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Abstract: We outline and test a new methodology for genuine simulation of stochastic processes 8 

with any dependence and any marginal distribution. We reproduce time dependence with a gener- 9 

alized, time symmetric or asymmetric, moving-average scheme. This implements linear filtering of 10 

non-Gaussian white noise, with the weights of the filter determined by analytical equations in terms 11 

of the autocovariance of the process. We approximate the marginal distribution of the process, irre- 12 

spective of its type, using a number of its cumulants, which in turn determine the cumulants of 13 

white noise in a manner that can readily support the generation of random numbers from that ap- 14 

proximation, so that it be applicable for stochastic simulation. The simulation method is genuine as 15 

it uses the process of interest directly without any transformation (e.g. normalization). We illustrate 16 

the method in a number of synthetic and real-world applications with either persistence or antiper- 17 

sistence, and with non-Gaussian marginal distributions that are bounded, thus making the problem 18 

more demanding. These include distributions bounded from both sides, such as uniform, and 19 

bounded form below, such as exponential and Pareto, possibly having a discontinuity at the origin 20 

(intermittence). All examples studied show the satisfactory performance of the method. 21 

Keywords: stochastics; stochastic processes; stochastic simulation; Monte Carlo simulation; long 22 

range dependence; persistence; Hurst-Kolmogorov dynamics; climacogram; cumulants; intermit- 23 

tence 24 

 25 

1. Introduction 26 

Reviews of the historical evolution of simulation of stochastic processes with its dif- 27 

ferent schools has recently been provided by Koutsoyiannis [1] and Beven [2]. In most 28 

scientific disciplines the dominant methods are those of the so-called Time Series School 29 

with families of models known with the acronym ARMA (standing for autoregressive – 30 

moving average) and also called Box-Jenkins models (owing to the influential book of 31 

these authors [3], thus confirming Stigler’s law of eponymy [4], because in fact they were 32 

introduced earlier by Whittle [5-7]). Despite their popularity, these models have several 33 

problems, such as their lack of parsimony (except for the simplest of them), the inability 34 

to model long-range dependence (LRD), as well as to simulate non-Gaussian processes. 35 

On the other hand, both these features are profoundly present in most geophysical pro- 36 

cesses [8]. An extension of these models applicable to processes with LRD was proposed 37 

by Hosking [9] under the acronym ARFIMA (with the letter ‘F’ standing for fractional 38 

differencing and the letter ‘I’ for integrated). Again, these are good for Gaussian processes. 39 

Koutsoyiannis (2000) [10] introduced the symmetric moving average (SMA) scheme to 40 

replace ARMA models with a generic approach (more recently advanced in [11]) capable 41 

of reproducing any aspect of time dependence, short-range (SRD) or long-range (LRD). 42 

This scheme can also preserve the skewness of non-Gaussian processes but has difficulties 43 
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in dealing with higher-order moments and particularly with strongly intermittent pro- 44 

cesses, such as rainfall at small time scales.  45 

For the latter, point process (clustered) models have been devised [12-15]. An ad- 46 

vantage of these types of models is the mechanistic representation of certain aspects of the 47 

process, such as the arrival and cease of a storm event. The disadvantages are mainly fo- 48 

cused on the preservation of the dependence structure at multiple scales and their diffi- 49 

culty in application in multivariate or multiscale schemes. For this reason, Koutsoyiannis 50 

et al. [16], even though they used a 3D extension of a point process model (the so-called 51 

Gaussian displacement spatial-temporal rainfall [17]), resorted to a linear generation 52 

scheme for an application to multivariate rainfall disaggregation.  53 

Several other modelling schemes use transformations of the process of interest, 54 

mostly within a copula context [18-21], with the most widely applied transformation re- 55 

sulting in a Gaussian process (normalization) [22,23]. However, such transformation 56 

schemes inherit some of the limitations of the parent process. For example, it is well- 57 

known that a Gaussian process is necessarily symmetric in time and thus cannot capture 58 

time directionality, the so-called time’s arrow [24-26], while it is known that in several 59 

natural processes time’s arrow is present [24,27]. On the other hand, processes with asym- 60 

metric distributions can also exhibit asymmetry in time. 61 

A more general algorithm for generation of any type of marginal distribution has 62 

recently been proposed by Lombardo et al. [28] but only under the condition of Markov 63 

dependence, thus leaving out problems with more complex dependence, including LRD.  64 

For these reasons, it is necessary to develop genuine stochastic simulation procedures 65 

which will be able to generate non-Gaussian processes without transformations to a 66 

Gaussian or other distribution. Such procedures have already been discussed in earlier 67 

works, referring to the explicit preservation of four moments in a time-symmetric setting 68 

[29] as well as preservation of distributions in terms of cumulants, rather than moments 69 

[30,31]. However, the general idea of the latter works has never been applied in practice 70 

to test its effectiveness. This is the subject of this paper. In the following sections we out- 71 

line the new methodology for genuine simulation procedures with any dependence and 72 

any marginal distribution (section 2), and illustrate it in a number of synthetic and real- 73 

world applications (section 3). In addition, we study the problem of approximating any 74 

distribution, if a number of its cumulants are known, in a manner that can readily support 75 

the generation of random numbers from that approximation, so that the approximation 76 

be applicable for stochastic simulation. 77 

The simulation model developed is a linear stochastic model. As nonlinearity is fash- 78 

ionable, some may think that the linearity of the approach proposed is a limitation or even 79 

a severe drawback. The reality however is different because linearity and nonlinearity 80 

have different meaning in deterministic and stochastic approaches. In the latter, linearity 81 

is a powerful characteristic, enabling its extension in demanding problems, such as mul- 82 

tivariate models and coupling of models of different temporal or spatial scales [32] (also 83 

known as downscaling or disaggregation). In this respect it is relevant to recall the notion 84 

of Wold decomposition of stochastic processes. Specifically, Wold [33,34] proved that any 85 

stochastic process (even though he referred to it as a time series) can be decomposed into 86 

a regular process (i.e., a process linearly equivalent to a white noise process) and a pre- 87 

dictable process (i.e., a process that can be expressed in terms of its past values). Thus, 88 

nonlinearity is relevant to the predictable part, as this is purely deterministic, while for 89 

the regular part linearity suffices.  90 

2. Methods 91 

2.1 Preliminaries 92 

We denote 𝑥 a stochastic (random) variable, underlining its symbol in order to dis- 93 

tinguish it from a regular variable, 𝐹(𝑥) ≔ 𝑃{𝑥 ≤ 𝑥} its probability distribution function, 94 

𝐹(𝑥) ≔ 1 − 𝐹(𝑥) = 𝑃{𝑥 > 𝑥}  its tail function (probability of exceedance) and 𝑓(𝑥) ≔ 95 
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d𝑓(𝑥)/d𝑥 its density function. Furthermore, we denote 𝑥(𝑡) a stochastic process at contin- 96 

uous time t (i.e., a family of stochastic variables 𝑥  indexed by time t) and 𝑥𝜏 ≔ 97 
1

𝐷
∫ 𝑥(𝑡)
𝜏𝐷

(𝜏−1)𝐷
d𝑡 its discrete time representation at equidistant times with temporal resolu- 98 

tion D, i.e., 𝑡𝜏 = 𝜏𝐷, for an integer τ. In a discrete-time stochastic process it is convenient 99 

to define the return period, Τ, of the event {𝑥𝜏 ≤ 𝑥} as the average time between two occur- 100 

rences of the event. It is shown [31] that the following relationship holds true for any sto- 101 

chastic process (irrespective of time dependence): 102 

𝑇(𝑥)

𝐷
=

1

𝐹(𝑥)
 (1) 

In other words, this one-to-one correspondence allows the return period to be used in 103 

place of the tail function or the distribution function in several applications (e.g. in prob- 104 

ability plots); this has been the case for many years, particularly in engineering applica- 105 

tions.  106 

2.2 Moments and cumulants 107 

The expectation of any function 𝑔(𝑥) of the stochastic variable 𝑥 is defined as: 108 

E[𝑔(𝑥)] ≔ ∫ 𝑔(𝑥)𝑓(𝑥)d𝑥

∞

−∞

 (2) 

where we remind that 𝑔(𝑥) is a stochastic variable per se. For 𝑔(𝑥) =  𝑥𝑝, we get the non- 109 

central moment of order p (or pth raw moment or pth moment about the origin):  110 

𝜇𝑝
′ ≔ E[𝑥𝑝] (3) 

with the particular case 𝑝 = 1 defining the mean: 111 

𝜇 ≔ 𝜇1
′ = E[𝑥] (4) 

The central moment of order p is the expectation of 𝑔(𝑥) = (𝑥 − 𝜇)𝑝: 112 

𝜇𝑝 ≔ E[(𝑥 − 𝜇)𝑝] (5) 

with the particular case 𝑝 = 2 defining the variance: 113 

𝜇2 ≡ 𝛾 ≔ E[(𝑥 − 𝜇)2] ≔ 𝜎2 (6) 

where its square root σ is the standard deviation. 114 

By choosing 𝑔(𝑥) =  e𝑡𝑥 for any t, the logarithm of the resulting expectation is called 115 

the cumulant generating function: 116 

𝐾(𝑡) ≔ ln E[𝑒𝑡𝑥] (7) 

The power series expansion of the cumulant generating function i.e.: 117 

𝐾(𝑡) =  ∑𝜅𝑝
𝑡𝑝

𝑝!

∞

𝑝=1

 (8) 

defines the cumulants 𝜅𝑝. It is noted that cumulants were introduced by Thielle as early as 118 

in 1889 [35] and refined in 1899 ([36], translated to English by Hald [37]) under the name 119 

half-invariants. The name cumulants was first used by Fisher [38] at the suggestion of Ho- 120 

telling [39].  121 

Cumulants are related to noncentral moments of same and lower order by: 122 

𝜇𝑝
′ =∑(

𝑝 − 1
𝑖
)

𝑝−1

𝑖=0

𝜅𝑝−𝑖𝜇𝑖
′, 𝜅𝑝 = 𝜇𝑝

′ −∑(
𝑝 − 1
𝑖
)

𝑝−1

𝑖=1

𝜅𝑝−𝑖𝜇𝑖
′ (9) 

with 𝜇0
′  = 1. A simple proof of these equations has been provided by Smith (1995) [40], but 123 

the recursive relationships had been already implied by Thielle [35,37]. Note that Equation 124 
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(9) links cumulants with noncentral moments. The relationship of cumulants with central 125 

moments is generally more complex, but for small p it takes the following simple forms: 126 

𝜅0 = 𝜇1 = 0, 𝜅1 = 𝜇1
′ = 𝜇, 𝜅2 = 𝜇2, 𝜅3 = 𝜇3, 𝜅4 = 𝜇4 − 3𝜇2

2 (10) 

Equation (9) is very powerful as it allows simple calculation of cumulants from non- 127 

central moments and vice versa in a recursive manner. Specifically, we notice that for the 128 

calculation of the moment or the cumulant of order p, the sums appearing in Equation (9) 129 

contain terms of order smaller than p.  130 

The importance of cumulants results from their homogeneity and additivity proper- 131 

ties, which are shown in Table 1. Most importantly, for a stochastic variable that is the 132 

linear combination (weighted sum) of r independent variables, the cumulants of the re- 133 

sultant are also a linear combination of the cumulants of the constituents. On the other 134 

hand, application of conditioning, also contained in Table 1, is similarly useful as it allows 135 

simulation of distributions that are mixtures of other distributions or have discontinuities 136 

in their distribution functions. As shown in Table 1, the effect of conditioning is more 137 

easily expressed in terms of moments, but Equation (9) readily allows the subsequent 138 

evaluation of cumulants.  139 

Table 1. Typical operations useful in simulation and their mathematical handling. 140 

Operation Mathematical relationship Eqn. 

no. 

Shift of origin 
𝜅𝑝[𝑥 + 𝑐] = {

𝜅1[𝑥] + 𝑐 𝑝 = 1

𝜅𝑝[𝑥] 𝑝 > 1
 

(11) 

Multiplication by a constant (𝑎) 𝜅𝑝[𝑎𝑥] = 𝜅𝑝[𝑥]𝑎
𝑝 (12) 

Linear combination of independent variables  𝜅𝑝[𝑎1𝑥1 +⋯+ 𝑎𝑟𝑥𝑟] = 𝑎1
𝑝
 𝜅𝑝[𝑥1] + ⋯+ 𝑎𝑟

𝑝
 𝜅𝑝[𝑥𝑟] (13) 

Conditioning on an event 𝐴1  with probability 𝑃1 ≔ 𝑃(𝐴1), where 

the complementary event 𝐴2 has probability 1 − 𝑃1 = 𝑃(𝐴2)  

𝜇𝑝
′ [𝑥] = 𝑃1𝜇𝑝

′ [𝑥|𝐴1] + (1 − 𝑃1)𝜇𝑝
′ [𝑥|𝐴2] (14) 

Conditioning on an event 𝐴1  with probability 𝑃1 ≔ 𝑃(𝐴1), where 

𝑥 = 𝑐 (constant) upon the complementary event 𝐴2 

𝜇𝑝
′ [𝑥] = 𝑃1𝜇𝑝

′ [𝑥|𝐴1] + (1 − 𝑃1)𝑐
𝑝 (15) 

Conditioning on an event 𝐴1  with probability 𝑃1 ≔ 𝑃(𝐴1), where 

𝑥 = 0 upon the complementary event 𝐴2  

𝜇𝑝
′ [𝑥] = 𝑃1𝜇𝑝

′ [𝑥|𝐴] (16) 

All common distribution functions used in a wide range of stochastic applications 141 

have elegant analytical expressions either for their moments or the cumulants of any or- 142 

der, and in some cases of both. These are gathered in Table 2 for distributions with finite 143 

domain, in Table 3 for distributions with infinite domain but with all their moments finite, 144 

and in Table 4 for the heavy-tailed distributions with upper-tail index ξ; in the latter case, 145 

both moments and cumulants exist for 𝑝 < 1/𝜉 and are infinite for larger p. The following 146 

notes apply to these tables:  147 

1. The meaning of the parameters is the following.   148 

(a) Dimensional parameters, with dimensions identical to those of the stochastic var- 149 

iable 𝑥: μ: mean; 𝜎 > 0: standard deviation; 𝜆 > 0: scale parameter; a, b: lower and 150 

upper bound of 𝑥.   151 

(b) Dimensionless parameters: 𝜉 > 0: upper-tail index; 𝜁 > 0: lower-tail index; 𝜍 > 0: 152 

additional shape parameter, 𝑃𝑖 ∈ [0,1]: probability. 153 
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Table 2. Noncentral moments and cumulants of common distributions with finite domain (all moments and cumulants exist). 154 

Name, domain 
Probability density or distribution 

function 
Moments, 𝝁𝒑

′  Cumulants, 𝜿𝒑 

Impulse, 𝑥 = 𝜇 𝑓(𝑥) =  δ(𝑥 − 𝜇) 𝜇𝑝 {
𝜇 𝑝 = 1

0 𝑝 > 1
 

Finite number of impulses,  

𝑥 ∈ {𝑥1, … , 𝑥𝑛}  
𝑓(𝑥) =  ∑𝑃𝑖δ(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 ∑𝑃𝑖𝑥𝑖
𝑝

𝑛

𝑖=1

  

Uniform, 𝑎 ≤ 𝑥 ≤ 𝑏 𝑓(𝑥) =  
1

𝑏 − 𝑎
 

𝑏𝑝+1 − 𝑎𝑝+1

(𝑝 + 1)(𝑏 − 𝑎)
 

{
 
 

 
 𝜇1

′ =
𝑎 + 𝑏

2
𝑝 = 1

(𝑏 − 𝑎)𝑝B𝑝

𝑝
𝑝 odd

0 𝑝 even

 

Beta, 0 ≤ 𝑥 ≤ 𝑏 𝑓(𝑥) =
(
𝑥
𝑏
)
𝜁−1

(1 −
𝑥
𝑏
)
𝜍−1

𝛣 (𝜁, 𝜍)
 

𝛤 (𝜁 + 𝜍)𝛤 (𝑝 + 𝜁)

𝛤 (𝜁)𝛤 (𝑝 + 𝜁 + 𝜍)
𝑏𝑝  

Kumaraswamy, 

0 ≤ 𝑥 ≤ 𝑏 
𝐹(𝑥) =  1 − (1 − (

𝑥

𝑏
)
𝜁

)

𝜍

 𝜍Β (𝜍,
𝑝 + 𝜁

𝜁
) 𝑏𝑝  

Table 3. Noncentral moments and cumulants of common distributions with zero upper-tail index (all moments and cumulants exist). 155 

Name, domain Probability density or distribution function Moments, 𝝁𝒑
′  Cumulants, 𝜿𝒑 

Poisson 

𝑥 = 𝑗, 𝑗 ∈ ℕ0  
𝑓(𝑥) = 𝑒−𝜍  ∑

𝜍𝑗

𝑗!
δ(𝑥 − 𝑘)

∞

𝑖=1

  𝜍 

Exponential, 𝑥 ≥ 0  𝑓(𝑥) = e–𝑥/𝜇/𝜇 𝑝! 𝜇𝑝  (𝑝 − 1)! 𝜇𝑝 

Gamma, 𝑥 ≥ 0 𝑓(𝑥) =
(𝑥 𝜆⁄ )𝜁−1e–𝑥/𝜆

𝜆 Γ(𝜁)
  

Γ(𝑝 + 𝜁)

Γ(𝜁)
𝜆𝑝 𝜁(𝑝 − 1)! 𝜆𝑝 

Generalized gamma, 

𝑥 ≥ 0 
𝑓(𝑥) =

1

𝜆 Γ(𝜁/𝜁′)
 (
𝑥

𝜆
)
𝜁−1

exp (−(
𝑥

𝜆
)
𝜁′

) 
Γ(𝑝/𝜁′ + 𝜁/𝜁′)

Γ(𝜁/𝜁′′)
𝜆𝑝  

Weibull, 𝑥 ≥ 0 𝐹(𝑥) = 1 − exp (−(
𝑥

𝜆
)
𝜁

) Γ (
𝑝

𝜁
+ 1) 𝜆𝑝  

Normal, 𝑥 ∈ ℝ 
𝑓(𝑥) =

exp (−
(𝑥 − 𝜇)2

2𝜎2
)

√2𝜋𝜎
 

 {

𝜇1
′ = 𝜇, 𝑝 = 1

𝜎2 𝑝 = 2

0 𝑝 > 2

 

Half-normal, 𝑥 ≥ 0 𝑓(𝑥) =
2

𝜆√2π
 exp (−

𝑥2

2𝜆2
) 

2𝑝/2

√π 
Γ (
𝑝 + 1

2
) 𝜆𝑝  

Extended half-normal 

(Chi), 𝑥 ≥ 0 𝑓(𝑥) =
√2

𝜆 Γ(𝜁/2)
 (
𝑥2

2𝜆2
)

𝜁
2
 −
1
2

exp (−
𝑥2

2𝜆2
) 2𝑝/2

Γ (
𝑝 + 𝜁
2

)

Γ (
𝜁
2
)

𝜆𝑝  

Lognormal 

(ln 𝑥 ~(ln 𝜆 , 𝜍)), 𝑥 ≥ 0 𝑓(𝑥) =
exp (−

1
2𝜍2

(ln (
𝑥
𝜆
))

2

)

√2π 𝜍𝑥
 e

𝑝2𝜍2

2 𝜆𝑝  

Extreme value type I 

(EV1), 𝑥 ∈ ℝ 
𝐹(𝑥) = exp (−e−

𝑥
𝜆)  {

γ𝜆 𝑝 = 1

(𝑝 − 1)! ζ(𝑝)𝜆𝑝 𝑝 > 1
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Table 4. Noncentral moments and cumulants of common distributions with upper-tail index ξ (moments and cumulants exist for 156 
𝑝 < 1/𝜉). Here the cumulants do not have simple explicit expressions but can be readily calculated from Equation (9). 157 

Name, domain 
Probability density or distribution 

function 
Moments, 𝝁𝒑

′  

Pareto  
𝑥 ≥ 0 𝐹(𝑥) = 1 − (1 + 𝜉

𝑥

𝜆
)
−
1
𝜉
 B (

1

𝜉
− 𝑝, 𝑝 + 1)

𝜆𝑝

𝜉𝑝+1
 

Pareto-Burr-Feller (PBF) 

𝑥 ≥ 0 𝐹(𝑥) = 1 − (1 + 𝜉𝜁 (
𝑥

𝜆
)
𝜁

)

−
1
𝜉𝜁

 
Β (

1

𝜉𝜁
−
𝑝

𝜁
,
𝑝

𝜁
+ 1)

𝜆𝑝

(𝜉𝜁)
𝑝
𝜁
+1

 

Dagum 

𝑥 ≥ 0 𝐹(𝑥) = (1 +
1

𝜉𝜁
(
𝑥

𝜆
)
−
1
𝜉
)

−𝜉 𝜁

 (𝜉𝜁)1−𝜉𝑝B(1 − 𝜉𝑝, 𝜉𝑝 + 𝜉𝜁)𝜆𝑝   

Extreme value type II (EV2) 

𝑥 ≥ 0 
𝐹(𝑥) = exp (−𝜉 (

𝑥

𝜆
)
−
1
𝜉
) Γ(1 − 𝑝𝜉) (

𝜆

𝜉
)
𝑝

 

Half Student 

𝑥 ≥ 0 𝑓(𝑥) =
2 (1 + (

𝑥
𝜆
)
2

)
−
1
2
−
1
2𝜉

𝜆 B (
1
2
,
1
2𝜉
)

 

B (
1
2
+
𝑝
2
,
1
2𝜉
−
𝑝
2
)

B (
1
2
,
1
2𝜉
)

 𝜆𝑝   

Half extended Student 

𝑥 ≥ 0 𝑓(𝑥) =
2 ((

𝑥
𝜆
)
2

)

𝜁
2
−
1
2
(1 + (

𝑥
𝜆
)
2

)
−
𝜁
2
−
1
2𝜉

𝜆 B (
𝜁
2
,
1
2𝜉
)

 

B (
1
2𝜁
+
𝑝
2
,
1
2𝜉
−
𝑝
2
)

B (
1
2𝜁
,
1
2𝜉
)

 𝜆𝑝   

Generalized beta prime 

(GBP) 

𝑥 ≥ 0 
𝑓(𝑥) =

𝜍 (
𝑥
𝜆
)
𝜁−1

(1 + (
𝑥
𝜆
)
𝜍

)
−
𝜁
𝜍−

1
𝜉𝜍

𝜆 B (
𝜁
𝜍
,
1
𝜉𝜍
)

 

B (
𝜁
𝜍
+
𝑝
𝜍
,
1
𝜉𝜍
−
𝑝
𝜍
)

B (
𝜁
𝜍
,
1
𝜉𝜍
)

 𝜆𝑝 

2. The meaning of constants and standard functions is this: γ: Euler constant; B𝑝: Ber- 158 

noulli number of order p; δ(𝑥) the Dirac delta function of 𝑥; Γ(𝑎): gamma function of 159 

𝑎; B(𝑎, 𝑏): beta function of 𝑎, 𝑏. 160 

3. Distributions named “half” have their “full” version whose density 𝑓(𝑥) and exceed- 161 

ance �̅�(𝑥) are obtained by dividing those given in the tables by 2. The “half” version 162 

given in the tables corresponds to 𝑥 ≥ 0, while in the “full” version 𝑥 ∈ ℝ. The mo- 163 

ments 𝜇𝑝
′  of the “full” version is: (a) for even p, 0; (b) for odd p, equal to those of half 164 

version. 165 

4. All other distributions, defined for 𝑥 ≥ 0 but not named “half”, can also be extended 166 

to the whole real line by replacing x with |x| and dividing 𝑓(𝑥) by 2. Again, the mo- 167 

ments 𝜇𝑝
′  of this extended version is: (a) for even p, 0; (b) for odd p, equal to those of 168 

original version.  169 

2.3 Second order properties 170 

For a stochastic process 𝑥(𝑡) in continuous time t or 𝑥𝜏 in discrete time τ, we define 171 

the cumulative process 𝑋(𝑘) ≡ 𝑋𝜅, for continuous time scale 𝑘 ≔ 𝜅𝐷, where κ denotes dis- 172 

crete time scale, as: 173 

𝑋(𝑘) ≡ 𝑋𝜅 ≔ 𝑥1 + 𝑥2 +⋯+ 𝑥𝜅 = ∫ 𝑥(𝑡) d𝑡

 𝜅𝐷

0

 (17) 

The time average of the original process 𝑥𝜏 for discrete time scale κ is 174 
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𝑥𝜏
(𝜅) ≔

𝑥(𝜏−1)𝜅+1 + 𝑥(𝜏−1)𝜅+2 +⋯+ 𝑥𝜏𝜅
𝜅

=
𝑋𝜏𝜅 − �̃�(𝜏−1)𝜅

𝜅
 (18) 

The variability of the time-averaged process is quantified by the variance: 175 

𝛾𝜅 ≔ var[𝑥𝜏
(𝜅)] (19) 

This can be extended to a continuous-time process, for which 176 

𝛾(𝑘) ≔ var [
𝑋(𝑘)

𝑘
] , 𝛾𝜅 = 𝛾(𝑘/𝐷) (20) 

Clearly, this is a function of the time-scale κ which is termed the climacogram of the pro- 177 

cess, from the Greek climax (κλίμαξ, meaning scale) [41]. 178 

For sufficiently large κ (theoretically as 𝜅 → ∞), we may approximate the clima- 179 

cogram as: 180 

𝛾(𝑘) ∝  𝑘2𝐻−2 (21) 

where H is termed the Hurst parameter. The theoretical validity of such (power-type) be- 181 

haviour of a process was implied by Kolmogorov (1940) [42,43]. The quantity 2H–2 is vis- 182 

ualized as the slope of the double logarithmic plot of the climacogram for large time- 183 

scales. In a purely random process, H = 1/2, while in most natural processes 1/2 ≤ H ≤ 1, as 184 

first observed by Hurst in 1951 [44]. This natural behaviour is known as LRD, (long-term) 185 

persistence or Hurst-Kolmogorov (HK) dynamics. A high value of H (approaching 1) in- 186 

dicates enhanced presence of patterns, enhanced change and enhanced uncertainty (e.g., 187 

in future predictions). A low value of H (< 1/2) indicates enhanced fluctuation or antiper- 188 

sistence. 189 

A stochastic process 𝑥(𝑡) for which the property (21) is valid not only asymptotically 190 

but precisely for any scale k, i.e., 191 

𝛾(𝑘) = 𝜆 (
𝛼

𝑘
)
2−2𝛨

 (22) 

where 𝛼 and 𝜆 are scale parameters with units of time and [𝑥2], respectively, is termed the 192 

Hurst-Kolmogorov (HK) process [11].  193 

The HK process is a simple mathematical model offering acceptable approximations 194 

for large scales, but it is not physically plausible for small scales because it yields infinite 195 

variance of the instantaneous process (as 𝑘 → 0) [45]. Therefore, filtered versions thereof 196 

(FHK) with finite variance at all scales are better options to model natural processes. Here 197 

we use two versions of FHK. namely: 198 

• The generalized Cauchy-type FHK (FHK-C) with climacogram: 199 

𝛾(𝑘) = 𝜆0(1 + (𝑘 𝛼⁄ )2𝑀)
𝐻−1
𝑀  (23) 

• The mixed Cauchy-Dagum-type FHK (FHK-CD) climacogram: 200 

𝛾(𝑘) = 𝜆1 (1 +
𝑘

𝛼
)
2𝐻−2

+ 𝜆2 (1 − (1 +
𝛼

𝑘
 )
−2𝛭

) (24) 

In addition to the Hurst parameter H, which characterizes the global scaling behav- 201 

iour, when 𝑘 → ∞, the filtered models include a second scaling exponent M characterizing 202 

the local scaling (or smoothness or fractal behaviour) when 𝑘 → 0. Furthermore, the FHK- 203 

CD model contains two scale parameters of state, 𝜆1 and 𝜆2, instead of the single 𝜆 of the 204 

FHK-C, offering greater flexibility. 205 

Once the model climacogram is given, all other second-order properties of the pro- 206 

cess are uniquely determined through simple mathematical expressions. Thus, the auto- 207 

covariance function in continuous and discrete time, for lags h and 𝜂 = ℎ/𝐷, respectively, 208 

is derived from the climacogram through the relationships [56]: 209 
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𝑐(ℎ) ≔ cov[𝑥(𝑡), 𝑥(𝑡 +  ℎ)] =
1

2
 
d2ℎ2𝛾(|ℎ|)

dℎ2
 (25) 

for continuous time and 210 

𝑐𝜂 ≔ cov[𝑥𝜏, 𝑥𝜏+𝜂] =
(𝜂 + 1)2𝛾|𝜂+1| + (𝜂 − 1)

2𝛾|𝜂−1|

2
− 𝜂2𝛾|𝜂| (26) 

for discrete time, where cov[ ] stands for covariance. 211 

Finally, the power spectrum 𝑠(𝑤) of the process is the Fourier transform of the auto- 212 

covariance, so that: 213 

𝑠(𝑤) ≔ 4∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ

∞

0

⇔ 𝑐(ℎ) = ∫ 𝑠(𝑤) cos(2π𝑤ℎ) d𝑤

∞

0

 (27) 

for continuous time and 214 

𝑠d(𝜔) = 2𝑐0 + 4∑𝑐𝜂

∞

𝜂=1

cos(2π𝜂𝜔) ⇔ 𝑐𝜂 = ∫ 𝑠d(𝜔) cos(2π𝜔𝜂) d𝜔

1 2⁄

0

 (28) 

for discrete time. 215 

2.4 Stochastic simulation 216 

To simulate the discrete-time stochastic process 𝑥𝜏 with any autocovariance function 217 

𝑐𝜂 we can use the generalized moving average scheme [10,11,26]: 218 

𝑥𝜏 = ∑ 𝑎𝑗𝑣𝜏−𝑗

𝐽

𝑗=−𝐽

 (29) 

where 𝑎𝑗 are weights to be calculated from the autocovariance function, 𝑣𝑗 is white noise 219 

averaged in discrete-time (in the general case assumed non-Gaussian), also known as in- 220 

novation process, and J is theoretically infinite, so that in all theoretical calculations we as- 221 

sume 𝐽 = ∞, while in the generation phase J is a large integer chosen so that the resulting 222 

truncation error be negligible.  223 

Here we stress that the above scheme is just the contrary to the common schemes of 224 

the Time Series School. Specifically, (a) we use a purely moving average scheme without 225 

any autoregressive term and (b) we do not relate our scheme with observations, as the 226 

observations have been already used in the model fitting phase, which is totally isolated 227 

from the generation scheme. Specifically, the fitting constitutes of a choice of an appropri- 228 

ate climacogram expression such as (23) or (24) and the estimation of its parameters, as 229 

well as the choice of a distribution function such as those contained in Table 2- Table 4 230 

and the estimation of its parameters. This tactic assures modelling parsimony. More de- 231 

tails on the fitting procedure, which is not covered here, can be found in [31]. Here we 232 

only stress the methodological suggestion that we never estimate from data classical mo- 233 

ments and cumulants of order greater than 2, because these are unknowable from data [46]. 234 

While the methodology that will follow heavily depends on high-order moments and cu- 235 

mulants, it is stressed that these are determined by theoretical calculations and never from 236 

the data. 237 

Assuming unit variance of the white noise 𝑣𝑗, writing Equation (29) for 𝑥𝜏+𝜂, multi- 238 

plying it by (29) and taking expected values we find the convolution expression for 𝐽 = ∞:  239 

𝑐𝜂 = ∑ 𝑎𝑙𝑎𝜂+𝑙

∞

𝑙=−∞

 (30) 

We need to find the sequence of 𝑎𝜂 , 𝜂 = ⋯ ,−1,0,1, …, so that (30) holds true. The fol- 240 

lowing generic solution of the generating scheme, giving the coefficients 𝑎𝜂, has been pro- 241 

posed by Koutsoyiannis [26]: 242 
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𝑎𝜂 = ∫ e2πi(𝜗(𝜔)−𝜂𝜔)𝐴R(𝜔)

1/2

−1/2

d𝜔 (31) 

where i ≔ √−1, 𝜗(𝜔) is any (arbitrary) odd real function (meaning 𝜗(−𝜔) = −𝜗(𝜔)) and 243 

𝐴R(𝜔) ≔ √2𝑠d(𝜔) (32) 

As proved by Koutsoyiannis [26], the sequence of 𝑎𝜂:  244 

1. consists of real numbers, despite the expression in (31) involving complex numbers;  245 

2. satisfies precisely equation (30); and  246 

3. is easy and fast to calculate using the fast Fourier transform (FFT). 247 

This theoretical result is readily converted into a numerical algorithm, which consists 248 

of the following steps [26]: 249 

1. From the continuous-time stochastic model, expressed through its climacogram 𝛾(𝑘), 250 

we calculate its autocovariance function in discrete time (assuming time step D) by 251 

Equation (26). (This step is obviously omitted if the model is already expressed in 252 

discrete time through its autocovariance function.) 253 

2. We choose an appropriate number of coefficients J that is a power of 2 and perform 254 

inverse FFT (using common software) to calculate the discrete-time power spectrum 255 

and the frequency function 𝐴R(𝜔) for an array of 𝜔𝑗 = 𝑗 𝑤1, 𝑗 = 0,1, … , 𝐽, 𝑤1 ≔ 1 𝐽𝐷⁄ : 256 

𝑠d(𝜔𝑗) = 2𝑐0 + 4∑𝑐𝜂

𝐽

𝜂=1

cos(2π𝜂𝜔𝑗) , 𝐴R(𝜔𝑗) = √2𝑠d(𝜔𝑗) (33) 

3. We choose 𝜗(𝜔) (see below) and we form the arrays (vectors) 𝑨R and 𝑨I, both of size 257 

2J indexed as 0,… , 2𝐽 –  1, with the superscripts R and I standing for the real and im- 258 

aginary part of a vector of complex numbers, respectively:  259 

[𝑨R]𝑗 = {
𝐴R(𝜔𝑗) cos (2π𝜗(𝜔𝑗)) /2, 𝑗 = 0,… , 𝐽

[𝑨R]2𝐽−𝑗, 𝑗 = 𝐽 + 1,… ,2𝐽 − 1
 (34) 

[𝑨I]𝑗 = {

−𝐴R(𝜔𝑗) sin (2π𝜗(𝜔𝑗)) /2, 𝑗 = 0,… , 𝐽 − 1

0 𝑗 = 𝐽

−[𝑨I]2𝐽−𝑗 . 𝑗 = 𝐽 + 1,… ,2𝐽 − 1

 (35) 

4. We perform FFT on the vector 𝑨R + i 𝑨I (using common software), and get the real 260 

part of the result for 𝑗 = 0,… , 𝐽, which is precisely the sequence of 𝑎𝜂. 261 

We note that by choosing J as a power of 2, the vectors 𝑨R and 𝑨I will have size 2J 262 

which is also a power of 2, thus achieving maximum speed in the FFT calculations. (More 263 

details are contained in a supplementary file in [26], which includes numerical examples 264 

along with the simple code needed to do these calculations on a spreadsheet). 265 

Remarkably, Equation (31) gives not a single solution, but a family of infinitely many 266 

solutions, all of which preserve exactly the second-order characteristics of the process. A 267 

particular solution is characterized by the chosen function 𝜗(𝜔). Even assuming 𝜗(𝜔) = 268 

𝜗0 sign𝜔 with constant 𝜗0, again there are infinitely many solutions. Furthermore, if the 269 

sequence of 𝜗(𝜔𝑗) is constructed at random (e.g., as a sequence of random numbers in the 270 

interval [0,1/4]), again equation (30) will be satisfied and the resulting 𝑎𝜂 can be directly 271 

used in generation. The availability of infinitely many solutions enables preservation of 272 

additional statistics, such as those related to time asymmetry [26].  273 

The special case 𝜗(𝜔) = 0 gives a symmetric solution with respect to positive and 274 

negative η:  275 
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𝐴S(𝜔) ≡ 𝐴R(𝜔) = √2𝑠d(𝜔), 𝑎𝑗
S = ∫ √2𝑠d(𝜔) cos(2π𝑗𝜔) d𝜔

1/2

0

= 𝑎−𝑗
S  (36) 

where the superscript S stands for symmetric. This has been known as the symmetric mov- 276 

ing average (SMA) scheme [10]. All other solutions denote asymmetric moving average 277 

(AMA) schemes. 278 

In addition, we always have several options related to the distribution of the white 279 

noise 𝑣𝜏, which in general is not Gaussian, thus enabling preservation of moments and 280 

cumulants of any order. Specifically, the pth cumulants of the processes 𝑥𝜏 and 𝑣𝜏, by vir- 281 

tue of (13), are related by: 282 

𝜅𝑝 = ∑ 𝑎𝑗
𝑝
 𝜅𝑝
(𝑣)

𝐽

𝑗=−𝐽

 (37) 

where 𝜅𝑝 and 𝜅𝑝
(𝑣) are pth cumulants of 𝑥𝜏and 𝑣𝜏, respectively. Solving for 𝜅𝑝

(𝑣)
 we find: 283 

𝜅𝑝
(𝑣)
=

𝜅𝑝

∑ 𝑎𝑗
𝑝𝐽

𝑙=−𝐽

 (38) 

Given the so-calculated 𝜅𝑝
(𝑣)

 for any order p, the distribution function of the white 284 

noise is fully determined. However, in practice we can only approximate this distribution 285 

function up to an order 𝑝max. A convenient way to make the approximation is to choose a 286 

number L of elementary distribution functions from Table 2- Table 4, thus defining the 287 

white-noise processes 𝑤𝑙 , 𝑙 = 1, … , 𝐿 , and obtain the approximation 𝑣𝜏
′  of 𝑣𝜏  as a linear 288 

combination of 𝑤𝑙 with weights 𝑎𝑙
′, i.e.: 289 

𝑣𝜏
′ =∑𝑎𝑙

′𝑤𝑙

𝐿

𝑙=1

 (39) 

The cumulants 𝜅𝑝
(𝑤𝑙) of 𝑤𝑙 are then determined from Table 2- Table 4 and those of 𝑣𝜏

′, 290 

by virtue of (13), are: 291 

𝜅𝑝
(𝑣′)

= ∑ 𝑎𝑗
′𝑝  𝜅𝑝

(𝑤𝑙)

𝐽

𝑙=−𝐽

 (40) 

The goodness of the approximation up to order 𝑝max is given by an error expression 292 

such as: 293 

𝑒1 ≔ ∑ ((𝜅𝑝
(𝑣′)

)

1
𝑝
 − (𝜅𝑝

(𝑣))
1
𝑝)

2𝑝max

𝑝=2

, 𝑒2 ≔ ∑ (
1

𝑝
ln(

𝜅𝑝
(𝑣′)

(𝜅𝑝
(𝑣)
))

2𝑝max

𝑝=2

 (41) 

where the second form (𝑒2) is more appropriate if all cumulants are positive and increas- 294 

ing fast. In order for the above equations to work in all cases, even when 𝜅𝑝 is negative 295 

and p is even, the quantity (𝜅𝑝)
1 𝑝⁄

 is meant to denote the quantity sign(𝜅𝑝) |𝜅𝑝|
1 𝑝⁄ ; this 296 

convention is followed throughout the entire paper. By minimizing either 𝑒1 or 𝑒2 using a 297 

common solver, we simultaneously find the series of weights 𝑎𝑙
′ and the parameters of the 298 

marginal distribution of each of 𝑤𝑙. Further details will be given in the applications of 299 

section 3, where it will be also seen that, for a sufficient approximation, the number of 300 

constituent distributions L of 𝑤𝑙 is small, usually 1 or 2.  301 

It is stressed that, in each of the above error expressions, we have intentionally ex- 302 

cluded the error of the cumulants of order 1, i.e. the mean values. Therefore, we expect 303 

that with this procedure the mean will not be preserved. However, this can be easily tack- 304 

led by adding a constant 𝑐 to 𝑣𝜏
′. Apparently, the required shift should be 305 
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 𝑐 = 𝜅1
(𝑣)
− 𝜅1

(𝑣′)
 (42) 

Based on the above approximation, the generation process will produce the stochas- 306 

tic process  307 

𝑥𝜏
′ ≔ ∑ 𝑎𝑗𝑣𝜏−𝑗

′

𝐽

𝑗=−𝐽

 (43) 

where, if the approximation is satisfactory, we reasonably expect that the statistical prop- 308 

erties of 𝑥𝜏
′  will be equal to those of 𝑥𝜏. This proves to be always the case if the domain of 309 

the stochastic variable 𝑥𝜏  is unbounded in both directions (i.e., 𝑥𝜏 ∈ ℝ) but some addi- 310 

tional manipulation (post processing) may be needed if the domain of 𝑥𝜏 is not the entire 311 

real line, or if the distribution function of 𝑥𝜏 has discontinuities, as will be illustrated in 312 

the applications of the next section. 313 

3. Applications and results 314 

We illustrate the methods by five applications for bounded 𝑥𝜏 as this case is more 315 

demanding (the unbounded case is much easier). Three applications are synthetic mathe- 316 

matical examples used as benchmarks, namely the exponential distribution, which is 317 

bounded from below, and the uniform distribution, which is bounded from both below 318 

and above. The next two are real-world applications dealing with one of the most chal- 319 

lenging natural processes, namely the precipitation process which is bounded from below, 320 

highly intermittent and with heavy distribution tail. The latter two applications refer to 321 

two different time scales, fine (hourly) and coarse (annual). In the synthetic example with 322 

the exponential distribution and in the two real-world applications, the stochastic pro- 323 

cesses are persistent with a large Hurst parameter, ranging from 0.80 to 0.92. In the syn- 324 

thetic examples of the uniform distribution we use both a persistent and an antipersistent 325 

process, with Hurst parameters 0.70 and 0.20, respectively. 326 

3.1. Simulating a persistent process with exponential distribution 327 

For a process with exponential distribution, which is a subcase of the gamma distri- 328 

bution, there exist generation algorithms for the case of short-range (Markov) dependence 329 

(e.g. [47]). As already mentioned, a more general algorithm for generation of any type of 330 

marginal distribution has recently been proposed by Lombardo et al. [28] but again under 331 

the condition of Markov dependence. However, the method proposed here can generate 332 

such a process irrespective of the type of the dependence, whether SRD or LRD.  333 

For illustration we assume an FHK-C model (Equation (23)) with parameters 𝐻 = 334 

0.8,𝑀 = 0.5, 𝛼 = 1, 𝜆0 = 1.32, so that 𝛾1 = 1. The FHK-C climacogram is shown in Figure 335 

1(b), marked as “theoretical”, while the resulting autocorrelation function is shown in Fig- 336 

ure 1(c). As in the exponential distribution (from Table 3), 𝜇 = √𝛾1 = 1, the cumulants of 337 

the process 𝑥𝜏 are 𝜅𝑝 = (𝑝 − 1)!. These are depicted in Figure 1(a), along with the cumu- 338 

lants of 𝑣𝜏 determined from Equation (38), where, to avoid big numbers, the quantities 339 

𝜅𝑝
1/𝑞

 are plotted. The coefficients 𝑎𝑗, needed to evaluate 𝜅𝑝
(𝑣)

 in Equation (38), are deter- 340 

mined from the SMA (symmetric) generation scheme (Equation (36)) with 𝐽 = 1024.  341 

Coming to the approximation 𝑣𝜏
′ of 𝑣𝜏, we use two constituents 𝑤𝑙 with gamma dis- 342 

tributions and allow a discontinuity 𝑃1 at 𝑤 = 0 in each of them. Assuming unit variance 343 

in each of them, from the equations of Table 3 we have 𝜁 𝜆2 = 1, so that the continuous 344 

part of the distribution is fully determined by the shape parameter 𝜁. Hence the approxi- 345 

mation 𝑣𝜏
′, according to Equation (39), is determined by the parameters 𝜁1, 𝜁2, 𝑃1, 𝑃2, 𝑎1

′ , 𝑎2
′ , 346 

which are calculated by minimizing 𝑒2 in Equation (41), assuming 𝑝max  = 10. The result- 347 

ing values of the parameters are 𝜁1 = 1.255, 𝜁2 = 30, 𝑃1 = 0.298, 𝑃2 = 1, 𝑎1
′ = 1.333, 𝑎2

′ = 348 

−0.0655, while the required shift of Equation (42) is negligible (𝑐 = 0). The cumulants of 349 
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𝑣𝜏
′ are also plotted in Figure 1(a), where it can be seen that they are indistinguishable from 350 

those of 𝑣𝜏 and thus the achieved approximation is very good. 351 

The generation of values of 𝑣𝜏
′ is quite easy using a random number generator for the 352 

gamma distribution. From a series of random numbers 𝑣𝜏
′, a total of 𝑛 = 10 000 values of 353 

𝑥𝜏 are then determined from Equation (29). A small number (6.6%) of them are small neg- 354 

ative values. To remedy this problem, we reflect these values about zero, or, in other 355 

words, replace 𝑥𝜏 with −𝑥𝜏. Theoretically, this remedy will have a distorting effect in the 356 

multivariate distribution of 𝑥𝜏, but in fact this effect turns out to be negligible. 357 

 358 

Figure 1. Graphical depiction of the results of the simulation application for a synthetic example of a persistent FHK 359 
process with exponential distribution: (a) cumulants; (b) climacogram; (c) autocorrelogram; (d) marginal distribution. 360 

Comparison of the theoretical statistical characteristics of the distribution of 𝑥𝜏 to the 361 

empirical ones of the generated sample are shown in the panels of Figure 1. In the empir- 362 

ical climacogram (Figure 1(b)), the plotted points correspond to unbiased estimates of var- 363 

iance; this is achieved by adding the quantity 𝛾(𝑛) = 0.0331 to the classical statistical es- 364 

timates, as explained in [31]. The empirical climacogram agrees well with the theoretical 365 

one. The empirical autocorrelation is shown in Figure 1(c). Here the bias correction was 366 

applied using an approximate method from [48], according to which the unbiased esti- 367 

mate is the weighted sum of the classical autocorrelation estimate and the number 1, with 368 

the weight of the latter being equal to 1/𝑛 ’, where 𝑛′ ≔ 𝛾(1)/𝛾(𝑛)  is the so-called 369 
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equivalent sample size of any process, and differs substantially from 𝑛 if the process is per- 370 

sistent [49]. (We note that a precisely unbiased estimate of autocovariance has been pro- 371 

vided by [50] but this is more laborious). Finally, Figure 1(d) shows a comparison of the 372 

theoretical and empirical marginal distribution of 𝑥𝜏. The empirical distribution of each 373 

value of the generated time series, arranged in ascending order so that 𝑥(𝑖:𝑛) be the ith 374 

smallest value of the series of n values, was estimated on the basis of unbiasedness of the 375 

logarithm of return period 𝑇(𝑖:𝑛). As shown in [31], this estimate is 376 

𝑇(𝑖:𝑛)

𝐷
=
𝑛 + e1−γ − 1

𝑛 − 𝑖 + e−γ
=

𝑛 + 0.526

𝑛 − 𝑖 + 0.561
 (44) 

Again, the agreement between theoretical and the empirical distributions is very good. 377 

3.2. Simulating a persistent process with uniform distribution 378 

The simulation of a persistent process with uniform distribution is more demanding 379 

because of the double boundedness and the sharp discontinuities of the density function 380 

at the bounds, while linear generation procedures tend to generate unbounded processes 381 

with smooth density. On the other hand, the double boundedness offers an option of ap- 382 

proximation with a process 𝑣𝜏
′ that takes on a finite number of values. In other words, we 383 

assume that the stochastic variable 𝑣𝜏
′ is discrete, taking on a finite number of values 𝑣𝑖

′ 384 

with probabilities 𝑃𝑖 , as illustrated in Figure 2. The details of this approximation will be 385 

explained in a while. Despite 𝑣𝜏
′ assumed discrete, thanks to the fact that the generation of 386 

𝑥𝜏 via Equation (29) involves a linear combination of very many variables 𝑣𝜏
′, the variable 387 

𝑥𝜏 will in effect be continuous. 388 

  389 

Figure 2. Probability mass function of the discretized white noise used in the simulation applica- 390 
tion for a synthetic example of a persistent FHK process with uniform distribution. 391 

As in the previous case, for illustration we assume an FHK-C model (Equation (23)) 392 

with 𝛾1 = 1. We note that the fourth cumulant of this uniform distribution, which in this 393 

case equals the coefficient of kurtosis, is 𝜅4 = −1.2. The fourth cumulant of 𝑣𝜏 (𝜅4
(𝑣)

) should 394 

necessarily be lower than that (𝜅4
(𝑣)
< −1.2) for a persistent process. On the other hand, it 395 

is known than the kurtosis of any distribution cannot be lower than −2. Therefore, the 396 

margin for having a positively autocorrelated process 𝑥𝜏 with uniform distribution is ra- 397 

ther small. An FHK-C model with parameters 𝐻 = 𝑀 = 0.7, 𝛼 = 1, 𝜆0 = 1.346 (so that 𝛾1 = 398 

1) yields a feasible 𝜅4
(𝑣)
= −1.76, while the case 𝐻 = 𝑀 = 0.75, would yield an infeasible 399 

𝜅4
(𝑣)
= −2.02. The FHK-C climacogram for the feasible parameter set (𝐻 = 𝑀 = 0.7) is 400 

shown in Figure 3(b), marked as “theoretical”, while the resulting autocorrelation 401 
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function is shown in Figure 3(c). In order for the uniform distribution to have variance 402 

𝛾1 = 1, its upper bound should be 𝑏 = √12 = 3.464, with lower bound 𝑎 = 0. The cumu- 403 

lants of the process 𝑥𝜏, determined from Table 2 and Equation (9), are shown in Figure 404 

3(a), along with the cumulants of 𝑣𝜏 determined from Equation (38) (for the convention 405 

used for 𝜅𝑝
1/𝑞

 for negative quantities and p even, see the note of section 2.4 below Equation 406 

(41)). The coefficients 𝑎𝑗, needed to evaluate 𝜅𝑝
(𝑣)

 in Equation (38), are determined from the 407 

SMA (symmetric) generation scheme (Equation (36)) with 𝐽 = 1024.  408 

 409 

Figure 3. Graphical depiction of the results of the simulation application for a synthetic example of a persistent FHK 410 
process with uniform distribution: (a) cumulants; (b) climacogram; (c) autocorrelogram; (d) marginal distribution. 411 

Comparisons of the theoretical statistical characteristics of the distribution of 𝑥𝜏 to 412 

the empirical ones of the generated sample are shown in the panels of Figure 3, which are 413 

similar as those in Figure 1. A difference is that in panel (d), instead of estimating the 414 

return period of each 𝑥(𝑖:𝑛) (the ith smallest value of the series of n values), we give the 415 

non-exceedance probability 𝐹(𝑥), estimated on the basis of its unbiasedness. In this case, 416 

the unbiased estimate is [31]: 417 

𝐹(𝑥(𝑖:𝑛)) =
𝑖

𝑛 + 1
 (45) 

In all panels, the agreement between theoretical and the empirical characteristics is very 418 

good. 419 
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The approximation 𝑣𝜏
′ of 𝑣𝜏 is done through the discretization of the former described 420 

above. Twenty equidistant 𝑣𝑖
′  with probabilities 𝑃𝑖  are assumed, where 𝑣𝑖

′ = 𝑖 𝑏⁄ , 𝑖 = 421 

1,… ,20. The distribution of 𝑣𝑖
′  was assumed symmetric, i.e., 𝑃𝑖 = 𝑃21−𝑖 , so that the un- 422 

known parameters to be optimized are ten, namely, 𝑃1, … , 𝑃10 . These are calculated by 423 

minimizing 𝑒1  in Equation (41), assuming 𝑝max  = 10 . The resulting values are shown 424 

graphically in Figure 2. It is remarkable that the distribution of 𝑣𝜏
′ is far from uniform, 425 

despite the fact that the cumulants of 𝑣𝜏
′, as seen in Figure 3(a), are not very different from 426 

those of 𝑥𝜏, which has uniform distribution. The cumulants of 𝑣𝜏
′, also plotted in Figure 427 

1(a), are indistinguishable from those of 𝑣𝜏,and thus the achieved approximation is very 428 

good. An exception is seen in the first cumulants of 𝑣𝜏
′ and 𝑣𝜏, which are quite different, 429 

and thus the required shift of Equation (42) is not negligible, namely 𝑐 = −1.503.  430 

The generation phase is quite easy, as values of 𝑣𝜏
′ are readily generated by inverse 431 

transform sampling, given the staircase-like distribution function of a discrete stochastic 432 

variable. A total 𝑛 = 10 000 values of 𝑥𝜏 are then generated from Equation (29). A small 433 

number (~2%) of them are either small negative values or somewhat greater than 𝑏. As in 434 

the previous case, we reflect the negative values about zero, replacing 𝑥𝜏 with −𝑥𝜏. Like- 435 

wise, we reflect the very high values about 𝑏, replacing 𝑥𝜏 with 2𝑏 − 𝑥𝜏.  436 

3.3. Simulating as antipersistent process with uniform distribution 437 

For further illustration we examine the same uniform distribution as above but for 438 

an antipersistent process (with 𝐻 < 1 2⁄ ). Actually, this case is easier as the changes in 439 

kurtosis is smaller than in the previous case, and thus, feasibility of the solution is assured.  440 

Again, an FHK-C model was assumed, now with parameters 𝐻 = 0.2,𝑀 = 0.8, 𝛼 = 441 

1, 𝜆0 = 2 (so that 𝛾1 = 1, while 𝜅4
(𝑣)
= −1.265). All other choices are the same as in the pre- 442 

vious application (e.g. upper bound 𝑏 = √12 = 3.464, etc.) The approximation 𝑣𝜏
′  of 𝑣𝜏 443 

through discretization is depicted in Figure 4. Again, this differs substantially from the 444 

uniform distribution, even though the cumulants of 𝑣𝜏
′, as seen in Figure 5(a), are virtually 445 

indistinguishable from those of 𝑥𝜏 and 𝑣𝜏. Yet there is a substantial difference in the first 446 

cumulants of 𝑣𝜏
′ and 𝑣𝜏, so that the required shift of Equation (42) is large, 𝑐 = 13.675.  447 

  448 

Figure 4. Probability mass function of the discretized white noise used in the simulation applica- 449 
tion for a synthetic example of an antipersistent FHK process with uniform distribution. 450 

Comparisons of the theoretical statistical characteristics of the distribution of 𝑥𝜏 to 451 

the empirical ones of the generated sample are shown in the panels of Figure 5. In all 452 

panels the agreement between theoretical and the empirical characteristics is very good. 453 
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 454 

Figure 5. Graphical depiction of the results of the simulation application for a synthetic example of an antipersistent FHK 455 
process with uniform distribution: (a) cumulants; (b) climacogram; (c) autocorrelogram; (d) marginal distribution. Notice 456 

in panel (a) that the first cumulant of 𝑣 is out of the graph area as it is very large (𝜅1
(𝑣)
= 15.49).  457 

3.4. Simulating the precepitation process at the hourly time scale 458 

Here we use a recently developed [31] full stochastic model of the precipitation pro- 459 

cess at any time scale k. This model gives directly the ombrian relationships (else known 460 

as intensity-duration-frequency curves) but it also provides any stochastic characteristic 461 

of the precipitation process that is required for stochastic simulation. Furthermore in [31] 462 

this model has been applied to construct the ombrian curves by fitting the model in some 463 

locations, but the model was not used for stochastic simulation. Among the locations stud- 464 

ied in [31], here we provide a stochastic simulation for rainfall in Bologna, using the pa- 465 

rameter valued fitted there. The application in this subsection is for the hourly scale, while 466 

an additional application for the annual scale is given in the next subsection.  467 

The model is based on the following assumptions, which are mathematically con- 468 

sistent (with one exception as detailed below): 469 

1. Pareto distribution with discontinuity at the origin for small time scales (Table 5, 470 

Equation (46), left). The tail index ξ is constant for all time scales k, while the proba- 471 

bility wet, 𝑃1
(𝑘), and the state scale parameter, 𝜆(𝑘), are functions of the time scale k.  472 
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2. Continuous PBF distribution, possibly with discontinuity at zero, for large time scales 473 

(Table 5, Equation (46), right). In this case, a new parameter 𝜁(𝑘) is introduced, which 474 

is again a function of time scale. The Pareto distribution is a special case of the PBF 475 

for 𝜁(𝑘) = 1. In contrast to the Pareto distribution, whose density is a consistently 476 

decreasing function of 𝑥, the PBF tends to be bell-shaped for increasing 𝜁(𝑘), a prop- 477 

erty consistent with empirical observation and reason.  478 

3. Constant mean 𝜇 of the time-averaged process. 479 

4. Climacogram of type FHK-CD (Equation (24)), where to reduce the number of pa- 480 

rameters it is assumed that 𝑀 = 1 − 𝐻, thus getting Equation (48) in Table 5. By in- 481 

spection of Equation (48), it is seen that, as 𝑘 → ∞, 𝛾(𝑘) → 0, which makes the process 482 

ergodic; for 𝑘 = 0, 𝛾(0) = 𝛾0 = 𝜆1 + 𝜆2, which is finite, as required for physical con- 483 

sistency. 484 

5. Probability wet and dry, 𝑃1
(𝑘)
= 1 − 𝑃0

(𝑘)
, varying with time scale according to Equa- 485 

tion (49) in Table 5. It is clarified that two different expressions are used for the small 486 

and the large scales, where the transition time scale from the Pareto to the PBF distri- 487 

bution is denoted as 𝑘∗. In the Pareto case, 𝑃1
(𝑘)

 can be determined directly from the 488 

climacogram and the mean (left column of Equation (49) in Table 5). For the PBF case 489 

an additional equation is required, which has been derived based on maximum en- 490 

tropy considerations [51] and involves an additional parameter θ (0 ≤ 𝜃 ≤ 1). Conti- 491 

nuity of the transition demands that 𝜁(𝑘∗) = 1.  492 

Table 5 Mathematical relationships of the ombrian model. The ombrian curves per se are given in the last row. 493 

Quantity and symbol Small scales, 𝒌 ≤ 𝒌∗ (Pareto) Large scales, 𝒌 ≥ 𝒌∗ (PBF) 
Eqn. 

no. 

Distribution function, 

𝐹(𝑘)(𝑥) 
1 − 𝑃1

(𝑘) (1 + 𝜉
𝑥

𝜆(𝑘)
)
−1 𝜉⁄

 1 − 𝑃1
(𝑘) (1 + 𝜉′𝜁(𝑘) (

𝑥

𝜆(𝑘)
)
𝜁(𝑘)

)

−
1

𝜉′𝜁(𝑘)

 (46) 

Mean, Ε[𝑥(𝑘)] 𝜇 (47) 

Climacogram, 𝛾(𝑘) 𝜆1 (1 +
𝑘

𝛼
)
2𝐻−2

+ 𝜆2 (1 − (1 +
𝛼

𝑘
)
2𝐻−2

) (48) 

Probability wet, 𝑃1
(𝑘) 

1 − 𝜉

1/2 − 𝜉

𝜇2

𝛾(𝑘) + 𝜇2
 1 − (1 − 𝑃1

(𝑘∗))
(𝑘/𝑘∗)𝜃

, (0 ≤ 𝜃 ≤ 1) (49) 

Lower tail index (inverse), 
1

𝜁(𝑘)
 

1 √(1 − 2𝜉)(𝑃1
(𝑘)(𝛾(𝑘)/𝜇2 + 1) − 1) (50) 

Upper tail index, 𝜉 

 
𝜉 𝜉′ =

𝜉

𝜁(𝑘)
  

Scale parameter (inverse), 
1

𝜆(𝑘)
 

𝑃1
(𝑘)

𝜇(1 − 𝜉)
 

𝑃1
(𝑘)

𝜇
(1 +

1

(1 − 𝜉)(𝜁(𝑘))
2 −

1

(𝜁(𝑘))
√2
) (51) 

Quantile, 𝑥 𝜆(𝑘)
( 𝑃1

(𝑘) 𝑇 𝑘⁄ )
𝜉
− 1

𝜉
 𝜆(𝑘) (

( 𝑃1
(𝑘) 𝑇 𝑘⁄ )

𝜉
− 1

𝜉
)

1
𝜁(𝑘)

 (52) 

Both the decreasing (Pareto) and the bell-shaped (PBF) types of probability densities 494 

are consistent with natural behaviours for small and large time scales, respectively. It is 495 

noted though that the tail index of the PBF distribution in the form in Table 4, is not ξ but 496 

𝜉′ = 𝜉/𝜁(𝑘) and tends to zero as 𝑘 → ∞. This violates a requirement of a constant tail in- 497 

dex, which is theoretically justified in [31], but this violation happens only for large time 498 

scales. The alternative to keep a constant tail index ξ, is not an option because it would 499 
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result in a finite variance as 𝑘 → ∞ (with a coefficient of variation 𝜉/√1 − 2𝜉), i.e., in a 500 

nonergodic process.  501 

What it remains to complete the model is to determine the functions 𝜆(𝑘) and 𝜁(𝑘) 502 

from the mean μ and the climacogram γ(k). This has been done in [31] and the results are 503 

shown in Table 5. The final relationships rely on the mean μ, the climacogram 𝛾(𝑘), the 504 

probability wet 𝑃1
(𝑘) and the tail index ξ of the distribution function of rainfall intensity. 505 

For precipitation in Bologna the following model parameters have been estimated in [31], 506 

while the transition time scale was set 𝑘∗ = 96 h: 507 

• Mean intensity, μ = 0.0823 mm/h; 508 

• Intensity scale parameters, 𝜆1 = 0.00110 mm2/h2 , 𝜆2 = 1.43 mm
2/h2; 509 

• Time scale parameter, 𝛼 = 8.74 h; 510 

• Hurst parameter, H = 0.92; fractal (smoothness) parameter, 𝑀 = 1 − 𝐻 = 0.08;  511 

• Exponent of the expression of probability dry/wet, θ = 0.787; 512 

• Upper tail index, ξ = 0.121. 513 

For the hourly time scale, the resulting distribution is Pareto (Table 4, Table 5) with 514 

a discontinuity at zero, 𝑃0 ≔ 𝑃{𝑥 = 0} = 1 − 𝑃1  and parameters 𝜉 = 0.121, 𝜆 = 515 

2.046mm h⁄ , 𝑃1 = 0.0354. The FHK-CD climacogram is shown in Figure 6(b) (marked as 516 

“theoretical”), while the resulting autocorrelation function is shown in Figure 6(c). The 517 

cumulants of the process 𝑥𝜏 are shown Figure 6(a), along with the cumulants of 𝑣𝜏 deter- 518 

mined from Equation (38). The coefficients 𝑎𝑗, needed to evaluate 𝜅𝑝
(𝑣)

 in Equation (38), 519 

are determined from an AMA (asymmetric) generation scheme (Equation (31) ) with 𝐽 = 520 

1024 and phases 𝜗 generated randomly (this contributes to a realistic shape of generated 521 

rainfall events).  522 

For the approximation 𝑣𝜏
′ of 𝑣𝜏, we use a single Pareto distribution and allow a dis- 523 

continuity 𝑃1 at 𝑣′ = 0. For mathematical consistency, the tail index of 𝑣𝜏
′  should neces- 524 

sarily be ξ = 0.121, so that the moments of order beyond 1/ξ = 8.2 be infinite as is the case 525 

with the moments of 𝑥𝜏. The other parameters of the Pareto distribution of 𝑣𝜏
′ are calcu- 526 

lated by minimizing 𝑒2  in Equation (41), setting 𝑝max  = 8, and are found to be 𝜆(𝑣
′) = 527 

3.681, 𝑃1
(𝑣′)

= 0.0171, while the required shift of Equation (42) is negligible (𝑐 = 0). The 528 

cumulants of 𝑣𝜏
′ are also plotted in Figure 6(a), where it can be seen that they are indistin- 529 

guishable from those of 𝑣𝜏 and thus the achieved approximation is very good. 530 

Because of the very small value of 𝑃1
(𝑣′)

, a very large number of 𝑣𝜏
′ (98.3%) will be 531 

zero. The nonzero values will determine the locations of rainfall events, i.e., sequences of 532 

non-zero 𝑥𝜏. It is not reasonable to make these locations purely random and for this reason 533 

we devised the following procedure. A first model run is done with 𝑃1
(𝑣′)

= 1 (no zeros). 534 

Subsequently, we find a threshold 𝑐0 so that the fraction of values 𝑥𝜏 that are greater than 535 

𝑐0 equal 𝑃1
(𝑣′)

. In a second model run we set 𝑣𝜏
′ = 0 at those τ where in the first run 𝑥𝜏 < 536 

𝑐0. For the remaining τ we generate 𝑣𝜏
′ from the continuous part of 𝑣𝜏

′. This procedure al- 537 

lows clustering of the precipitation events, as typically happens in reality.  538 

The values 𝑥𝜏 in the second run, will unavoidably be nonzero, because the generating 539 

Equation (29) involves a linear combination of very many 𝑣𝜏
′ and this can hardly result in 540 

zero values. Therefore, post processing of the generated time series is required, in order 541 

to reinstate the required number of zeros. This constitutes of replacing 𝑥𝜏  by 𝑥𝜏
′ , deter- 542 

mined as: 543 

𝑥𝜏
′ = {

0 𝑥𝜏 < 𝑐1
𝑙(𝑥𝜏 − 𝑐1)

𝑚 𝑥𝜏 ≥ 𝑐1
 (53) 

where 𝑐1, 𝑙 and 𝑚 are the parameters of the post-processing phase. These are determined 544 

by minimizing the total error (in effect making it zero) in preserving the probability wet, 545 

and the first and second cumulants of the distribution. In our application, the post-pro- 546 

cessing parameters have been found to be 𝑐0 = 3.18mm h⁄ , 𝑐1 = 1.15 mm h⁄ , 𝑙 = 547 

1.877,𝑚 = 0.832. 548 
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Comparison of the theoretical statistical characteristics of the distribution of 𝑥𝜏 to the 549 

empirical ones of the generated sample, both before and after post processing, are shown 550 

in the panels of Figure 6. The empirical climacogram is shown in Figure 6(b). Before post 551 

processing there is a marked difference of the empirical climacogram from the theoretical. 552 

This does not indicate a weakness of the algorithm. It just reflects the fact that, with a 553 

Hurst parameter as high as 𝐻 = 0.92, there is high uncertainty and variability, while a 554 

sample of 𝑛 = 10 000 is too short to eliminate this uncertainty; note that the equivalent 555 

sample size (which indicates the sampling variability) in this case is 𝑛′ ≔ 𝛾(1)/𝛾(𝑛) ≈ 7 556 

instead of 𝑛 = 10 000. Interestingly, the post processing substantially decreases the dif- 557 

ference from the theoretical curve. The improvement due to post processing is spectacular 558 

in panel (d), which shows a comparison of the theoretical and empirical marginal distri- 559 

bution of 𝑥𝜏. Before post processing, even though the cumulants are preserved, the ini- 560 

tially generated small values are problematic as no zero values are generated. This is fully 561 

remedied by the post processing technique. Finally, panel (c) shows that the autocorrela- 562 

tions are well preserved both before and after post processing.  563 

 564 

Figure 6. Graphical depiction of the results of the simulation application for a real-world case study for the precipitation 565 
process in Bologna at the hourly time scale, modelled as a persistent FHK process with Pareto distribution with disconti- 566 
nuity at zero: (a) cumulants; (b) climacogram; (c) autocorrelogram; (d) marginal distribution. 567 
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Further information on the form of the generated time series is provided in Figure 7, 568 

this time showing not statistical characteristics but the time series per se. The plot, cover- 569 

ing a period of 2000 h (83 d; panel (a)) with a focus on the first 200 h (~8 d; panel (b)), 570 

indicates that the time series resemble the form of natural rainfall events. 571 

 572 

Figure 7. Plots of generated time series of precipitation in Bologna at hourly time scale: (a) for a 573 
period of 2000 h (83 d); (b) focus on the first 200 h (~8 d). 574 

3.5. Simulating the precepitation process at the annual time scale 575 

The same precipitation model as in the previous subsection was used for generation 576 

at the annual scale. Now the distribution is no longer Pareto but PBF, whose treatment is 577 

more laborious. On the other hand, the probability dry at the annual scale is zero, and 578 

thus the distribution is continuous. This makes the generation simpler as no post pro- 579 

cessing is required.  580 

While at the hourly scale all cumulants are positive tending fast to infinity (Figure 581 

6(a)), at the annual scale some of the cumulants (most notably the fourth) are negative 582 

(Figure 8(a)). According to the model, again the cumulants tend to infinity but for much 583 

higher p (>33) as now 𝜉′ = 0.030. The other parameters of the PBF distribution are 𝜁(𝑣) = 584 

4.00 and 𝜆(𝑣) = 0.089 mm/h. The approximation 𝑣𝜏
′ of 𝑣𝜏 is made by another PBF distribu- 585 

tion with slightly different parameters, 𝜁(𝑣
′) = 4.01 and 𝜆(𝑣

′) = 0.098 mm/h. As seen in 586 

Figure 8(a), the achieved approximation is good, except for a substantial difference in the 587 

first cumulants of 𝑣𝜏
′ and 𝑣𝜏, so that the required shift of Equation (42) is not negligible, 588 

𝑐 = 0.0871 mm/h.  589 

Comparisons of the theoretical statistical characteristics of the distribution of 𝑥𝜏 to 590 

the empirical ones of the generated sample are shown in the panels of Figure 8. In all 591 

panels the agreement between theoretical and empirical characteristics is very good. 592 
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 593 

Figure 8. Graphical depiction of the results of the simulation application for a real-world case study for the precipitation 594 
process in Bologna at the annual time scale, modelled as a persistent FHK process with PBF distribution: (a) cumulants; 595 
(b) climacogram; (c) autocorrelogram; (d) marginal distribution. 596 

4. Discussion and conclusions 597 

Stochastic simulation of complex processes necessarily relies on approximations of 598 

distribution functions. Typically, these approximations are made with reference to the 599 

normal distribution, e.g. the Gram-Charlier series, the Edgeworth approximation, etc. [35- 600 

37,52]. These, however, are not good for simulation as no generic random number gener- 601 

ation algorithms are available for such type of approximations. They can also be too com- 602 

plicated. Here we provide more general and more powerful approximations of distribu- 603 

tion functions on the basis of cumulants. These are quite flexible and can have several 604 

forms, such as (a) the sum of a few (e.g. two or even just one) stochastic variables with 605 

typical distributions of an appropriate type (such as those contained in Table 2-Table 4), 606 

(b) the occasional involvement of discontinuities in constituent distributions (usually at 607 

their lower bounds) and (c) the discretization of the stochastic variable, in the case that its 608 

domain is bounded from both above and below. As random number generation algo- 609 

rithms are readily available for these typical distributions, the proposed approximation is 610 

useful in stochastic simulation. 611 

The approximation of a distribution via cumulants turns out to provide very power- 612 

ful means for stochastic simulation of processes of any type, with short- and long-range 613 
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dependence. The combination of this approximation with the asymmetric (AMA) or sym- 614 

metric (SMA) moving average generation schemes can tackle really demanding simula- 615 

tion processes. The genuine stochastic simulation approach that is studied, which does 616 

not perform transformations of the stochastic variables involved, is useful, convenient and 617 

powerful. This is particularly the case for problems where time directionality is important; 618 

it is reminded that a Gaussian process, even when (back) transformed to non-Gaussian by 619 

any nonlinear transformation, cannot provide a process with time asymmetry. 620 

The case studies conducted confirm the excellent performance of the method for a 621 

variety of demanding problems and a variety of distributions and time scales. In particu- 622 

lar, the long-range dependence, however high, as well as the antipersistence, do not entail 623 

any difficulty in applying the method. In contrast, some characteristics of the marginal 624 

distribution, such as single or double boundedness, and especially the possible intermit- 625 

tence, may cause difficulties. For this reason, all case studies conducted involve non- 626 

Gaussian marginal distributions that are bounded, thus making the problems more chal- 627 

lenging. These include distributions double-bounded, such as uniform, and single- 628 

bounded, such as exponential, Pareto and PBF, with the Pareto distribution also having a 629 

discontinuity at the origin (intermittence). The examples studied show how the problems 630 

of boundedness and discontinuity can be handled through simple post-processing proce- 631 

dures, thus achieving an overall satisfactory performance.  632 

In conclusion, the method seems promising and expandable to several future re- 633 

search directions, such as multivariate stochastic modelling, downscaling, disaggregation, 634 

and stochastic modelling of two or more processes simultaneously, particularly in cases 635 

where time directionality is important (e.g. rainfall-runoff modelling at small time scales).  636 

Stochastic simulation has recently acquired tremendous importance, as conventional 637 

energy sources are being replaced with renewables, whose nature is stochastic and thus 638 

their assessment needs stochastic tools. Its utility should now be appreciated more than 639 

ever, after various spectacular failures of aspirations to achieve satisfactory predictions of 640 

geophysical processes in deterministic terms, and after reconciliation with the fact that 641 

uncertainty is an intrinsic characteristic of nature, not subject to elimination.  642 
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