
Technical Note 

Vibration Analysis of Axially Functionally Graded Non-Prismatic Euler−Bernoulli 

Beams Using the Finite Difference Method 

 

      Valentin Fogang 

Civil Engineer, C/o BUNS Sarl, P.O Box 1130, Yaounde, Cameroon; valentin.fogang@bunscameroun.com 

    ORCID iD  https://orcid.org/0000-0003-1256-9862 

 

Abstract: This paper presents an approach to the vibration analysis of axially functionally graded (AFG) non-prismatic 

Euler−Bernoulli beams using the finite difference method (FDM). The characteristics (cross-sectional area, moment of 

inertia, elastic moduli, and mass density) of AFG beams vary along the longitudinal axis. The FDM is an approximate 

method for solving problems described with differential or partial differential equations. It does not involve solving 

differential equations; equations are formulated with values at selected points of the structure. The model developed in 

this paper consists of formulating differential or partial differential equations with finite differences and introducing new 

points (additional or imaginary points) at boundaries and positions of discontinuity (concentrated loads or moments, 

supports, hinges, springs, and brutal change of stiffness). The introduction of additional points allows satisfying 

boundary and continuity conditions. Vibration analysis of AFG non-prismatic Euler−Bernoulli beams was conducted 

with this model, and natural frequencies were determined. Finally, the direct time integration method (DTIM) was 

presented. The FDM-based DTIM enabled the analysis of forced vibration of AFG non-prismatic Euler−Bernoulli 

beams, considering the damping. The efforts and displacements could be determined at any time.  

 

Keywords: Axially functionally graded non-prismatic Euler−Bernoulli beam; finite difference method; additional 

points; vibration analysis; direct time integration method  

 

1. Introduction 

This paper describes the application of Fogang’s model [1] based on the finite difference method (FDM), used for the 

homogeneous Euler−Bernoulli beam, to the vibration analysis of axially functionally graded (AFG) non-prismatic 

Euler−Bernoulli beam. Various studies have focused on the vibration analysis of AFG Euler−Bernoulli beams. Chen [2] 

investigated the bending behavior of a non-uniform AFG Euler−Bernoulli beam based on the Chebyshev collocation 

method; the Chebyshev differentiation matrices were used to reduce the ordinary differential equations into a set of 

algebraic equations to form the eigenvalue problem associated with the free vibration.  Soltani et al. [3] applied the 

FDM to evaluate natural frequencies of non-prismatic beams with different boundary conditions and resting on variable 

one- or two-parameter elastic foundations. Torabi et al. [4] presented an exact closed-form solution for free vibration 

analysis of Euler−Bernoulli conical and tapered beams carrying any desired number of attached masses; the 
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concentrated masses were modeled by Dirac’s delta functions. Liu et al. [5] developed a model for the free transverse 

vibration of AFG tapered Euler−Bernoulli beam through the spline finite point method; the beam was discretized with a 

set of uniformly scattered spline nodes along the beam axis, and the displacement field was approximated by the 

particularly constructed cubic B-spline interpolation functions. Kukla et al. [6] proposed an approach to free vibration 

analysis of functionally graded beams by approximating the beam by an equivalent beam with piece-wise exponentially 

varying material and geometrical properties. Cao et al. [7] studied the free vibration of AFG beam using analytical 

method based on the asymptotic perturbation method and Meijer-Function, respectively. 

Classical analysis of the Euler−Bernoulli beam involves solving the governing equations (i.e., statics, dynamics, and 

material) that are expressed via means of differential equations, considering boundary and continuity conditions. 

However, solving differential equations may be difficult in the presence of an axial force (or external distributed axial 

forces), an elastic Winkler foundation, a Pasternak foundation, non-prismatic cross section, non-homogeneous material, 

or damping (by vibration analysis). In traditional analysis using the FDM, points outside the beam are not considered. 

The boundary conditions are applied at the beam’s ends, not the governing equations. The non-application of governing 

equations at the beam’s ends leads to inaccurate results, making the FDM less useful compared with other numerical 

methods, such as the finite element method. This paper presented a model based on the FDM. This model consisted of 

formulating differential equations (statics, dynamics, and material relation) with finite differences and introducing new 

points (additional or imaginary points) at boundaries and at positions of discontinuity (concentrated loads or moments, 

supports, hinges, springs, and brutal change of stiffness). The introduction of additional points allowed us to satisfy 

boundary and continuity conditions. Vibration analysis of structures was conducted using the model. 

 

2. Materials and methods 

2.1 Free vibration analysis  

2.1.1 Governing equations of the free vibration   

The focus here is to determine the eigenfrequencies of the beam. A second-order analysis is conducted; and the first-order 

analysis can easily be deduced. The sign convention adopted for loads, bending moments, transverse forces, and 

displacements is illustrated in Figure 1. 

 

Figure 1.  Sign convention for loads, bending moments, transverse forces, and displacements. 
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Specifically, M(x) is the bending moment in the section, T(x) is the transverse force, N(x) is the axial force (positive in 

tension), w(x) is the deflection, and q(x) is the distributed load in the positive downward direction.  

Assuming a harmonic vibration, the equations of dynamic equilibrium on an infinitesimal beam element are as follows: 

                  (1a)                                                                                                                                                              

                 (1b)                                                                                                                                                              

 

where (x) is the beam’s mass per unit volume, A(x) is the cross-sectional area, k(x) is the stiffness of the elastic 

Winkler foundation, and  is the circular frequency of the beam. The transverse force T(x) is related to the shear force 

V(x), as follows: 

                          .       (2)   

Let us consider an external distributed axial load n(x) positive along the + x axis  

                                                                                                   .                                                                                 (3)   

Substituting Equations (2) and (3) into Equations (1a-b) yields 

                 (4a) 

       .             (4b) 

The bending moment, the rotation of the cross section (x) (positive in clockwise), and the deflection are related together as 

follows:                                                                                                                                                                                                                                            

 

where at a position x, E(x) and I(x) denote the elastic modulus and the moment of inertia, respectively. Combining Equations 

(4a-b) and (5a-b) yields 
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Substituting Equation (6b) into (6a) yields 

           . 

 

After some manipulations, Equation (7) yields 

 

 

 

                                                                                              . 

 

Hence, an M−W FDM approximation (Equations (6a-b)) and a W FDM approximation (Equation (8)) can be considered.  

2.1.2   Fundamentals of the FDM 

Let us consider a segment k of the beam having equidistant grid points with spacing hk.  

Equations (6a-b) have a second-order derivative; consequently, the deflection and bending moment curves w(x) and M(x), 

respectively, are approximated around the point of interest i as second-degree polynomials. 

Thus, a three-point stencil is used to write finite difference approximations to derivatives at grid points. The derivatives 

(S(x) representing w(x) or (x)) at i are expressed with deflection values at points i-1, i, and i+1.  

 

                                                                (9a)                                                                                (9b) 

Equation (8) has a fourth-order derivative, and the deflection curve is consequently approximated around the point of 

interest i as a fourth-degree polynomial. Thus, a five-point stencil is used to write finite difference approximations to 

derivatives at grid points. The derivatives at i are expressed with deflection values at points i-2, i-1, i, i+1, and i+2.  
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2.1.3   FDM Formulation of equations and efforts 

2.1.3.1   W FDM approximation 

Since the characteristics of the beam vary throughout the longitudinal axis, reference values are defined. The reference 

values of the beam’s mass per unit volume, the cross-sectional area, the moment of inertia, and the elastic modulus are 

denoted by r, Ar, Ir, and Er, respectively. At a position x the beam’s mass per unit volume, the cross-sectional area, 

the moment of inertia, the elastic modulus, and the shear modulus are related to the reference values as follows:  

 

     (11a)                           (11c)                                                                                                                                           

     (11b)                               (11d)     

                                                                                                                                  

   The reference length is denoted by lr. We set 

 

The parameters EI(x) and EI(x) are related to the first and second derivative of E(x)I(x) with respect to x, 

respectively, as follows: 

                                                                                         

 

The vibration frequency  is defined as follows:  

 

           (14) 

Substituting Equations (10a-d), (11a-d), (12a-b), (13a-b), and (14) into Equation (8) yields the FDM formulation of the 

governing equation as follows:  
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The bending moment, the shear force, and the rotation of the cross section are calculated using Equations (6b), (10c), 

(11a), (11d), and (12b), Equations (4b), (6b), (10b-c), (11a), (11d), (12b), and (13a), and Equations (5b), (10d), and 

(12b) as follows:        

 

                  (16a)                                                                                                                                                                   

                  (16b)                                                                                                                                                                   

     (16c)  

Combining Equations (2), (10d), (12b), and (16b) yields the transverse force as follows:                                                                                                                                                            

                  (17)   

For the special case of a beam without an axial force or a Winkler foundation, Equation (15) becomes 

                  (18) 

   

 

2.1.3.2   M−W FDM approximation 

Substituting Equations (9a-b), (11a-d), (12a-b), and (14) into Equations (6a-b) yields the FDM formulation of the 

governing equations as follows:        
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The shear force and the rotation of the cross section are calculated using Equations (4b) and (9b), and Equations (5b), 

(9b), and (12b), respectively, as follows: 

 

 

 

Combining Equations (2), (9b), and (20a) yields the transverse force as follows:                                                                                                                                                            

                                           (21)   

2.1.3   Analysis at beam’s ends and at positions of discontinuity 

Positions of discontinuity are positions of concentrated mass, spring−mass system, supports, hinges, springs, abrupt 

change in cross section, positions where E(x)I(x) is not differentiable, and change in grid spacing.  

The model used in this paper (developed in Fogang [1]) consists of realizing an opening of the beam at the position of 

discontinuity and introducing additional points in the opening and at beam’s ends. Thus, governing equations are 

applied at the beam’s ends, as well as boundary conditions.  

In case of the W FDM approximation, imaginary points (ia, ib, ic, and id) are introduced in the opening, and at beam’s 

ends (-1, 0, n+2, and n+3), as represented in Figure 2.  In case of the M−W FDM approximation, imaginary points (ia 

and id) are introduced in the opening, and at beam’s ends (0 and n+2), as represented in Figure 2.   

 

  

Figure 2.   Introduction of imaginary points at beam’s ends and in the opening at the left side (a) and right side (b). 

Thus, Equation (15) and Equations (19a-b) for W FDM and M−W FDM approximations, respectively, are applied at any 

point on the grid (1, 2,…i-1, il, ir, i+1…n+1 of Figure 2). The continuity equations express the continuity of the deflection 

and rotation of the cross section, and the equilibrium of bending moments and transverse forces. The continuity equations 

for deflections, rotations of cross sections, and bending moments, respectively, are defined as follows: 
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                                                                                                                                                                                    (22a)                                                                                                                            

                                                                                                                                                                                    (22b)  

                                                                                                                                                                                    (22c) 

An adjustment of the continuity equations is made e.g. in the case of a hinge (no continuity of the rotation of the cross 

section; Mil = Mir = 0), a support (Wil = Wir = 0, no balance of transverse forces), or a spring.  

In case of W FDM approximation, the bending moment and the rotation of the cross section are calculated using 

Equations (16a) and (16c), respectively, and in case of M−W FDM approximation the rotation of the cross section is 

calculated using Equation (20b). The balance of transverse forces depends on the case of discontinuity. The transverse 

forces Til and Tir in Equations (23), (25), and (27a) are calculated using Equations (17) and (21) for W FDM and M−W 

FDM approximations, respectively.  

 

 Effect of a concentrated force Pi:   The balance of vertical forces yields 

              (23) 

Effect of a concentrated mass:   The dynamic behavior of a beam carrying a concentrated mass Mp was 

analyzed. We set 

                                                                                                                                                                           (24)  

Applying Equations (12b), (14), and (24), the balance of vertical forces yields 

  

                                                                                                                                                                      (25)                                                                                                                     

Effect of a spring−mass system:  The dynamic behavior of a beam carrying a spring−mass system was analyzed. 

The deflection of the mass is denoted by wiM. The spring stiffness Kp is defined as follows: 

 

              (26) 

  

Applying Equations (12b), (14), (24), and (26), the balance of vertical forces yields 
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2.2 Direct time integration method  

The direct time integration method used here (developed in Fogang [1]) describes the dynamic response of a beam as a 

multi-degree-of-freedom system. Viscosity  and external loading p(x,t) are considered. The W FDM approximation is 

developed in this study; however the M−W FDM approximation can also be considered using appropriate formulas. The 

equations of dynamic equilibrium on an infinitesimal beam element are as follows: 

 

 

 

 

 

The derivatives with respect to x are formulated using Equations (10a-d), while those with respect to t (time increment is 

t) are formulated considering a three-point stencil with Equations (29a-c):  

                                                                                                                                        

                                                                                                                                                                                      (29a)                                                                                                                                                                                                                                        

At initial time t = 0, a three-point forward difference approximation is applied: 

                                                                                                                                                                                    (29b)                                                                                                                                                                                                                                        

 

At final time t = T, a three-point backward difference approximation is applied:                                                                                                                                                                                                                                                                                                                                                                                                                                       

                                                                                                                                                                                   (29c) 

 

The governing equation (Equation (28)) can be formulated with the FDM for x = i at time t. The FDM formulation of 

this equation is applied at any point of the beam at any time t using a seven-point stencil. Additional points are 

introduced to satisfy the boundary and continuity conditions. The boundary conditions are satisfied using a five-point 

stencil. Thus, beam deflection w*(x,t) can be determined with the Cartesian model represented in Figure 3. The bending 

moment M*(x,t) and transverse force T*(x,t) are calculated using Equations (16a) and (17), respectively.   
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Figure 3. Model for the calculation of time-dependent vibration of axially functionally graded beams. 

 

 

3 Results and discussion 

3.1 Free vibration analysis of AFG tapered Euler−Bernoulli beams  

We determined the vibration frequencies (coefficients ) of AFG non-prismatic Euler−Bernoulli beams. Fixed−free, 

pinned− pinned, and fixed−fixed beams were considered. The geometric and material properties of the beams were 

represented as follows:   

 

               , 

                  (30)                                                                

 

                              , 

 

where Cb and Ch denote the width and height taper ratios, respectively, and E0, I0, 0, and A0 denote the elastic 

modulus, the moment of inertia, the beam’s mass per unit volume, and the cross-sectional area, respectively, at x = 0.  

FDM Analysis was conducted with n = 9, 17, 33, and 49 grid points for different values of taper ratios and support 

conditions. Detailed results are listed in Appendix A and in the Supplementary Materials “Vibration analysis of AFG 

tapered Euler−Bernoulli beams W FDM approximation” and “Vibration analysis of AFG tapered Euler−Bernoulli 

beams M−W FDM approximation.”  The results of this study and those obtained by Chen [2] using the Chebyshev 

Collocation Method are presented in Table 1.   
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Table 1. Coefficients  of natural frequencies (first mode) of AFG Euler−Bernoulli beams: Chen [2], and FDM (W 

FDM and M−W FDM approximations). 

 

Cb/Ch 
Chen [2] 

 

FDM 

9-pt grid 

 

FDM 

17-pt grid 

 

FDM 

33-pt grid 

FDM 

49-pt grid 

  W M−W  W M−W  W M−W  W M−W  

Fixed−free beam 

0.0/0.0 2.4256 2.4237 2.3754 2.4250 2.4128 2.4254 2.4223 2.4255 2.4241 

0.4/0.2 2.9336 2.8581 2.8946 2.9141 2.9237 2.9287 

 

2.9311 2.9314 

 

2.9325 

0.2/0.4 2.7987 2.67272 2.7649 2.7658 2.7902 2.7904 

 

2.7966 2.7950 

 

2.7978 

0.6/0.8 3.9232 3.3814 3.9416 3.7598 3.9278 3.8803 

 

3.9244 3.9040 

 

3.9237 

Pinned−pinned beam  

0.0/0.0 9.0286 

 

8.9246 

 

8.9147 9.0024 

 

8.9999 9.0220 

 

9.0214 9.0256 

 

9.0254 

0.4/0.2 8.1498 

 

8.0858 

 

8.0449 8.1339 

 

8.1234 8.1458 

 

8.1432 8.1480 

 

8.1469 

0.2/0.4 7.1455 7.0821 7.0526 7.1294 7.1221 7.1415 

 

7.1397 7.1437 

 

7.1429 

0.6/0.8 4.4263 

 

4.0988 

 

4.3874 4.6027 

 

4.4136 4.4234 

 

4.4229 4.4243 

 

4.4247 

    Fixed−fixed 

beam 

     

0.0/0.0 20.4721 

 

20.1752 

 

19.2218 20.3980 

 

20.1402 20.4550 

 

20.3878 20.4638 

 

20.4345 

0.4/0.2 18.1286 

 

17.9344 

 

16.9614 18.0798 

 

17.8178 18.1163 

 

18.0495 18.1231 

 

18.0933 

0.2/0.4 15.8497 15.6817 14.7663 15.8031 15.5586 15.8377 

 

15.7755 15.8444 

 

15.8166 

0.6/0.8 10.5143 

 

7.1533 

 

9.4032 12.4511 

 

10.1105 10.4699 

 

10.4002 10.4895 

 

10.4623 

 

The results of this study are in good agreement with those of Chen [2]. 

 

 

4 Conclusion 

The FDM-based model developed in this paper enables, with relative easiness, vibration analysis of axially functionally 

graded non-prismatic Euler−Bernoulli beams. The results show that the calculations, as described in this paper, yield 

accurate results.  

The following aspects were not addressed in this study but could be analyzed with the model in the future: 

✓ Axially functionally graded Euler−Bernoulli beams resting on Pasternak foundations 

✓ Elastically connected multiple-beam system 
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Supplementary Materials: The following files were uploaded during submission:  

•  “Vibration analysis of AFG tapered Euler−Bernoulli beams W FDM approximation” 

• “Vibration analysis of AFG tapered Euler−Bernoulli beams M−W FDM approximation” 
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Appendix A: Vibration analysis of AFG tapered Euler−Bernoulli beams     

Applying Equations (11a-d), (12a), and (13a-b), the parameters I(x), A(x), (x), E(x), 
EI(x), and 

EI(x) are 

calculated as follows: 
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