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Abstract: Drilling of wells for oil and gas production is a highly complex and expensive part of 

reservoir development. Thus, together with injury prevention, there is a goal to save cost expendi-

tures on downtime and repair of drilling equipment. Nowadays companies have begun to look for 

ways to improve the efficiency of drilling and minimize non-production time with the help of new 

technologies. To support decisions in a narrow time frame, it is valuable to have an early warning 

system. Such a decision support system will help an engineer to intervene in the drilling process 

and prevent high expenses of unproductive time and equipment repair due to a problem. This work 

is describing a comparison of machine learning algorithms for anomaly detection during well drill-

ing. Tested models classify drilling problems based on historical data from previously drilled wells. 

To validate anomaly detection algorithms, we use historical logs of drilling problems for 67 wells at 

a large brownfield in Siberia, Russia. Wells with problems were selected and analyzed. It should be 

noted that out of the 67 wells, 20 wells were drilled without expenses for unproductive time. Expe-

riential results illustrated that a model based on gradient boosting can classify the complications in 

the drilling process best of all. 

Keywords: machine learning; drilling problems; artificial intelligence; risk factors evaluation; gra-

dient boosting 

 

1. Introduction 

Today, the use of machine learning (ML) capabilities in the oil and gas industry is 

becoming a central topic in various research centers and universities in the modern world. 

ML algorithms can provide practical solutions for analyzing and leveraging big historical 

data. ML technology has long been successfully used in computer science, engineering, 

mathematics, physics and astronomy, neuroscience, and medicine [1-10]. 

However, for the oil and gas industry, the use of such technologies has significantly 

increased in recent years [11-18]. An important task of the development of the oil and gas 

industry in the coming years is to increase the efficiency of producing oil and gas and 

drilling of a well and the main impetus to the introduction of methods of ML was the fall 

in oil prices. Oil and gas companies have concentrated on resource efficiency, optimizing 

their production processes [19-30]. 

This challenge should be solved at the expense of the all-around development of fun-

damental and applied research and the rapid introduction of the results obtained. In drill-

ing, one of the main issues in improving the quality of well construction is a reduction in 

the number and severity of problems, which is closely related to the use of modern com-

puter-mathematical methods and computer technology. 
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It is worth noting that the use of high-performance data analysis software is not a 

novelty for the oil industry. Since the 1990s, technologies for the collection and analysis of 

well data have been widely used. However, large capital expenditures on the implemen-

tation of these tools scared off many companies since their implementation could not be 

financially justified. 

Currently one of the main challenges facing the oil and gas industry is to improve 

the efficiency of well drilling. 

The requirements of the practice of drilling deep oil and gas wells require a wide 

range of requirements for the theory of machine learning. In this case, the theory should 

be defined as a normal process at the time of origin, and during development, considering 

any problem as an integral part of the drilling processes. It is desirable that a theoretical 

description of drilling problems (DP) allows judging them not only at a qualitative level, 

but also quantify the interrelation of their essential variables. Several years ago, these tasks 

seemed laborious. 

At the moment the existing works, which were aimed at improving the drilling pro-

cess using methods of artificial intelligence (AI). 

Zhan and others [31] in their work used a nonparametric system of fuzzy inferences 

to predict the state of the rotary steerable system (RSS) by forecasting the state of the RSS 

is in real time based on the operating mode and drilling parameters. This method is allows 

reducing the cost of repair and maintenance of the drilling equipment. 

Wang [32] presented an approach that uses multilayer neural network modeling to 

predict nonlinear optimization of DP. The proposed model can not only predict the pump 

pressure, as the desired parameter but also can ensure the impact of each input parameter 

in this model. 

The mechanism of damage to drilling equipment is usually accompanied by several 

successive incidents that contribute to the loss of efficiency. Consequently, recognition, 

classification, elimination of breakdowns, and calculation of the remaining useful life are 

impossible without constant monitoring of the health of the system. So Camci and others 

[33] with the help of the hidden Markov model created a model capable of monitoring the 

current state of the mechanism, through signals sent by sensors. In particular, this model 

has shown excellent results for diagnosing the condition of drill bits. 

At present, methods of programming neural networks for solving problems in vari-

ous fields have been widely used. An artificial neural network is an interconnected group 

of nodes, similar to our brain system [34]. For example, Lind and Kabirova [35] used the 

neural programming method to predict possible problems that may arise when drilling 

wells, based on information about the oil field reserves. The results obtained showed the 

effectiveness of the neural network application for solving this problem. 

The Bayesian neural network was used in work by Al-yami and Schubert [36]. The 

method used allowed to create a system for making expert decisions in drilling. This 

method can be used to train young engineers. The system can also provide advice during 

all stages of well construction. It can be a well completion, monitoring of drilling and ce-

menting of wells, selection of drilling fluids, etc. 

One of the most important parameters in the drilling process, the rate of penetration 

(ROP) is getting a lot of attention. Dedicated to many works aimed at predicting the rate 

of penetration, as this parameter affects the optimization of many processes during drill-

ing, Jahanbakhshi and others used a neural network to predict ROP [37]. Type of rock, 

mechanical properties of the formation, hydraulics, type of bit and its features and rotor 

speed were chosen as input parameters. Monazami and others [38] in their article also 

used a neural network to estimate ROP. The authors consider this method as the most 

useful tool in forecasting in comparison with the currently available procedures. The 

model allows the drilling crew to assess the ROP not only at the planning stage but also 

during drilling. The results of this work have shown that neural programming for the 

quality of ROP prediction is superior to conventional methods. Amer and others [39] used 

the method of back propagation to predict the ROP, which showed its success in their 

work. 
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Gidh and others [40] also used an artificial neural network to develop a program to 

optimize drilling parameters. The result of this work was a model capable of choosing the 

optimal ROP and weight on bit to extend the life of the bit. This model selects the neces-

sary drilling parameters based on the expected characteristics of the rock in which the 

drilling will take place. Further, all parameters were adjusted for the relevant conditions. 

In another publication, the ROP, together with the specific mechanical energy of Ra-

shidi and others [41], were used to calculate the bit wear in real time. Between the specific 

mechanical energy and the weight on bit, a linear relationship was obtained. Based on the 

analysis of a vast number of experiments, the authors believe that this model can become 

a valuable tool in the analysis of bit wear in real time. 

Valisevich and others [42], using an artificial neural network, created a model opti-

mizing the development of bits in real time. All this led to an increase in drilling speed, a 

decrease in bit wear during drilling. 

Another application of the neural network was found by Dashevskiy and others [43]. 

This work allowed to simulate a nonlinear drilling system with the minimal error share 

by monitoring its dynamic behavior. The authors achieved the primary aim of the work – 

the use of neural networks for the intelligent control of drilling in dynamics. 

GirirajKumar and others [44], for the improvement of drilling, suggest using the op-

timally tuned proportional-integral-differential (PID) controller employed in the high-

performance drilling systems. The primary aim of the work was to obtain a stable, reliable 

and controlled system by tuning the PID controller, using the optimization algorithm for 

swarm intelligence. The results of the work showed that tuning the PID controller using 

RI (swarm intelligence) gives a smaller overshoot. 

Using neural network, Lind and others created an algorithm for predicting the loss 

of drilling fluids [45]. This system allows you to receive a recommendation for the selec-

tion of drilling fluids. 

Static training methods for predicting torque and friction in real time were applied 

by Hegde and others [46]. They considered algorithms such as regression, random forest, 

and the support vector method. These methods can be used to predict DP and take appro-

priate measures to eliminate them. For example, an unexpected change in the value of 

torque may be a sign of a complication. 

Another common complication – the instability of the walls of the well with the help 

of a neural network was predicted by Okpo and others [47]. The program developed by 

the authors was used to predict the geomechanical parameters of the formation. The 

model was developed in a Neuroph Studio, and the platform of the neural network was 

Java and Netbeans IDE. The main advantage of the model is its simplicity and open-source 

code. 

Unrau and others [48], using the ML method, improved the existing alarm system on 

the drilling rig. The standard alarm systems used for drilling can register too many false 

alarms that significantly affect the drilling process. The ML algorithm proposed by the 

authors can be used to reduce false alarms while maintaining the efficiency of the alarm 

system. The model successfully detects kicks and loss. 

As noted above, the integration of AI methods in a drilling process has great practical 

importance. 

A DP is a violation of the continuity of the technological process of the construction 

of a well, requiring for its liquidation the carrying out of special works not planned in the 

project. In the process of drilling of oil and gas wells due to the phenomena of geological 

nature, there are from time-to-time problems in the technological process. This could be 

loss of drilling mud and fluid, kick, stuck drill and casing columns [49]. 

The drilling crew constantly faces a lot of difficult situations, the exits from which 

can be very expensive, and even impossible. A drill string may be stuck, by pressing 

against the wall of the well during a draw-down or getting stuck as a result of key seating. 

To eliminate these problems, additional efforts will be required to free the drill string. 

Sometimes these efforts can fail. Then, drilling a side track is required [50]. 
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Making a decision to eliminate these problems is a complex process. The damage 

from complications consists of the time spent for the elimination of DP, costs for materials 

and energy. To minimize the risks of drilling problems, work is being carried out to min-

imize vibrations of the bottom of the drilling assembly [51]; a mathematical model of the 

(screw downhole motors (SDM) - drilling string (DS) system is being developed, which 

allows predicting the range of DS self-oscillations and boundaries of rotational and trans-

lational wave disturbances for case of string modeling as a heterogeneous rod at drilling 

directionally straight sections of a well [52]. Thus, preventing problems and accordingly 

minimizing the risks of their occurrence is an actual problem today. 

The aim of this work is to finding a learning algorithm to recognize and classify DP 

while drilling wells. Of the eight methods of ML, gradient boosting (GB) was chosen. This 

algorithm showed high performance precision, recall and F-score, see below. This learn-

ing algorithm, based on historical data from previously drilled wells, classifies the DP best 

of all. Such a decision support system will help the engineer to intervene in the drilling 

process and prevent high expenses due to unproductive time and equipment repair. Also, 

worth noting is another significant plus. An algorithm in addition to the classification of 

DP accurately determines the standard drilling mode. This minimizes the possibility of 

triggering false alarms, which will also save the drilling time. False alarms are also one of 

the problems when drilling wells, which takes up a significant amount of time and money. 

2. Materials and Methods 

In order to create a program that classifies the problems in the drilling process, the 

main methods of ML with which the calculation will be performed have been considered. 

These methods have shown successful applicability for solving problems in various in-

dustries. 

Logistic regression 

The method of logistic regression is based on fairly strong probabilistic assumptions, 

which have several interesting consequences. First, the linear classification algorithm 

turns out to be the optimal Bayesian classifier. Secondly, the form of the activation func-

tion (it is the sigmoid function) and the loss function are uniquely determined. Thirdly, 

an interesting additional possibility arises, along with the classification of the object, to 

obtain numerical estimates of the probability of problems belonging to each of the classes 

[53]. 

Naive Bayesian classifier 

A naive Bayesian classifier is a simple probabilistic classifier based on the application 

of Bayes' theorem with strict (naive) assumptions about independence. 

Depending on the exact nature of the probabilistic model, naive Bayesian classifiers 

can be trained very effectively. In many practical applications, the maximum likelihood 

method is used to estimate the parameters for naive Bayesian models. In other words, one 

can work with a naive Bayesian model, not believing in Bayesian probability and not us-

ing Bayesian methods [54]. 

Method k-nearest neighbors 

The method of k-nearest neighbors is a metric algorithm for automatic classification 

of objects. The main principle of the method of the nearest neighbors is that the object is 

assigned to the class that is the most common among the neighbors of this element. 

Neighbors are taken based on a set of objects whose classes are already known, and, 

based on the key value for this method, the value of k is calculated, to find which class is 

the most numerous among them. Each object has a finite number of attributes. 

It is assumed that there is a certain set of objects with the already existing classifica-

tion [55]. 
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Decision tree 

The decision tree is a decision support tool used in statistics and data analysis for 

predictive models. The structure of the tree consists of "leaves" and "branches". On the 

edges ("branches") of the decision tree, attributes are recorded, on which the objective 

function depends, in the "leaves" the values of the objective function are recorded, and in 

the remaining nodes - the attributes for which the cases differ. To classify a new case, you 

have to go down the tree to the sheet and give the corresponding value. Similar decision 

trees are widely used in intellectual data analysis. The goal is to create a model that pre-

dicts the value of the target variable, based on several variables at the input. 

Support vector machine 

The support vector method is a set of similar algorithms of the form "learning with 

the teacher", used for classification problems and regression analysis. This method be-

longs to the family of linear classifiers. A special property of the support vector method is 

a continuous decrease in the empirical classification error and an increase in the gap. 

Therefore, this method is also known as the classifier method with the maximum gap [56]. 

Random forest 

A Random forest is a set of decision trees. In the regression problem, their answers 

are averaged, in the classification problem, a decision is made by voting on the majority.  

The method is based on the construction of a large number (assembly) of decision 

trees, each of which is constructed from a sample obtained from the initial training sample 

using a sample with a return [57]. 

Gradient boosting 

Boosting is a procedure for the sequential construction of a composition of ML algo-

rithms, where each subsequent algorithm seeks to compensate for the shortcomings of the 

composition of all previous algorithms. Boosting is a «greedy» algorithm for composing 

the final algorithms (Figure 1). 

Boosting over decision trees is considered one of the most effective methods in terms 

of quality classification. In many experiments, there was an almost unlimited reduction in 

the error rate on an independent test sample, as the composition was increased. Moreover, 

the quality of the test sample often continued to improve even after achieving an unmis-

takable recognition of the entire training sample. This overturned the ideas that existed 

for a sufficiently long time that it is necessary to limit the complexity of the algorithms in 

order to increase the generalizing ability [58-59]. 
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Figure 1. Example of gradient boosting. 

Neural network 

An artificial neural network is a mathematical model, as well as its software or hard-

ware implementation, built on the principle of the organization and functioning of bio-

logical neural networks – the nerve cell networks of a living organism. This concept arose 

when studying the processes occurring in the brain, and when trying to simulate these 

processes. The first such attempt was the neural networks of McCulloch and Pitts [60]. 

After the development of learning algorithms, the resulting models began to be used for 

practical purposes: in forecasting problems, for pattern recognition, in control tasks, etc. 

A neural network is a system capable of changing its structure under the influence of 

external factors. An artificial network is trained on input data. During the training, the 

internal parameters of the artificial neural network are adjusted to the input data, which 

makes it possible to isolate patterns in the data or to solve problems of prediction, classi-

fication, and clustering. When using an artificial neural network for data analysis, the re-

searcher solves several problems: what learning algorithm to use, what is the network 

configuration. The required internal parameters are found automatically, according to the 

chosen algorithm and configuration [60]. 

Evaluation of the quality of machine learning methods 

Metrics are used to evaluate model quality and compare algorithms. Before moving 

to the metrics, we need to introduce an important concept for describing these metrics in 

terms of classification errors – the confusion matrix. 

Having two classes and an algorithm that predicts the belonging of each object to one 

of the classes, then the classification error matrix will look like in Table 2. 

Table 2. Metrics by model. 

 y=1 y=0 

y’=1 True Positive (TP) False Positive (FP) 

y’=0 False Negative (FN) True Negative (TN) 
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In Table 2, "y’" is the answer of the algorithm on the object, and "y" is the true label 

of the class on this object. 

Thus, classification errors are of two types: False Negative (FN) and False Positive 

(FP). 

Precision, recall and F-score 

Recall demonstrates the ability of the algorithm to detect a given class and precision 

demonstrates the ability to distinguish this class from other classes. 

To assess the quality of the models used to classify the complications in the drilling 

process, the widely used precision, recall and F-score metrics were used. 

 

                              𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,                           (1) 

 

                               𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,                             (2) 

 

where TP – positive observation, and expected to be positive; FN – observation is positive, 

but it is predicted negatively; FP – observation is negative, but predicted positively. 

There are several different ways to combine precision and recall in an aggregated 

quality criterion. The F-score is an average harmonic precision and recall: 
                              

 𝐹𝛽 = (1 + 𝛽2) ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2∙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙
                    (3) 

 

Where β – in this case determines the weight of accuracy in the metric, and for β = 1 

this is the average harmonic (with a factor of 2, so that in the case of precision = 1 and 

recall = 1, we have  𝐹𝛽= 1); the F-score reaches a maximum for completeness and accuracy 

of one, and is close to zero if one of the arguments is close to zero. 

The sklearn library in Python has a convenient function_metrics, classification_re-

port, which returns recall, precision, and F-score for each of the classes, as well as the 

number of instances of each class [61].  

Given data 

As initial data, reports on drilling 67 wells were provided. Many of the wells have 

had DP that have led to rig downtime and loss of productive drilling time. The analysis 

of the total time spent on drilling all wells showed that about 10.33% of this time was 

unproductive operating time. 

It is worth noting that 10.33% is an important value, considering that the average cost 

per hour of drilling varies from 15 to 55 thousand rubles. And in this data base, there is a 

well in which the unproductive time was 50% of the total operating time. 

The main causes of unproductive drilling time at one specific field are shown in Fig-

ure 2. The greatest losses of time were due to rig downtime in waiting for contractors and 

equipment. Then, there is unproductive time due to the liquidation of penalty (unsched-

uled work, redrilling due to the fault of the contractor, etc.). In this project, we are inter-

ested in the trouble (DP) that arise during the drilling process. These include kick, loss of 

circulation, borehole instability, etc. 
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Figure 2. Distribution of non-productive time on field N. 

Wells with problems were identified and analyzed. It should be noted that out of 67 

wells, 20 wells were drilled without expenses for unproductive time. The most common 

problem is related to the seize that occurs when casing runs down. It is worth noting that 

in this project, calculations will be made for complications arising directly during drilling. 

For three wells, trouble arose during drilling and detailed records are available. 

For further analysis, all drilling parameters that were recorded for each well were 

considered. The analysis of the data showed that not all the wells from the sample have 

the same number of corresponding recorded drilling parameters. Some wells recorded the 

minimum number of parameters. We would like to note that drilling reports were pro-

vided for 67 wells, but the files with the recorded drilling parameters were given for 78 

wells. Therefore, data representing 78 wells were analyzed. For a wide analysis of the 

drilling parameters recorded on the wells, reports from 78 wells were taken into account. 

It can be seen from Figure 3 that only eight parameters are the most commonly reported 

for all wells; these are highlighted in red. And these parameters will be used as input 

parameters for classification of complications. 

 

Figure 3. Drilling parameters analyzed for wells. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 May 2021                   doi:10.20944/preprints202105.0657.v1

https://doi.org/10.20944/preprints202105.0657.v1


 

 

After the work was done, for the three wells in which the DP were plotted, the rec-

orded drilling parameters were plotted. The graphs are constructed using the Python pro-

gramming language, Figures 4 to 6. 

Well 1. The DP is associated with borehole instability due to technical water entering 

at a depth of 2882 m (Figure 4). It can be noted that this problem is accompanied by steep 

changes in drilling parameters. In particular, the value of the hook load, rotary table 

torque, etc., steeply increases. To eliminate this problem, the drilling crew spent 231 hours. 

Well 2. During well drilling in the interval 239-263 m, the drilling fluid was lost at a 

volume of 40 m3 (Figure 5). 7.1 hours of unproductive time was spent on solve this prob-

lem. It is worth noting that the graph clearly shows that during the loss, circulation sig-

nificantly decreased the level of the fluid capacity to mud tank № 2. A mud tank is an 

open-top container, typically made of square steel tube and steel plate, to store drilling 

fluid on a drilling rig. They are also called mud pits, as they were once simple pits in the 

ground 

Well 3. When drilling to 2493 m, the drilling fluid was lost. The total loss was 55 m3 

(Figure 6). To eliminate the complication, colmatage fluid was injected. The total time 

taken to combat the DP was 27.9 hours. This well is one of those that did not record the 

complete list of required drilling parameters. 
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Figure 4. Drilling Problem at well 1 – borehole instability, drilling parameters versus time. 
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Figure 5. Drilling Problem at well 2 – circulation loss, drilling parameters versus time. 
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Figure 6. Drilling Problem at well 3 – circulation loss, drilling parameters versus time. 

According to the algorithms of machine training given in the previous chapter, cal-

culations were made to classify (forecast) the problems in the drilling process.  

For calculations, the Python programming language and Scikit-Learn library was 

used. The percentage of training and test sample among data was set as 65/35%, respec-

tively. The training sample is a sample based on which the chosen algorithm adjusts the 

dependency model. The test sample is the sample by which the accuracy of the model 

used is checked. The following drilling parameters were used as input parameters: 

• Standpipe pressure; 

• Tank level 02; 

• Input flow rate; 

• Hook load; 

• Rotary table torque; 

• Rate of penetration; 

• Weight on bit; 

• Gas content. 

As a result of the calculations, the following metrics were obtained, for the subse-

quent detection of the most accurate model.  

Table 2 shows that the following algorithms of the Machine Learning (ML) have the 

highest value of metric: Decision tree; Random forest; Gradient boosting (GB). 

Next, we considered the number of correct and incorrect assumptions in the calcula-

tion of algorithms. Table 3 presents the case for situations where there are no problems 

while drilling, and in Table 4 the classification of problems while drilling. The goal is to 

see how the algorithm can misclassify the drilling process. "Right" is the number of cor-
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rectly predicted values; "False" is the number of misplaced predictions when drilling pro-

cess without problem recognized how drilling with problem. From the data presented, it 

can be seen that the greatest number of correct and accurate classifications of situations is 

obtained using the ML method Gradient Boosting (GB). GB allowed, with a minimum of 

errors, to classify the complication from the available data set.  

Table 2. Metrics by model. 

Algorithm 
Metrics (determination of drilling problems) 

Precision Recall F-score 

Logistic regression 0.00 0.00 0.00 

Naive Bayesian classifier 0.03 1.00 0.06 

Method of k-nearest neighbors 0.83 0.64 0.73 

Decision tree 0.97 0.87 0.92 

Support vector method 0.00 0.00 0.00 

Random Forest 0.98 0.93 0.95 

Gradient boosting 1.00 0.93 0.97 

Neural network 1.00 0.53 0.70 

Table 3. Accuracy of prediction of a normal situation. 

Algorithm Situation Right False 

Logistic regression Normal 3916 1 

Naive Bayesian classifier Normal 2484 1433 

Method of k-nearest neighbors Normal 3911 6 

Decision tree Normal 3916 1 

Support vector method Normal 3917 0 

Random Forest Normal 3915 2 

Gradient boosting Normal 3917 0 

Neural network Normal 3917 0 

Table 4. Accuracy of prediction of a problem situation. 

Algorithm Situation Right False 

Logistic regression Problem 0 45 

Naive Bayesian classifier Problem 45 0 

Method of k-nearest neighbors Problem 29 16 

Decision tree Problem 39 6 

Support vector method Problem 0 45 

Random Forest Problem 39 6 

Gradient boosting Problem 42 3 

Neural network Problem 27 18 

 

Then, a sensitivity analysis was performed (Figure 7), when the drilling parameters were 

removed from the gradient boosting in turn by their weight coefficients from the smaller 

to the larger. This allowed to understand how many parameters at the input are needed 

in this situation for the correct operation of the gradient boosting. It has been established 
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that when the parameters such as "Gas content", "Weight on bit" and "Rate of penetra-

tion" are removed from the model, the system classifies the drilling problems with the 

same accuracy. Accordingly, it can be concluded that this algorithm in the event of an 

emergency situation, can classify drilling problems according to the available 5 parame-

ters without loss of accuracy: "Rotary table torque", "Standpipe pressure", "Hook load", 

"Tank level 02", and "Input flow rate". 

 

Figure 7. Feature importance for gradient boosting. 

4. Discussion 

Based on the results of the work, a model is obtained capable of recognizing and 

classifying complications in the process of drilling wells. Such decision support system 

will help in time to assist with the drilling process and prevent high expenses for rig 

downtime and equipment repair. The program will signal a possible problem. It is worth 

noting that in this work, we used not too much initial data. Therefore, it is recommended 

to increase the efficiency of the model, to test it on more initial data. 

Also, worth noting is another significant plus. An algorithm in addition to the classi-

fication of DP accurately determines the standard drilling mode (without problem). This 

minimizes the possibility of triggering false alarms, which will also save drilling time. 

False alarms are also one of the problems when drilling wells, which takes up a significant 

amount of time and money. And if new technologies are introduced by companies in oil 

and gas production, this will allow businesses to save their costs. For example, in the con-

struction of a drilling rig that reaches hundreds of millions of dollars, even a 5% reduction 

in planning time can have a significant positive impact on the company's profits [62]. 

Nybø [63-64] solved a similar problem. In this work, a hybrid system is developed 

that includes a physical model and AI. Together, they allow one to recognize the problems 

when drilling much better than individually. Also in this paper, the problem of a small 

number of studies on the introduction of methods of ML in the drilling sector is addressed. 

The authors of the work are also convinced that this integration of machines and people 

will significantly increase the efficiency of drilling wells. 

Based on the results of the analysis using eight algorithms, it can be seen that the 

logistic regression, support vector method shows metrics equal to zero for the recognition 

of complications. Perhaps these values are associated with a small number of initial data 
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of complications. And so, these algorithms show such poor results. As noted above for 

further work, it is recommended to experiment with a much larger number of initial data. 

5. Conclusions 

Avoiding the problems in the drilling process, its classification and timely elimina-

tion remain an urgent problem to date. The aim of this work was to create a program 

capable of recognizing and classifying Drilling Problems (DP). Following the results of 

the work the following achievements were made: 

1. Based on the literature review, a wide application of AI in drilling is shown. From 

the creation of training programs to the prediction of the rate of penetration. 

2. During the analysis of the initial data, wells with problems that were encountered 

during drilling were identified. To model the presented DP, a computer model was set 

up. 

3. During the analysis of the drilling reports, a list of the main parameters was com-

piled, which will participate as input for the model: Standpipe pressure; Tank level; Input 

flow rate; Hook load; Rotary table torque; Rate of penetration; Weight on bit; Gas content. 

4. Of the eight methods of Machine Learning (ML), the GB method was chosen. This 

algorithm showed high performance precision, recall and F-score. 

5. For GB method, the parameters that make the greatest contribution to the operation 

of the algorithm are established using the feature importations parameter. These are the 

Rotary table torque, Standpipe pressure, Hook load. 

6. During the GB analysis, it is established that in the case of removing parameters 

such as Gas content, the model continues to work without changing the accuracy of the 

classification of the DP. 
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DP Drilling problems 

GB Gradient boosting 
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PID Proportional-integral-differential 

ROP Process rate of penetration 
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