Biosensors and Bioelectronics*, 2016. 76, 54-67 DOI:
1101 10.1016/j.bios.2015.06.075.

1102 27. Aeinehvand, M.M., F. Ibrahim, W. Al-Faqheri, K. Joseph, and M.J. Madou *Recent*
1103 *advances in the development of micropumps, microvalves and micromixers and*
1104 *the integration of carbon electrodes on centrifugal microfluidic platforms*.
1105 *International Journal of Nanotechnology*, 2018. 15, 53-68 DOI:
1106 10.1504/IJNT.2018.089559.

1107 28. Sciuto, E.L., S. Petralia, G. Calabrese, and S. Conoci *An integrated biosensor*
1108 *platform for extraction and detection of nucleic acids*. *Biotechnol Bioeng*, 2020.
1109 DOI: 10.1002/bit.27290.

1110 29. Mark, D., S. Haeberle, T. Metz, S. Lutz, J. Ducrée, R. Zengerle, and F. von Stetten
1111 *Aliquoting structure for centrifugal microfluidics based on a new pneumatic*
1112 *valve*. *MEMS 2008: 21st Ieee International Conference on Micro Electro*
1113 *Mechanical Systems, Technical Digest*, 2008. 611-+.

1114 30. Schwemmer, F., T. Hutzenlaub, D. Buselmeier, N. Paust, F. von Stetten, D. Mark,
1115 R. Zengerle, and D. Kosse *Centrifugo-pneumatic multi-liquid aliquoting-parallel*
1116 *aliquoting and combination of multiple liquids in centrifugal microfluidics*. *Lab on*
1117 *a Chip*, 2015. 15, 3250-3258 DOI: 10.1039/c5lc00513b.

1118

1119 31. Keller, M., S. Wadle, N. Paust, L. Dreesen, C. Nuese, O. Strohmeier, R. Zengerle,
1120 and F. von Stetten *Centrifugo-thermopneumatic fluid control for valving and*
1121 *aliquoting applied to multiplex real-time PCR on off-the-shelf centrifugal*
1122 *thermocycler*. RSC Advances, 2015. **5**, 89603-89611 DOI: 10.1039/c5ra16095b.

1123 32. Grumann, M., A. Geipel, L. Rieger, R. Zengerle, and J. Ducrée *Batch-mode*
1124 *mixing on centrifugal microfluidic platforms*. Lab on a Chip, 2005. **5**, 560-5 DOI:
1125 10.1039/b418253g.

1126 33. Ducrée, J., T. Brenner, S. Haeberle, T. Glatzel, and R. Zengerle *Multilamination of*
1127 *flows in planar networks of rotating microchannels*. Microfluidics and
1128 Nanofluidics, 2006. **2**, 78-84 DOI: 10.1007/s10404-005-0056-5.

1129 34. Burger, R., D. Kinahan, H. Cayron, N. Reis, J. Garcia da Fonseca, and J. Ducrée
1130 *Siphon-induced droplet break-off for enhanced mixing on a centrifugal platform*.
1131 Inventions, 2020. **5**, DOI: 10.3390/inventions5010001.

1132 35. Ducrée, J., S. Haeberle, T. Brenner, T. Glatzel, and R. Zengerle *Patterning of flow*
1133 *and mixing in rotating radial microchannels*. Microfluidics and Nanofluidics,
1134 2006. **2**, 97-105 DOI: 10.1007/s10404-005-0049-4.

1135 36. Strohmeier, O., S. Keil, B. Kanat, P. Patel, M. Niedrig, M. Weidmann, F. Hufert, J.
1136 Drexler, R. Zengerle, and F. von Stetten *Automated nucleic acid extraction from*
1137 *whole blood, B. subtilis, E. coli, and Rift Valley fever virus on a centrifugal*
1138 *microfluidic LabDisk*. RSC Advances, 2015. **5**, 32144-32150 DOI:
1139 10.1039/c5ra03399c.

1140 37. Brassard, D., M. Geissler, M. Descarreaux, D. Tremblay, J. Daoud, L. Clime, M.
1141 Mounier, D. Charlebois, and T. Veres *Extraction of nucleic acids from blood: unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes*. Lab on a Chip, 2019. **19**, 1941-1952 DOI: 10.1039/c9lc00276f.

1145 38. Karle, M., J. Miwa, G. Roth, R. Zengerle, and F. von Stetten *A Novel Microfluidic*
1146 *Platform for Continuous DNA Extraction and Purification Using Laminar Flow*
1147 *Magnetophoresis*. IEEE 22nd International Conference on Micro Electro
1148 Mechanical Systems (MEMS 2009), 2009. 276-279 DOI:
1149 10.1109/Memsys.2009.4805372.

1150 39. Kido, H., M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou *A novel, compact*
1151 *disk-like centrifugal microfluidics system for cell lysis and sample*
1152 *homogenization*. Colloids and Surfaces B-Biointerfaces, 2007. **58**, 44-51 DOI:
1153 10.1016/j.colsurfb.2007.03.015.

1154 40. Haeberle, S., T. Brenner, R. Zengerle, and J. Ducrée *Centrifugal extraction of*
1155 *plasma from whole blood on a rotating disk*. Lab on a Chip, 2006. **6**, 776-781 DOI:
1156 10.1039/b604145k.

1157 41. Steigert, J., T. Brenner, M. Grumann, L. Rieger, S. Lutz, R. Zengerle, and J. Ducrée
1158 *Integrated siphon-based metering and sedimentation of whole blood on a*
1159 *hydrophilic lab-on-a-disk*. Biomedical Microdevices, 2007. **9**, 675-679 DOI:
1160 10.1007/s10544-007-9076-0.

1161 42. Kinahan, D.J., S.M. Kearney, N.A. Kilcawley, P.L. Early, M.T. Glynn, and J. Ducrée
1162 *Density-Gradient Mediated Band Extraction of Leukocytes from Whole Blood*
1163 *Using Centrifugo-Pneumatic Siphon Valving on Centrifugal Microfluidic Discs.*
1164 PLOS ONE, 2016. **11**, e0155545 DOI: 10.1371/journal.pone.0155545.

1165 43. Dimov, N., J. Gaughran, D. Mc Auley, D. Boyle, D.J. Kinahan, and J. Ducrée
1166 *Centrifugally Automated Solid-Phase Purification of RNA.* 2014 IEEE 27th
1167 International Conference on Micro Electro Mechanical Systems (MEMS), 2014.
1168 260-263 DOI: 10.1109/MEMSYS.2014.6765625.

1169 44. Gaughran, J., D. Boyle, J. Murphy, R. Kelly, and J. Ducrée *Phase-selective*
1170 *graphene oxide membranes for advanced microfluidic flow control.*
1171 *Microsystems and Nanoengineering,* 2016. **2**, 16008 DOI:
1172 10.1038/micronano.2016.8.

1173 45. Zehnle, S., M. Rombach, R. Zengerle, F. von Stetten, and N. Paust *Network*
1174 *simulation-based optimization of centrifugopneumatic blood plasma separation.*
1175 *Biomicrofluidics,* 2017. **11**, DOI: 10.1063/1.4979044.

1176 46. Haeberle, S., R. Zengerle, and J. Ducrée *Centrifugal generation and manipulation*
1177 *of droplet emulsions.* *Microfluidics and Nanofluidics,* 2007. **3**, 65-75 DOI:
1178 10.1007/s10404-006-0106-7.

1179 47. Schuler, F., F. Schwemmer, M. Trotter, S. Wadle, R. Zengerle, F. von Stetten, and
1180 N. Paust *Centrifugal step emulsification applied for absolute quantification of*
1181 *nucleic acids by digital droplet RPA.* *Lab on a Chip,* 2015. **15**, 2759-2766 DOI:
1182 10.1039/c5lc00291e.

1183 48. Schuler, F., M. Trotter, M. Geltman, F. Schwemmer, S. Wadle, E. Dominguez-
1184 Garrido, M. Lopez, C. Cervera-Acedo, P. Santibanez, F. von Stetten, R. Zengerle,
1185 and N. Paust *Digital droplet PCR on disk.* *Lab on a Chip,* 2016. **16**, 208-216 DOI:
1186 10.1039/c5lc01068c.

1187 49. Ducrée, J., S. Haeberle, S. Lutz, S. Pausch, F. von Stetten, and R. Zengerle *The*
1188 *centrifugal microfluidic Bio-Disk platform.* *Journal of Micromechanics and*
1189 *Microengineering,* 2007. **17**, S103-S115 DOI: 10.1088/0960-1317/17/7/S07.

1190 50. Lutz, S., D. Mark, G. Roth, R. Zengerle, and F. von Stetten *Centrifugal Microfluidic*
1191 *Platforms for Molecular Diagnostics.* *Clinical Chemistry and Laboratory*
1192 *Medicine,* 2011. **49**, S608-S608.

1193 51. Tang, M., G. Wang, S.-K. Kong, and H.-P. Ho *A Review of Biomedical Centrifugal*
1194 *Microfluidic Platforms.* *Micromachines,* 2016. **7**, DOI: 10.3390/mi7020026.

1195 52. Duffy, D.C., H.L. Gillis, J. Lin, N.F. Sheppard, and G.J. Kellogg *Microfabricated*
1196 *Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic*
1197 *Assays.* *Analytical Chemistry,* 1999. **71**, 4669-4678 DOI: 10.1021/ac990682c.

1198 53. Azimi-Boulali, J., M. Madadelahi, M.J. Madou, and S.O. Martinez-Chapa *Droplet*
1199 *and Particle Generation on Centrifugal Microfluidic Platforms: A Review.*
1200 *Micromachines,* 2020. **11**, DOI: 10.3390/mi11060603.

1201 54. Tang, M., G. Wang, S.K. Kong, and H.P. Ho *A Review of Biomedical Centrifugal*
1202 *Microfluidic Platforms.* *Micromachines,* 2016. **7**, DOI: 10.3390/mi7020026.

1203 55. Strohmeier, O., M. Keller, F. Schwemmer, S. Zehnle, D. Mark, F. von Stetten, R.
1204 Zengerle, and N. Paust *Centrifugal microfluidic platforms: Advanced unit*
1205 *operations and applications*. Chemical Society Reviews, 2015. **44**, 6187-229 DOI:
1206 10.1039/c4cs00371c.

1207 56. Kong, L.X., A. Perebikovsky, J. Moebius, L. Kulinsky, and M. Madou *Lab-on-a-CD*.
1208 *Journal of Laboratory Automation*, 2016. **21**, 323-355 DOI:
1209 10.1177/2211068215588456.

1210 57. Aeinehvand, M.M., P. Magaña, M.S. Aeinehvand, O. Aguilar, M.J. Madou, and
1211 S.O. Martinez-Chapa *Ultra-rapid and low-cost fabrication of centrifugal*
1212 *microfluidic platforms with active mechanical valves*. RSC Advances, 2017. **7**,
1213 55400-55407 DOI: 10.1039/c7ra11532f.

1214 58. Aeinehvand, M.M., L. Weber, M. Jiménez, A. Palermo, M. Bauer, F.F. Loeffler, F.
1215 Ibrahim, F. Breitling, J. Korvink, M. Madou, D. Mager, and S.O. Martínez-Chapa
1216 *Elastic reversible valves on centrifugal microfluidic platforms*. Lab on a Chip,
1217 2019. **19**, 1090-1100 DOI: 10.1039/C8LC00849C.

1218 59. Hess, J.F., S. Zehnle, P. Juelg, T. Hutzenlaub, R. Zengerle, and N. Paust *Review on*
1219 *pneumatic operations in centrifugal microfluidics*. Lab on a Chip, 2019. **19**, 3745-
1220 3770 DOI: 10.1039/C9LC00441F.

1221 60. Nguyen, H.V., V.D. Nguyen, H.Q. Nguyen, T.H.T. Chau, E.Y. Lee, and T.S. Seo
1222 *Nucleic acid diagnostics on the total integrated lab-on-a-disc for point-of-care*
1223 *testing*. Biosensors and Bioelectronics, 2019. **141**, 111466 DOI:
1224 10.1016/j.bios.2019.111466.

1225 61. Rombach, M., S. Hin, M. Specht, B. Johannsen, J. Lüddecke, N. Paust, R. Zengerle,
1226 L. Roux, T. Sutcliffe, J.R. Peham, C. Herz, M. Panning, O. Donoso Mantke, and K.
1227 Mitsakakis *RespiDisk: A point-of-care platform for fully automated detection of*
1228 *respiratory tract infection pathogens in clinical samples*. The Analyst, 2020. **145**,
1229 7040-7047 DOI: 10.1039/d0an01226b.

1230 62. Homann, A.R., L. Niebling, S. Zehnle, M. Beutler, L. Delamotte, M.-C. Rothmund,
1231 D. Czurratis, K.-D. Beller, R. Zengerle, H. Hoffmann, and N. Paust *A microfluidic*
1232 *cartridge for fast and accurate diagnosis of Mycobacterium tuberculosis*
1233 *infections on standard laboratory equipment*. Lab on a Chip, 2021. DOI:
1234 10.1039/d1lc00035g.

1235 63. Madadelahi, M., L.F. Acosta-Soto, S. Hosseini, S.O. Martinez-Chapa, and M.J.
1236 Madou *Mathematical modeling and computational analysis of centrifugal*
1237 *microfluidic platforms: A review*. Lab on a Chip, 2020. **20**, 1318-1357 DOI:
1238 10.1039/c9lc00775j.

1239 64. Miyazaki, C.M., E. Carthy, and D.J. Kinahan *Biosensing on the Centrifugal*
1240 *Microfluidic Lab-on-a-Disc Platform*. Processes, 2020. **8**, 1360 DOI:
1241 10.3390/pr8111360.

1242 65. Rombach, M., S. Hin, M. Specht, B. Johannsen, J. Lüddecke, N. Paust, R. Zengerle,
1243 L. Roux, T. Sutcliffe, J.R. Peham, C. Herz, M. Panning, O. Donoso Mantke, and K.
1244 Mitsakakis, *RespiDisk: a point-of-care platform for fully automated detection of*

1245 *respiratory tract infection pathogens in clinical samples*. The Analyst, 2020.
1246 145(21): p. 7040-7047.

1247 66. Brennan, D., H. Coughlan, E. Clancy, N. Dimov, T. Barry, D. Kinahan, J. Ducrée,
1248 T.J. Smith, and P. Galvin *Development of an on-disc isothermal in vitro*
1249 *amplification and detection of bacterial RNA*. Sensors and Actuators, B:
1250 Chemical, 2017. **239**, 235-242 DOI: 10.1016/j.snb.2016.08.018.

1251 67. Delgado, S.M.T., D.J. Kinahan, F.S. Sandoval, L.A.N. Julius, N.A. Kilcawley, J.
1252 Ducrée, and D. Mager *Fully automated chemiluminescence detection using an*
1253 *electrified-Lab-on-a-Disc (eLoaD) platform*. Lab on a Chip, 2016. **16**, 4002-4011
1254 DOI: 10.1039/c6lc00973e.

1255 68. Clime, L., J. Daoud, D. Brassard, L. Malic, M. Geissler, and T. Veres *Active pumping*
1256 *and control of flows in centrifugal microfluidics*. Microfluidics and Nanofluidics,
1257 2019. **23**, DOI: 10.1007/s10404-019-2198-x.

1258 69. Zehnle, S., F. Schwemmer, R. Bergmann, F. von Stetten, R. Zengerle, and N. Paust
1259 *Pneumatic siphon valving and switching in centrifugal microfluidics controlled by*
1260 *rotational frequency or rotational acceleration*. Microfluidics and Nanofluidics,
1261 2015. **19**, 1259-1269 DOI: 10.1007/s10404-015-1634-9.

1262 70. Mishra, R., J. Gaughran, D. Kinahan, and J. Ducrée *Functional Membranes for*
1263 *Enhanced Rotational Flow Control on Centrifugal Microfluidic Platforms*. Reference Module in Materials Science and Materials Engineering, 2017. DOI:
1264 10.1016/b978-0-12-803581-8.04041-8.

1265 71. Kinahan, D.J., P.L. Early, A. Vembadi, E. MacNamara, N.A. Kilcawley, T. Glennon,
1266 D. Diamond, D. Brabazon, and J. Ducrée *Xurography actuated valving for*
1267 *centrifugal flow control*. Lab on a Chip, 2016. **16**, 3454-3459 DOI:
1268 10.1039/c6lc00568c.

1269 72. *SpinX Technologies*. Accessed: 15/06/2021; Available on:
1270 <https://web.archive.org/web/20040414090409/http://www.spinx-technologies.com/>.

1271 73. Abi-Samra, K., R. Hanson, M. Madou, and R.A. Gorkin *Infrared controlled waxes*
1272 *for liquid handling and storage on a CD-microfluidic platform*. Lab on a Chip,
1273 2011. **11**, 723-726 DOI: 10.1039/c0lc00160k.

1274 74. Kong, L.X., K. Parate, K. Abi-Samra, and M. Madou *Multifunctional wax valves for*
1275 *liquid handling and incubation on a microfluidic CD*. Microfluidics and
1276 Nanofluidics, 2015. **18**, 1031-1037 DOI: 10.1007/s10404-014-1492-x.

1277 75. Al-Faqheri, W., F. Ibrahim, T.H.G. Thio, J. Moebius, K. Joseph, H. Arof, and M.
1278 Madou *Vacuum/Compression Valving (VCV) Using Parrafin-Wax on a Centrifugal*
1279 *Microfluidic CD Platform*. PLOS ONE, 2013. **8**, DOI:
1280 10.1371/journal.pone.0058523.

1281 76. García-Cordero, J.L., F. Benito-Lopez, D. Diamond, J. Ducrée, and A.J. Ricco *Low-*
1282 *Cost Microfluidic Single-Use Valves and on-Board Reagent Storage Using Laser-*
1283 *Printer Technology*. IEEE 22nd International Conference on Micro Electro
1284 Mechanical Systems (MEMS 2009), 2009. 439-442 DOI:
1285 10.1109/Memsys.2009.4805413.

1286

1287

1288 77. García-Cordero, J.L., D. Kurzbuch, F. Benito-Lopez, D. Diamond, L.P. Lee, and A.J. Ricco *Optically addressable single-use microfluidic valves by laser printer lithography*. Lab on a Chip, 2010. **10**, 2680-7 DOI: 10.1039/c004980h.

1291 78. Torres Delgado, S.M., D.J. Kinahan, L.A. Nirupa Julius, A. Mallette, D.S. Ardila, R. Mishra, C.M. Miyazaki, J.G. Korvink, J. Ducrée, and D. Mager *Wirelessly powered and remotely controlled valve-array for highly multiplexed analytical assay automation on a centrifugal microfluidic platform*. Biosensors and Bioelectronics, 2018. **109**, 214-223 DOI: 10.1016/j.bios.2018.03.012.

1296 79. Park, J.M., Y.K. Cho, B.S. Lee, J.G. Lee, and C. Ko *Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices*. Lab on a Chip, 2007. **7**, 557-64 DOI: 10.1039/b616112j.

1299 80. Wang, Y., Z. Li, X. Huang, W. Ji, X. Ning, K. Liu, J. Tan, J. Yang, H.-P. Ho, and G. Wang *On-board control of wax valve on active centrifugal microfluidic chip and its application for plasmid DNA extraction*. Microfluidics and Nanofluidics, 2019. **23**, DOI: 10.1007/s10404-019-2278-y.

1303 81. Zainal, M.A., Y.M. Yunos, R.A. Rahim, and M.S. Mohamed Ali *Wireless valving for centrifugal microfluidic disc*. Journal of Microelectromechanical Systems, 2017. **26**, 1327-1334 DOI: 10.1109/JMEMS.2017.2743212.

1306 82. Haeberle, S., N. Schmitt, R. Zengerle, and J. Ducrée *Centrifugo-magnetic pump for gas-to-liquid sampling*. Sensors and Actuators A-Physical, 2007. **135**, 28-33 DOI: 10.1016/j.sna.2006.09.001.

1309 83. Al-Faqheri, W., F. Ibrahim, T.H.G. Thio, M.M. Aeinehvand, H. Arof, and M. Madou *Development of novel passive check valves for the microfluidic CD platform*. Sensors and Actuators A: Physical, 2015. **222**, 245-254 DOI: 10.1016/j.sna.2014.12.018.

1313 84. Chen, Y., M. Shen, Y. Zhu, and Y. Xu *A novel electromagnet-triggered pillar valve and its application in immunoassay on a centrifugal platform*. Lab on a Chip, 2019. **19**, 1728-1735 DOI: 10.1039/c9lc00043g.

1316 85. Mishra, R., R. Alam, D.J. Kinahan, K. Anderson, and J. Ducrée, *Lipophilic-Membrane Based Routing for Centrifugal Automation of Heterogeneous Immunoassays*, in *2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2015)*. 2015: Estoril, Portugal. p. 523-526 DOI: 10.1109/MEMSYS.2015.7051007.

1321 86. Godino, N., R. Gorkin, 3rd, A.V. Linares, R. Burger, and J. Ducrée *Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading*. Lab on a Chip, 2013. **13**, 685-94 DOI: 10.1039/c2lc40722a.

1324 87. Zhao, Y., F. Schwemmer, S. Zehnle, F. von Stetten, R. Zengerle, and N. Paust *Centrifugo-pneumatic sedimentation, re-suspension and transport of microparticles*. Lab on a Chip, 2015. **15**, 4133-4137 DOI: 10.1039/c5lc00508f.

1327 88. Henderson, B.D., D.J. Kinahan, J. Rio, R. Mishra, D. King, S.M. Torres-Delgado, D. Mager, J.G. Korvink, and J. Ducrée *Siphon-Controlled Automation on a Lab-on-a-Disc Using Event-Triggered Dissolvable Film Valves*. Biosensors, 2021. **11**, DOI: 10.3390/1108103.

1331 89. Gorkin, R., 3rd, C.E. Nwankire, J. Gaughran, X. Zhang, G.G. Donohoe, M. Rook, R.
1332 O'Kennedy, and J. Ducrée *Centrifugo-pneumatic valving utilizing dissolvable*
1333 *films*. *Lab on a Chip*, 2012. **12**, 2894-902 DOI: 10.1039/c2lc20973j.

1334 90. Kinahan, D.J., S.M. Kearney, N. Dimov, M.T. Glynn, and J. Ducrée *Event-triggered*
1335 *logical flow control for comprehensive process integration of multi-step assays*
1336 *on centrifugal microfluidic platforms*. *Lab on a Chip*, 2014. **14**, 2249-58 DOI:
1337 10.1039/c4lc00380b.

1338 91. Kinahan, D.J., S.M. Kearney, O.P. Faneuil, M.T. Glynn, N. Dimov, and J. Ducrée
1339 *Paper imbibition for timing of multi-step liquid handling protocols on event-*
1340 *triggered centrifugal microfluidic lab-on-a-disc platforms*. *RSC Advances*, 2015.
1341 **5**, 1818-1826 DOI: 10.1039/c4ra14887h.

1342 92. *Digital Twin*. 2021; Accessed: 25/05/2021; Available on:
1343 https://en.wikipedia.org/wiki/Digital_twin.

1344 93. Marr, B. *What Is Digital Twin Technology - And Why Is It So Important?* 2017
1345 Published: 06/03/2017; Accessed: 25/05/2021; Available on:
1346 <https://www.forbes.com/sites/bernardmarr/2017/03/06/what-is-digital-twin-technology-and-why-is-it-so-important/>.

1348 94. Ducrée, J. *Design optimization of centrifugal microfluidic "Lab-on-a-Disc"*
1349 *systems towards fluidic larger-scale integration*. *Applied Sciences*, 2021. **11**, 5839
1350 DOI: 10.3390/app11135839.

1351 95. Ducrée, J. *Secure air traffic control at the hub of multiplexing on the centrifugo-*
1352 *pneumatic Lab-on-a-Disc platform*. *Micromachines*, 2021. **12**, 700 DOI:
1353 10.3390/mi12060700.

1354 96. Ducrée, J. *Anti-counterfeit technologies for microfluidic "Lab-on-a-Disc" systems*.
1355 2021. DOI: 10.20944/preprints202107.0443.v1.

1356 97. Ducrée, J. *On-board reagent storage and release by solvent-selective,*
1357 *rotationally opened membranes – A digital twin approach*. 2021.

1358 98. Ducrée, J. *Secure air traffic control at the hub of multiplexing on the centrifugo-*
1359 *pneumatic Lab-on-a-Disc platform*. *Micromachines*, 2021. DOI:
1360 10.20944/preprints202104.0612.v1.

1361 99. Ducrée, J., S. Haeberle, S. Lutz, S. Pausch, F.v. Stetten, and R. Zengerle *The*
1362 *centrifugal microfluidic Bio-Disk platform*. *Journal of Micromechanics and*
1363 *Microengineering*, 2007. **17**, S103-S115 DOI: 10.1088/0960-1317/17/7/s07.

1364 100. Brenner, T., T. Glatzel, R. Zengerle, and J. Ducrée *Frequency-dependent*
1365 *transversal flow control in centrifugal microfluidics*. *Lab on a Chip*, 2005. **5**, 146-
1366 50 DOI: 10.1039/b406699e.

1367 101. Ducrée, J., I. Glatzel, T. Brenner, and R. Zengerle, *Coriolis-induced flow control*
1368 *for micro- and nanofluidic lab-on-a-disk technologies*. *Micronano Integration*,
1369 2004: p. 147-153.

1370 102. Martensson, G., M. Skote, M. Malmqvist, M. Falk, A. Asp, N. Svanvik, and A.
1371 Johansson, *Rapid PCR amplification of DNA utilizing Coriolis effects*. *Eur Biophys J*, 2006. **35**(6): p. 453-8.

1373 103. Noroozi, Z., H. Kido, and M.J. Madou *Electrolysis-Induced Pneumatic Pressure for*
1374 *Control of Liquids in a Centrifugal System*. Journal of the Electrochemical Society,
1375 2011. **158**, P130-P135 DOI: 10.1149/2.028111jes.

1376 104. Abi-Samra, K., L. Clime, L. Kong, R. Gorkin, T.H. Kim, Y.K. Cho, and M. Madou
1377 *Thermo-pneumatic pumping in centrifugal microfluidic platforms*. Microfluidics
1378 and Nanofluidics, 2011. **11**, 643-652 DOI: 10.1007/s10404-011-0830-5.

1379 105. Clime, L., D. Brassard, M. Geissler, and T. Veres *Active pneumatic control of*
1380 *centrifugal microfluidic flows for lab-on-a-chip applications*. Lab on a Chip, 2015.
1381 **15**, 2400-2411 DOI: 10.1039/c4lc01490a.

1382 106. Kinahan, D.J., M. Renou, D. Kurzbuch, N.A. Kilcawley, E. Bailey, M.T. Glynn, C.
1383 McDonagh, and J. Ducrée *Baking Powder Actuated Centrifugo-Pneumatic*
1384 *Valving for Automation of Multi-Step Bioassays*. Micromachines, 2016. **7**, DOI:
1385 10.3390/mi7100175.

1386 107. Delgado, S.M.T., D.J. Kinahan, L.A.N. Julius, A. Mallette, D.S. Ardila, R. Mishra,
1387 C.M. Miyazaki, J.G. Korvink, J. Ducrée, and D. Mager *Wirelessly powered and*
1388 *remotely controlled valve-array for highly multiplexed analytical assay*
1389 *automation on a centrifugal microfluidic platform*. Biosensors & Bioelectronics,
1390 2018. **109**, 214-223 DOI: 10.1016/j.bios.2018.03.012.

1391 108. Kim, J., S. Hee Jang, G. Jia, J.V. Zoval, N.A. Da Silva, and M.J. Madou *Cell lysis on*
1392 *a microfluidic CD (compact disc)*. Lab on a Chip, 2004. **4**, 516-22 DOI:
1393 10.1039/b401106f.

1394 109. Burger, R., D. Kirby, M. Glynn, C. Nwankire, M. O'Sullivan, J. Siegrist, D. Kinahan,
1395 G. Aguirre, G. Kijanka, R.A. Gorkin, 3rd, and J. Ducree *Centrifugal microfluidics*
1396 *for cell analysis*. Current Opinion in Chemical Biology, 2012. **16**, 409-14 DOI:
1397 10.1016/j.cbpa.2012.06.002.

1398 110. Smith, S., R. Sewart, H. Becker, P. Roux, and K. Land *Blister pouches for effective*
1399 *reagent storage on microfluidic chips for blood cell counting*. Microfluidics and
1400 Nanofluidics, 2016. **20**, DOI: 10.1007/s10404-016-1830-2.

1401 111. Krauss, S.T., M.S. Woolf, K.C. Hadley, N.M. Collins, A.Q. Nauman, and J.P. Landers
1402 *Centrifugal microfluidic devices using low-volume reagent storage and inward*
1403 *fluid displacement for presumptive drug detection*. Sensors and Actuators B:
1404 Chemical, 2019. **284**, 704-710 DOI: 10.1016/j.snb.2018.12.113.

1405 112. Czurratis, D., Y. Beyl, S. Zinober, F. Larmer, and R. Zengerle *A novel concept for*
1406 *long-term pre-storage and release of liquids for pressure-driven lab-on-a-chip*
1407 *devices*. Journal of Micromechanics and Microengineering, 2015. **25**, DOI:
1408 10.1088/0960-1317/25/4/045002.

1409 113. Pishbin, E., M. Eghbal, M. Navidbakhsh, and M. Zandi *Localized air-mediated*
1410 *heating method for isothermal and rapid thermal processing on lab-on-a-disk*
1411 *platforms*. Sensors and Actuators B: Chemical, 2019. **294**, 270-282 DOI:
1412 10.1016/j.snb.2019.05.039.

1413 114. Amasia, M., M. Cozzens, and M.J. Madou, *Centrifugal microfluidic platform for*
1414 *rapid PCR amplification using integrated thermoelectric heating and ice-valving*.
1415 Sensors and Actuators B: Chemical, 2012. **161**(1): p. 1191-1197.

1416 115. Mishra, R., R. Alam, D. McAuley, T. Bharaj, D. Chung, D.J. Kinahan, C. Nwankire,
1417 K.S. Anderson, and J. Ducrée *Centrifugal automation of highly customisable,*
1418 *bead-based immunoassays using solvent-selective routing*. *Scientific Reports*,
1419 2021.

1420 116. Strohmeier, O., M. Keller, F. Schwemmer, S. Zehnle, D. Mark, F. von Stetten, R.
1421 Zengerle, and N. Paust *Centrifugal microfluidic platforms: advanced unit*
1422 *operations and applications*. *Chemical Society Reviews*, 2015. **44**, 6187-6229
1423 DOI: 10.1039/c4cs00371c.

1424 117. Mark, D., P. Weber, S. Lutz, M. Focke, R. Zengerle, and F. von Stetten *Aliquoting*
1425 *on the centrifugal microfluidic platform based on centrifugo-pneumatic valves*.
1426 *Microfluidics and Nanofluidics*, 2011. **10**, 1279-1288 DOI: 10.1007/s10404-010-
1427 0759-0.

1428 118. Kinahan, D.J., R. Burger, A. Vembadi, N.A. Kilcawley, D. Lawlor, M.T. Glynn, and
1429 J. Ducrée, *Baking-Powder Driven Centripetal Pumping Controlled by Event-*
1430 *Triggering of Functional Liquids*, in *2015 28th IEEE International Conference on*
1431 *Micro Electro Mechanical Systems (MEMS 2015)*. 2015: Estoril, Portugal. p. 504-
1432 507 DOI: 10.1109/MEMSYS.2015.7051002.

1433 119. Schwemmer, F., S. Zehnle, D. Mark, F. von Stetten, R. Zengerle, and N. Paust *A*
1434 *microfluidic timer for timed valving and pumping in centrifugal microfluidics*. *Lab*
1435 *on a Chip*, 2015. **15**, 1545-1553 DOI: 10.1039/C4LC01269K.

1436 120. Nwankire, C.E., D.S. Chan, J. Gaughran, R. Burger, R. Gorkin, 3rd, and J. Ducrée
1437 *Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-*
1438 *film based centrifugo-pneumatic actuation*. *Sensors*, 2013. **13**, 11336-49 DOI:
1439 10.3390/s130911336.

1440 121. Mishra, R., G. Reilly, M. Agnew, A. Garvey, C. Rogers, E. Andrade, H. Ma, S.
1441 Fitzgerald, J. Zapatero, R. O'Kennedy, and J. Ducrée, *Laser-Actuated Centrifugo-*
1442 *Pneumatic Flow Control Towards 'Sample-to-Answer' Integrated Detection of*
1443 *Multi-Marker Panels at the Point-of-Care*, in *2018 IEEE Micro Electro Mechanical*
1444 *Systems (MEMS)*. 2018: Belfast, Northern Ireland. p. 1185-1188 DOI:
1445 10.1109/MEMSYS.2018.8346774.

1446 122. Godino, N., E. Comaskey, R. Gorkin, and J. Ducrée, *Centrifugally Enhanced Paper*
1447 *Microfluidics*, in *2012 IEEE 25th International Conference on Micro Electro*
1448 *Mechanical Systems (MEMS)*. 2012: Paris, France DOI:
1449 10.1109/MEMSYS.2012.6170352.

1450 123. Soroori, S., L. Kulinsky, H. Kido, and M. Madou *Design and implementation of*
1451 *fluidic micro-pulleys for flow control on centrifugal microfluidic platforms*.
1452 *Microfluidics and Nanofluidics*, 2014. **16**, 1117-1129 DOI: 10.1007/s10404-013-
1453 1277-7.

1454 124. van Heeren, H. *Standards for connecting microfluidic devices?* *Lab on a Chip*,
1455 2012. **12**, 1022-1025 DOI: 10.1039/C2LC20937C.

1456 125. Stavis, S.M. *A glowing future for lab on a chip testing standards*. *Lab on a Chip*,
1457 2012. **12**, 3008-11 DOI: 10.1039/c2lc40511c.

1458 126. Reyes, D.R., H.v. Heeren, S. Guha, L.H. Herbertson, A.P. Tzannis, J. Ducrée, H.
1459 Bissig, and H. Becker *Accelerating Innovation and Commercialization Through*
1460 *Standardization of Microfluidic-Based Medical Devices*. *Lab on a Chip*, 2021. **21**,
1461 9-21 DOI: 10.1039/DOLC00963F.

1462 127. Ducrée, J., M. Gravitt, R. Walshe, S. Bartling, M. Etzrodt, and T. Harrington *Open*
1463 *Platform Concept for Blockchain-Enabled Crowdsourcing of Technology*
1464 *Development and Supply Chains*. *Frontiers in Blockchain*, 2020. **3**, 386525 DOI:
1465 10.3389/fbloc.2020.586525.

1466 128. Ducrée, J., M. Etzrodt, B. Gordijn, M. Gravitt, S. Bartling, R. Walshe, and T.
1467 Harrington *Blockchain for Organising Effective Grass-Roots Actions on a Global*
1468 *Commons: Saving The Planet*. *Frontiers in Blockchain*, 2020. **3**, 33 DOI:
1469 10.3389/fbloc.2020.00033.

1470 129. Ducrée, J., M. Etzrodt, S. Bartling, R. Walshe, T. Harrington, N. Wittek, S. Posth,
1471 K.W.A. Ionita, W. Prinz, D. Kogias, T. Paixão, I. Peterfi, and J. Lawton *Unchaining*
1472 *collective intelligence for science, research and technology development by*
1473 *blockchain-boosted community participation*. *Frontiers in Blockchain*, 2021. DOI:
1474 10.3389/fbloc.2021.631648.

1475 130. Ducrée, J. *Research - A blockchain of knowledge?* *Blockchain - Research and*
1476 *Applications*, 2020. **1**, 100005 DOI: 10.1016/j.bcra.2020.100005.

1477 131. Ducrée, J. *Efficient Development of Integrated Lab-On-A-Chip Systems Featuring*
1478 *Operational Robustness and Manufacturability*. *Micromachines*, 2019. **10**, DOI:
1479 10.3390/mi10120886.

1480 132. Mohammed, M.I., S. Haswell, and I. Gibson *Lab-on-a-chip or Chip-in-a-lab:*
1481 *Challenges of Commercialization Lost in Translation*. *Procedia Technology*, 2015.
1482 **20**, 54-59 DOI: 10.1016/j.protcy.2015.07.010.

1483