

Article

Photocatalysis over N-doped TiO₂ driven by visible light as a new method for Pb(II) removal

Endang Tri Wahyuni^{1,*}, Titi Rahmaniati^{1,2}, Aulia Rizky Hafidzah^{1,3}, Suherman Suherman^{1,4}, and Adhitasari

Suratman^{1,5}

¹ Chemistry Department, Faculty of Mathematic and Natural Sciences, Gadjah Mada University ; endang_triw@ugm.ac.id.

² titi.rahmaniati@mail.ugm.ac.id

³ a.rizky.hafidzah@mail.ugm.ac.id

⁴ suherman.mipa@ugm.ac.id

⁵ adhitasari@ugm.ac.id

* Correspondence: endang_triw@ugm.ac.id.; Tel.: +62 274 545188

Abstract: The photocatalysis process over N-doped TiO₂ under visible light is examined for Pb(II) oxidation to form the less toxic and handleable PbO₂ suggesting a new method for Pb(II) remediation. The doping TiO₂ with N element was conducted by simple hydrothermal technique and using urea as the N source with various concentrations. The doped photocatalysts were characterized by DRUVS, XRD, FTIR and SEM-EDX instruments. Photocatalysis of Pb(II) through batch experiment was performed for evaluation of the doped TiO₂ activity under visible light, with applying various fractions of N doped, photocatalyst weigh, irradiation time, and solution pH. The research results attributed that N doping has been successfully performed, that shifted TiO₂ absorption into visible region, allowing it to be active under visible irradiation. The photocatalytic removal of Pb(II) under visible light over N-TiO₂ showed more effective than that of over the undoped photocatalyst. The removal of Pb(II) has notably taken place through oxidation, that may form PbO₂. The highest photocatalytic oxidation of Pb(II) 15 mg/L in 25 mL of the solution could be reached by using TiO₂ doped with 10%w of N, 15 mg of N-TiO₂ weight, 30 minutes of time, and at pH 8, suggesting a feasible method for Pb(II) remediation.

Keywords: doping N; TiO₂; Pb(II); photocatalytic-oxidation; visible light

1. Introduction

Lead (Pb), along with Cd, Hg, Cr(VI) and As, is categorized as the most toxic of the heavy metal. Lead as Pb(II) ion can be present intensively in wastewaters of many industries, such as storage batteries, mining, metal plating, painting, smelting, ammunition, oil refining and the ceramic glass [1-4]. Pb(II) ion is non-biodegradable and tends to accumulate in living tissues, causing various diseases and disorders [1-2]. Pb affects the functioning of the blood, liver, kidney and brain of the human being [1-4]. At high concentrations in human body, Pb is known to cause encephalopathy, cognitive impairment, kidney and liver damage, anaemia and toxicity to the reproductive system [2]. The permissible limit of Pb(II) in drinking water is 0.005 mg/L according to the current Environmental Protection Agency (EPA) standard, while WHO determines the limit is

0.01 mg/L [2]. In fact, the actual concentration of lead in wastewater is as high as several hundred milligram per liter. Therefore, the removal of lead from wastewater before they are contacted with unpolluted natural water bodies is important and urgent.

In recent years, adsorption is the most frequently method used for Pb(II) removal, because it is very effective technique in terms of initial cost, simplicity of design, ease of operation and insensitive to toxic substances [1-2, 5]. Several adsorbents that have been devoted for removal of Pb(II) included palm tree leaves [1], mesoporous activated carbon [2], modified natural zeolite [3], magnetic natural zeolite [5], and sulfonated polystyrene [6]. However, the adsorbent saturated with the concentrated Pb(II) ions becomes solid waste with higher toxicity, that will create new environmental problems.

Recently, remediation of Pb(II) containing water by photo-oxidation process through photo-Fenton method [4] and under TiO_2 photocatalyst [7] have also been developed. Oxidation of Pb(II) is the most interesting method since it resulted the non-toxic precipitate PbO_2 and easier to be handled [4, 7-9].

With respect to photocatalysis process, TiO_2 as a photocatalyst, has recently received considerable attention for removal of the persistent organic pollutants (POPs) including phenols [10], tetracycline [11], dyes [12], and linear alkyl benzene sulphonate [13] due to its cost-effective technology, non-toxicity, fast oxidation rate, and chemical stability. However, the wide band gap energy (E_g) of TiO_2 , that is 3.2 eV for anatase type, leads it to be excited only by photons with wavelengths shorter than 385 nm emerging into UV region [14-16]. In fact, UV light only occupies a small portion (about 4%) of the sunlight spectrum, that limits TiO_2 application under low-cost sunlight or visible irradiation [14-18].

Therefore, an effort has been focused to overcome this deficiency by doping TiO_2 crystal structure with either metal elements [16, 18-21] and non-metal elements [14-15, 17, 22-25]. Non-metal dopant has been reported to give more effective in narrowing gap or decreasing E_g of TiO_2 , compared to the metal dopant, because the size of non-metal elements are smaller than the metal dopants [14, 22-25], that easier to insert in the lattice of TiO_2 crystal. Among the non-metal dopants, N is the most interesting due to the very effective shift of E_g [14-15, 24]. Further, N-doped TiO_2 materials exhibit strong absorption of visible light irradiation and significant photocatalytic activity [14-15, 24].

Many studies of using N-doped TiO_2 have been frequently reported for degradation of dyes [15, 17], para-nitrophenol [24] and H_2 gas production [14]. However a research of using N doped TiO_2 for catalysis of the Pb(II) photo-oxidation under visible irradiation can not be traced. Under the circumstance, in this present paper, photo-oxidation of Pb(II) in the aqueous media over N doped TiO_2 by visible driven process is systematically studied. Operating parameters such as photocatalyst weight and irradiation time were optimized through laboratory scale experiment to obtain the best condition of the photo-oxidation process.

2. Results and Discussion

2.1 Characterization of TiO_2 -N photocatalyst

2.1.1. By DRUV method

The DRUV/Visible spectra of the photocatalyst samples were displayed as figure 1. As expected, doping TiO_2 with N atom can shift the absorption into longer wavelength due to the narrowing their gaps. The narrowing was resulted from the insertion of N atom into the lattice of TiO_2 crystal. The evident of the narrowing gap was represented by decreasing E_g values, as exhibited in Table 1.

Figure 1. The DRUV Spectra of a) TiO_2 , b) $\text{TiO}_2\text{-N}(5)$ c) $\text{TiO}_2\text{-N}(10)$, d) $\text{TiO}_2\text{-N}(15)$

Table 1. The effect of N doped into TiO_2 on their band gap energy

Photocatalyst	λ (nm)	E_g (eV)
TiO_2	386	3.20
$\text{TiO}_2\text{-N}(5)$	405	3.06
$\text{TiO}_2\text{-N}(10)$	414	3.00
$\text{TiO}_2\text{-N}(15)$	417	2.97

It is also notable that increasing amount of N dopant has declined their E_g more effectively. It was considerably implied that N has successfully doped in the TiO_2 crystal. Some studies reported same findings [14-15, 24].

2.1.2. By XRD method

The XRD patterns of TiO_2 and $\text{TiO}_2\text{-N}$ photocatalysts are displayed as figure 2. Several 2θ values of 25.25° , 37.52° , 48.02° , 53.58° , 54.88° , 62.61° , 68.78° , 70.33° , 75.07° and 82.68° are observed, which are assigned to anatase TiO_2 [15, 24]. In the XRD pattern of the N doped photocatalyst, additional phase, except anatase, is not observed.

Figure 2. The XRD patterns of a) TiO_2 (uncalcined), b) TiO_2 (calcined at $400\text{ }^\circ\text{C}$), c) $\text{TiO}_2\text{-N}(5)$, d) $\text{TiO}_2\text{-N}(10)$, and e) $\text{TiO}_2\text{-N}(15)$

It is also observable that doping N caused a decrease in the XRD intensities, and the intensities gradually declined as the enhancement of N amount. The decrease of the intensities assigned the partially TiO_2 crystallinity destroyed, due the insertion of N dopant in the TiO_2 lattice. The similar data was also reported by Li *et al.* [15] and Mahy *et al.* [24]. This data trend was in a good agreement with the Eg data.

2.1.3. By FTIR method

In the figure 3, it is seen that the FTIR spectra of all $\text{TiO}_2\text{-N}$ samples are similar to that of un-doped TiO_2 , where several peaks are observed at around 3400 , 2450 , 1630 , and $700\text{--}500\text{ cm}^{-1}$ of the wavenumbers. A study also reported the same IR spectra [15]. The peaks appearing at around 3400 and 2450 cm^{-1} were attributed to the $\text{Ti} - \text{OH}$ bond. In addition, the spectra also shows a sharp band at $\sim 1630\text{ cm}^{-1}$ due to the OH bending vibration of chemisorbed and/or physisorbed water molecule on the surface of the catalysts [13]. The strong band in the range of $700\text{--}500\text{ cm}^{-1}$ appearing was attributed to stretching vibrations of $\text{Ti} - \text{O} - \text{Ti}$ bond.

Figure 3. IR spectra of : a) urea, b) TiO₂, c) TiO₂-N (5), d) TiO₂-N(10), and e) TiO₂-N(15)

The FTIR spectra of all TiO₂-N samples reveal a weak peak at about 1385-1280 cm⁻¹, which was not observed for the un-doped TiO₂. The intensity of this peak is seemed to increase with the increase of N amount doped in TiO₂. Moreover, the peaks at 1385 – 1280 cm⁻¹ were assigned tentatively to the interaction between N and TiO₂ particles [15], proofing that N atoms have been inserted in the TiO₂ structure.

2.1.4. By SEM

In order to investigate the surface morphology of the N doped TiO₂ photocatalyst, their SEM images were taken that are shown in figure 4. The particles of TiO₂-N seem to be covered with materials that is different from the particles of undoped TiO₂. The materials may be urea left on the photocatalyst. Then small particles are observable on the photocatalyst surface after used for photo-oxidation, that may be PbO₂ particles as the photo-oxidation products.

Figure 4. The SEM a) TiO₂, b)TiO₂-N (10), and c) TiO₂-N(10) after used for Pb(II) oxidation

2.2. Photocatalytic activity $\text{TiO}_2\text{-N}$ under visible light in the removal of Pb(II)

2.2.1. Influence of N doping

The activity of the doped photocatalyst was evaluated by applying it in the photo-oxidation of Pb(II) under visible light process. The results of the Pb(II) photo-oxidation driven by visible and UV light, whether over un-doped and doped TiO_2 , are illustrated in figure 5. The figure assigns that N-doped TiO_2 showed higher activity in the Pb(II) photo-oxidation both under visible and UV irradiations. The enhancement of the visible photocatalytic-oxidation was promoted by a decrease in the band gap energy (E_g), allowing TiO_2 to be activated by visible light to generate lot of OH radicals for oxidation. The reaction of the formation of OH radicals and Pb(II) photo-oxidation were presented as Eq.1 to Eq.3. In addition, a pair of h^+ and e^- can naturally recombine to release heat (Eq.4) [15] that could deplete the number of OH radicals, that further declined the oxidation. The effective photocatalytic-oxidation of Pb(II) under visible light is a potential and promising method to be applied in the larger scale for industrial wastewater treatment.

Figure 5. The effectiveness of the Pb(II) photo-oxidation over : 1) TiO_2 , 2) $\text{TiO}_2\text{-N}$ (5), 3) $\text{TiO}_2\text{-N}$ (10), and 4) $\text{TiO}_2\text{-N}$ (15). Both under UV and visible light expose

Doping N could also considerably improve the photocatalyst activity under UV irradiation, since the dopant was found as electron-hole separation center [24] by capturing the electrons, that could prevent the recombination. The electron transfer from the TiO_2 conduction band to N atom at the interface is thermodynamically possible because

the Fermi level of TiO_2 is higher than that of N atom [24]. This doping resulted in the formation of a Schottky barrier at metal semiconductor contact region and improved the photocatalytic activity of TiO_2 [20, 24]. Hence, doping N atom essentially narrows the band gap of TiO_2 for the photo-excitation or red shift, and simultaneously delays the recombination rate of photogenerated electron–hole pair.

Moreover, the photo-oxidation of Pb(II) over un-doped TiO_2 photocatalyst under UV light is seen to be more effective than that of under visible light. The E_g of TiO_2 is 3.2 eV that is equal to UV light enabling TiO_2 to be activated by UV irradiation, and so more OH radicals could be provided. In contrast, the energy of visible light that is lower than the E_g of TiO_2 , prevented TiO_2 in generation of OH radicals [17], that resulted in the lower photo-oxidation.

Figure 5 also illustrates that higher amount of N doped raised the photo-oxidation efficiency and reached maximum at 10% of N. The improvement was promoted by increasing their activity under visible light due to the lower E_g . Additionally, more amount of N dopant may improve the retardation of the recombination, that further enhanced the Pb(II) oxidation. On the contrary, at the N content beyond its optimum value, the Pb(II) oxidation seems to be detrimental. With further increasing N content, the N particles could also act as recombination center of e^- and h^+ or promoted the recombination, that should reduce the number OH radicals available. The excess of N dopant might also cover the active sites on the TiO_2 surface, thereby inhibiting the OH radical formation. These conditions explained the decrease in the photo-oxidation. Same finding was also found by some studies [14-17, 20, 24]. Based on their E_g , 15% of N doped posed the lowest E_g suggesting the highest visible light absorption, and it was supposed to show highest photo-oxidation effectiveness. In fact the highest result is shown 10 % of N content. It is obvious hence that both E_g and amount of N dopant plays role in the photocatalysis process and amount of N dopant showed larger role.

2.2.2. Influence of irradiation time

As seen in figure 6, prolong irradiation time up to 30 min could improve of the photo-oxidation but further expansion of the irradiation time longer than 30 min, there was no influence on the photo-oxidation that could be observed. Irradiation more than 30 min led to the photocatalyst exhausted in the OH radical formation, that was unable to improve the photo-oxidation [13]. Similar trend was also found by Wahyuni et al. [16]. Moreover, the short optimum time for the most effective Pb(II) removal is benefit in term of the application in the industrial scale.

Figure 6. The influence of the irradiation time on the Pb(II) photo-oxidation

2.2.3. Influence of photocatalyst weight on the photo-oxidation of Pb(II)

The photo-oxidation of Pb(II) sharply enhances with the elevation weight of the photocatalyst as demonstrated by figure 7. The increase of the photocatalyst weight provided more OH radicals, that could enhance the photodegradation. The larger weight that exceeded the optimum level caused a detrimental in the photodegradation. The excessive photocatalyst made the turbidity of the mixture increased that could inhibit the penetration light [16]. As a consequence, the OH radical formation was prevented and the less photo-oxidation efficiency was obtained. The mass giving maximum photo-oxidation is found as 15 mg for 25 mL of the Pb(II) solution that is equal to 0.6 g/L of the photocatalyst dose. Such dose is believed to be cost-efficetive in the larger scale.

Figure 7. The influence of the photocatalyst weight on the Pb(II) photo-oxidation

2.2.4. Influence of solution pH

It can be notable in figure 8, raising solution pH up to 8 is found to improve the oxidation, but the photodegradation declines when the pH is further elevated. In the solution with low pH, the surface of TiO_2 was protonated to form positive charge (TiO_2H^+), reducing the OH radicals formation [16]. In addition, the cationic of Pb^{2+} was formed predominantly in the solution, the interaction of Pb^{2+} with the protonated N-doped TiO_2 was repulsed. These simultaneous condition led to the less effective oxidation. When the pH was gradually increased, the protonation of TiO_2 gradually depleted, that generated greater amount of OH radicals. Additionally, large number of Pb^{2+} were available, enabling it to interact with TiO_2 surface effectively. At pH higher than 8, the surface of TiO_2 was found as TiO^- that was prevented to release OH radicals. In addition, $\text{Pb}(\text{OH})_2$ precipitate may be formed in the solution that screened the entering light, leading to the less OH radicals formed [4, 7]. The most effective process taking place at neutral pH, is closely applicative for industrial scale.

Figure 8. The influence of solution pH on the $\text{Pb}(\text{II})$ photo-oxidation

2.2.5. Detection of PbO_2 formed from the photo-oxidation

In order to detect the result of $\text{Pb}(\text{II})$ oxidation, the EDX analysis of $\text{TiO}_2\text{-N}$ before and after being used for $\text{Pb}(\text{II})$ photo-oxidation was executed, and the EDX data is displayed as figure 9. From the figure, the composition of the doped photocatalyst before and after being used could be formulated as displayed in Table 2

Figure 9. The EDX data of a) $\text{TiO}_2\text{-N}$ before, and b) $\text{TiO}_2\text{-N}$ after used for $\text{Pb}(\text{II})$ photo-oxidation

Table 2. The composition the doped photocatalyst based on the EDX data

Element	(% Weight)	
	$\text{TiO}_2\text{-N}$ (20%) before photo-oxidation	$\text{TiO}_2\text{-N}$ (20%) after photo-oxidation
C	6.6	4.7
N	9.4	7.0
O	25.9	27.3
Ti	58.1	60.8
Pb	0.2	

From the table, it is observed the presence of Pb atoms and enhancing oxygen content in the $\text{TiO}_2\text{-N}$ photocatalyst after used in the $\text{Pb}(\text{II})$ photo-oxidation, which is not found in the $\text{TiO}_2\text{-N}$ before used. It may be proven that the photo-oxidation yielded PbO_2 , by following the reaction in Eq.4. The formation of PbO_2 from $\text{Pb}(\text{II})$ oxidation is in agreement with the finding that was reported previously [8-9]. The formation of the solid PbO_2 is beneficial in terms of solid waste treatment due to the less toxic and handleable waste.

3. Materials and Methods

4.1. Materials

The chemicals used in this research were TiO_2 , urea, $\text{Pb}(\text{NO}_3)_2$, HCl , and NaOH , that were purchased from E. Merck and were used without any purification.

4.2. Methods

4.2. 1. Doping process of N on TiO_2

Doping was performed by hydrothermal method following reported previously [16]. TiO_2 powder about 1 gram was dispersed in 100 mL of urea solution 1 g/L. The mixture was placed in autoclave, then was heated at 150 $^{\circ}\text{C}$ for 24 h. The doped $\text{TiO}_2\text{-N}$ resulted was dried at 100 $^{\circ}\text{C}$ for 30 min, and continued by calcination at 400 $^{\circ}\text{C}$ for

2 h. The sample was kept for characterization and activity evaluation. With such amount of urea, theoretically, N content in TiO_2 was about 5 %w. The same procedure was repeated for urea with 2 g/L and 3 g /L of the concentrations, giving around 10%w and 15%w of N content in the doped TiO_2 respectively. Therefore, the doped photocatalyst samples were coded as $\text{TiO}_2\text{-N(5)}$, $\text{TiO}_2\text{-N(10)}$ and $\text{TiO}_2\text{-N(15)}$.

4.2.2. Characterization of N-doped TiO_2

The doped photocatalysts obtained were characterized by using Pharmaspec UV-1700 DRUV spectrophotometer, Shimadzu 6000X-XRD, 8210 FTIR spectrophotometer, and JSM-6510 LA SEM-EDX machines.

4.2.3 Photo- oxidation of Pb(II) in the solution over $\text{TiO}_2\text{-N}$ photocatalyst

The photo-oxidation of Pb(II) was conducted by batch technique in the apparatus seen in figure 10. The Pb(II) solution 15 mg//L 25 mL in an Erlenmeyer flask was mixed with 15 mg of $\text{TiO}_2\text{-N(5)}$ then the flask was put in the photocatalysis apparatus. Next, the Erlenmeyer in the apparatus was irradiated with the visible lamp accompanied by magnetic stirring for 30 min. The Pb(II) left in the solution was analyzed by Perkin-Elmer 110 AAS machine. The concentration of the Pb(II) was determined by extrapolation on the corresponding standard curve. The same procedure was copied for processes with $\text{TiO}_2\text{-N}$ containing N of 10% and 15%, and various irradiation time (5, 10, 20, 30, 45, 60 min), photocatalyst weight (1, 5, 10, 15, 20, 25 mg), and solution pH (4, 6, 8, 10, 12). When one parameter was varied, other parameters were kept to be constant.

Figure 10. A set of apparatus used for Pb(II) photo-oxidation processes composed of : a) melamine box, b) visible lamps, c) magnetic stirrer plate, d) photocatalyst powder, e) magnetic stir bar, and f) sample solution

4. Conclusions

It has been successfully prepared the N-doped TiO₂ photocatalyst by hydrothermal method, that has narrowed the band gap energy, allowing it to absorb visible light. It was found that doping N on TiO₂ structure could improve its activity in the Pb(II) photo-oxidation under visible light irradiation. The most effective Pb(II) photo-oxidation (98%) from Pb(II) 15 mg/L in 25 mL solution was reached by using TiO₂-N with 10 % of N fraction, by applying condition of 15 mg of the doped photocatalyst, 30 minutes, and pH 8. It may be also evident that PbO₂ is produced from the Pb(II) photo-oxidation. The low photocatalyst dose, short reaction time and neutral pH effective process are beneficial factors allowing the method to be applied for the treatment of industrial Pb(II) containing wastewater.

Author Contributions: “Conceptualization, E.T.W.; methodology, A.S.; research experiment and data execution, T.R. and A.R.H; data analysis, S.S.; writing—original draft preparation, T.R., A.R.H., and S.S.; writing—review and editing, E.T.W.; All authors have read and agreed to the published version of the manuscript.”

Funding: This research was funded by Faculty of Mathematic and Natural Sciences Gadjah Mada University through Public Financial Project, grant number 77/J01. 1.28/PL.06.02/2020

Acknowledgments: Authors greatly thank to Faculty of Mathematic and Natural Sciences Gadjah Mada University for the financial support in conduction of this research through a grant of Public Financial with the contract number 77/J01. 1.28/PL.06.02/2020.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing, of the manuscript or in the decision to publish the results.

References

1. Soliman, A.M.; Elwy, H.M.; Thiemann, T.; Majedi, Y.; Labata, F.T.; Al-Rawashdeh, N.A.F. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated palm tree leaves. *J. Taiwan Inst. Chem. Eng.* **2016**, *58*, 264–273. <http://dx.doi.org/10.1016/j.jtice.2015.05.035>
2. Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F.; Fan, X. Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterization studies. *J Environ. Chem. Eng.* **2017**, *5*(1), 679–698. <http://dx.doi.org/10.1016/j.jece.2016.12.043>
3. Yousefi, T.; Mohsen, M.A.; Mahmudian, M.R.; Torab-Mostaedi, M.; Moosavian, M.A.; Aghayan, H. Removal of Pb(II) by modified natural adsorbent; thermodynamics and kinetics studies. *J. Water Environ. Nanotechnol.* **2018**, *3*(3), 265–272. DOI: 10.22090/jwent.2018.03.007
4. Wahyuni, E.T.; Siswanta, D.; Kunarti, E.S.; Supraba, D.; Budiraharjo, S. Removal of Pb(II) ions in the aqueous solution by photo-Fenton method. *Glob. Nest J.* **2019**, *21* (2), 180–186

5. Pambudi, T.; Wahyuni, E.T.; Mudasir, M. Recoverable adsorbent of natural zeolite/Fe₃O₄ for removal of Pb(II) in water. *J. Mater. Environ. Sci.* **2020**, 11 (1), 69-78
6. Mahmoud, M.E.; Abdou, A.E.H.; Ahmed, S.B. Conversion of waste styrofoam into engineered adsorbents for efficient removal of cadmium, lead and mercury from water. *ACS Sustain. Chem. Eng.* **2016**, 4 (3), 819-827
<https://doi.org/10.1021/acssuschemeng.5b01149>
7. Wahyuni, E.T.; Aprilita, N.H.; Hatimah, H.; Wulandari, A.; Mudasir, M. Removal of Toxic Metal Ions in Water by Photocatalytic Method. *Am. Chem. Sci. J.* **2015**, 5(2), 194-201.
8. Diao, Z-H.; Dong, F-X.; Yan, L.; Chen, Z-L.; Guo, P-R.; Xia, X-J.; Chu, W. A new insight on enhanced Pb(II) removal by sludge biochar catalyst coupling with ultrasound irradiation and its synergism with phenol removal. *Chemosphere* **2021**, 263, 12828
9. Pan, W.; Pan, C.; Bae, Y.; Giamar, D. Role of Manganese in Accelerating the Oxidation of Pb(II) Carbonate Solids to Pb(IV) Oxide at Drinking Water Conditions.. *Environ. Sci. Technol.* **2019**, 53(12), 6699-6707
10. Mills, A.; O'Rourke, C.; Moore, K. Powder semiconductor photocatalysis in aqueous solution: An overview of kinetics-based reaction mechanisms. *J. Photochem. Photobiol. A: Chemistry* **2015**, 310, 66-105
11. Safari, G.H.; Hoseini, M.; SeyedSalehi, M.; Jaafari, K.H.; Mahvi, A. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. *Int J Environ Sci Technol* **2015**, 12, 603-616 . DOI 10.1007/s13762-014-0706-9
12. Gautam, A.; Kshirsagar, A.; Biswas, R.; Banerjee, S.; Khanna, P.K. Photodegradation of organic dyes based on anatase and rutile TiO₂ nanoparticles. *RSC Adv.* **2016**, 6, 2746. DOI: 10.1039/c5ra20861k www.rsc.org/advances
13. Jariyanorasade, A.; Junyapoon, S. Factors affecting the degradation of linear alkylbenzene sulfonate by TiO₂ assisted photocatalysis and its kinetics. *Environ. Asia* **2018**, 11(1), 45-60. DOI 10.14456/ea.2018.4
14. Cheng, X.; Yu, X.; Xing, Z.; Wan, J. Enhanced photocatalytic activity of nitrogen doped TiO₂ anatase nano-particle under simulated sunlight irradiation. International Conference on Future Energy, Environment and Materials, *Energy Procedia*, **2012**, 16, 598 – 605
15. Li, H.; Hao, Y.; Lu, H.; Liang, L.; Wang, Y.; Qiu, J.; Shi, X.; Wang, Y.; Yao, J. A systematic study on visible-light N-doped TiO₂ photocatalyst obtained from ethylenediamine by sol-gel method. *Appl. Surf. Sci.* **2015**, 344, 112–118. <https://doi.org/10.1016/j.apsusc.2015.03.071>
16. Wahyuni, E.T.; Istiningih, I.; Suratman, A. Use of visible light for photo degradation of linear alkylbenzene sulfonate in laundry wastewater over Ag-doped TiO₂. *J. Environ. Sci. Technol.* **2020**, 13 (3), 124-130. DOI: 10.3923/jest.2020.124.130
17. Higashimoto, S. Review Titanium-dioxide-based visible-light-sensitive photocatalysis: mechanistic insight and applications. *Catalysts* **2019**, 9, 201 (22 pages)
18. Ghorbanpour, M.; Feizi, A. Iron-doped TiO₂ Catalysts with Photocatalytic Activity. *J Water Environ Nanotechnol.* **2019**, 4(1), 60-66. DOI: 10.22090/jwent.2019.01.006
19. Razali, M.H.; Ahmad-Fauzi, M.N.; Mohamed, A.R.; Sreekantan, S. Morphological, structural and optical properties study of transition metal ions doped TiO₂ nanotubes prepared by hydrothermal method. *Int. J. Mater. Mech. Manuf.* **2013**, 1 (4), 314-318. DOI: 10.7763/IJMMM.2013.V1.68
20. Dolat, D.; Ohtani, B.; Mozia, S.; Moszynski, D.; Guskos, N.; Lendzion-Bielun, Z.; Morawski, A.W. Preparation, characterization and charge transfer studies of nickel – modified and nickel, nitrogen co-modified rutile titanium dioxide for photocatalytic application. *Chem. Eng. J.* **2014**, 239, 149–157
21. Nigussie, G.Y.; Tesfamariam, G.M.; Tegegne, B.M.; Weldemichel, Y.A.; Gebreab, T.W.; Gebrehiwot, D.G.; Gebremichel, G.E. Antibacterial Activity of Ag-Doped TiO₂ and Ag-Doped ZnO Nanoparticles. *Hindawi Int. J. Photoenergy* Volume 2018, Article ID 5927485, 7 pages <https://doi.org/10.1155/2018/5927485>

22. Bodson, C.J.; Heinrichs, B.; Lasseroul, L.; Bied, C.; Mahy, J.G.; Man, M.C.W.; Lambert, S.D. Efficient P- and Ag-doped titania for the photocatalytic degradation of waste water organic pollutants. *J. Alloys Compd* **2016**, 682, 144-153.
23. Lin, Y-H.; Hsueh, H-T.; Chang C-W.; Chu, H. The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO₂: Characterization, kinetics, and reaction pathways. *Appl. Catal.* **2016**, 199, 1-10.
<http://dx.doi.org/10.1016/j.apcata.2016.06.024>
24. Mahy, J.G.; Cerfontaine, V.; Poelman, D.; Devred, F.; Gaigneaux, E.M.; Heinrichs, B.; Lambert, S.D. Highly efficient low-temperature N-doped TiO₂ catalysts for visible light photocatalytic applications. *Materials* **2018**, 11, 584.
<https://doi.org/10.3390/ma11040584>
25. Shayegan, Z.; Haghigat, F.; Lee, C-S. Carbon-doped TiO₂ film to enhance visible and UV light photocatalytic degradation of indoor environment volatile organic compounds. *J. Environ. Chem. Eng.* **2020**, 8(5), 104162.
<https://doi.org/10.1016/j.jece.2020.104162>