
ON THE RIEMANN HYPOTHESIS FOR THE ZETA FUNCTION
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Abstract. In this paper we address some variants for the products of Hadamard
and Patterson. We prove that all zeros of the Riemann Ξ–function are real. We also
prove that the Riemann hypothesis is true. The equivalence theorems associated
with the Riemann zeta–function are obtained in detail.
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1. Introduction

In 1774, Euler [1] introduced the zeta–function by the real series

(1) ζ (s) =
∞∑
n=1

m−s,

where s ∈ R, n ∈ N and s > 1, and proposed his product by

(2) ζ (s) =
∏
p

(
1− p−s

)−1
,

where p run through all primes and s > 1, if we denote the sets of real and integer
numbers by R and N, respectively.

1.1. Functions. In his remarkable paper published in 1859, Riemann [2] extended
(1) to be meromorphic continuation to the whole complex plane s ∈ C except for the
simple pole s = 1 with residue Ress=1 (ζ (s)) = 1 and proposed that (1) and (2) are
valid for Re (s) > 1 if C is denoted as the set of complex numbers, and Re (s) and
Im (s) are denoted as the real and imaginary part of the complex variable s ∈ C.
It has been proved that for s ∈ C\{1}, Eq. (1), which is well-known Riemann
zeta–function, has the trivial zeros s = −2m with m ∈ N [3].

Riemann suggested the completed Riemann zeta–function by the expression [2]

(3) ς (s) = π−s/2Γ (s/2) ζ (s) ,

where s ∈ C and Γ is the gamma function [4], and in his book [5], Neukirch discovered
that (3) is meromorphic continuation to the whole complex plane s ∈ C except for two
poles s = 1 with residue Ress=1 (ς (s)) = 1 and s = 0 with residue Ress=0 (ς (s)) =
−1.
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To remove the poles of two function and trivial zeros, Riemann discovered the
entire Riemann zeta–function, defined by [2]

(4) ξ (s) =
1

2
s (s− 1)π−s/2Γ (s/2) ζ (s)

for s ∈ C.
In order to study the zeros of (4), Riemann defined the entire Riemann zeta–

function at the critical line Re (s) = 1/2 by [2]

(5) Ξ (t) = ξ (1/2 + it) ,

which is denoted by Landau [6], and called the Riemann Ξ function for t ∈ C and
i =

√
−1 by Pólya [7], and discovered by Riemann [2]

(6) log Ξ (t) =
∞∑
n=1

(
1− t2

τ 2n

)
+ log Ξ (0) ,

where τn run the positive roots of Ξ (t) = 0.

1.2. Analytic continuations. By (4), Riemann discovered that [2]

(7) ξ (s) = 4

∞∫
1

d
(
x

3
2ψ(1) (t)

)
dt

t−
1
4 cosh

((
s− 1

2

)
log t

2

)
dt

for s ∈ C and

(8) ψ (x) =
∞∑
n=1

e−n
2πx,

with x > 0.
To further study the zeros of (1) for s ∈ C, Riemann showed [2]

(9) Ξ (t) =
1

2
−
(
t2 +

1

4

) ∞∫
1

ψ (x) x−
3
4 cos

(
t

2
log x

)
dx,

or, alternatively,

(10) Ξ (t) = 4

∞∫
1

d
(
x

3
2ψ(1) (x)

)
dx

x−
1
4 cos

(
t

2
log x

)
dx.
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By (9), Hadamard [8] set up in 1893 the theory of the entire function to deal with
the series of (5), and suggested that

(11) Ξ (t) =
1

2
−
(
t2 +

1

4

) ∞∫
1

ψ (x) x−
3
4 cos

(
t

2
log x

)
dx =

∞∑
k=0

(−1)k φkt
2m,

where

(12) φk =

(
D2k

4
−D2k−2

)
and

(13) Dk =
1

22kΓ (2k + 1)

∞∫
1

ψ (x)x−
3
4 (log x)k dx.

In this case, (5) is an even entire function.
By (10), Pólya [7] in 1927 showed that

(14) φk =
Ξ(2k) (0)

Γ (2k + 1)
.

To find the existence for the real zeros of (5), Hardy in 1914 [9] proposed the well-
known result is that (5) has infinitely many zeros, which was proved by Hardy and
Littlewood in 1921 [10]. On the other hand, the necessary condition for the real
zeros of (5) is that the coefficients φk satisfy the Turán inequalities, which was
suggested in [11, 12]. Pólya and Schur [13] considered the product and series for (5)
are equivalent to each others. They have played the important roles in the analysis
of the zeta function because it is connected with the Laguerre-Pólya class in theory
of the entire function [14].

In 1893, Hadamard developed [8] a well-known product for the entire Riemann–
zeta function by the expression [3]

(15) ξ (s) = ξ (0)
∞∏
n=1

(
1− s

sn

)
,

where sn run the roots of ξ (s) = 0 and s ∈ C.
After one year, Cahen [15] discovered

(16) Ξ (t) = Ξ (0)
∞∏
n=1

(
1− t2

τ 2n

)
,

which can be deduced by (6) and was rediscovered by Titchmarsh [16], where τn run
the positive roots of Ξ (t) = 0.
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By the theory of the entire functions, Edwards in 1974 proved that [3]

(17) ξ (s) = A1

∞∏
n=1

(
1−

s− 1
2

sn − 1
2

)
and

(18) Ξ (t) = A2

∞∏
n=1

(
1− t

tn

)
,

where tn run the roots of Ξ (t) = 0, and both A1 and A2 are the constants.
In 1988, Patterson ([17], p.34) discovered an alternative product by

(19) ξ (s) =
1

2

∞∏
n=1

(
1− s

ŝn

)(
1− s

1− ŝn

)
,

where s ∈ C and

(20) ŝn = Re (sn) + iτn.

1.3. Functional equations. In 1859, Riemann showed that [2]

(21) ζ (s) = Γ (1− s) (2π)s−1 2 sin (sπ/2) ζ (1− s) ,

where s ∈ C.
For s ∈ C Landau in 1918 [18] proposed an alternative form of (21), given by

(22) ζ (1− s) = 2 (2π)−s cos (πs/2) Γ (s) ζ (s) ,

and discovered that [18]

(23) ς (s) = ς (1− s) ,

(24) ξ (s) = ξ (1− s)

and

(25) Ξ (t) = Ξ (1− t) ,

where s ∈ C.
It was reported in 1768 that Euler [19] discovered (21) and (21) in the real case.

In his book (for the details, see [6], p.288), Landau also suggested that

(26) ξ (s) = ξ (1− s) = ξ

(
1

2
+ it

)
= ξ

(
1

2
− it

)
= Ξ (t) = Ξ (−t) ,

where t ∈ R and s ∈ C.
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1.4. Critical trip. The critical trip for the Riemann zeta–function is

(27) 0 < Re (s) < 1,

which was proposed in 1859 by Riemann [2] and proved in 1896 by Hadamard [20]
and Vallee-Poussin [21]. This was connected with the number of the nontrivial zeros
of the Riemann zeta–function in critical trip 0 < Re (s) < 1 and in the trip 0 < t < T ,
which is defined by [22, 23]

(28) Ñ (T ) = # {s = σ + it : 0 ≤ t ≤ T, 0 < σ < 1, ζ (s) = 0} .

The completed and entire Riemann zeta–functions also have the same critical trip
0 < Re (s) < 1 [3].

1.5. Critical line. Riemann proposed that the critical line for the Riemann zeta–
function is that all nontrivial zeros of the Riemann zeta–function lie on the line
Re (s) = 1/2, which is also the critical line of the completed and entire Riemann
zeta–functions [24, 25].

1.6. Riemann-von Mangoldt formula. The number of the nontrivial zeros for
the Riemann zeta–function at the critical line and in the trip 0 < t < T is equal to
the number of the zeros for Ξ (t) in the trip 0 < t < T , and we denote it by [2, 22, 23]

(29) Ñ0 (T ) = # {s = 1/2 + it : 0 ≤ t ≤ T, ζ (s) = 0} .

Riemann reported that [2, 22]

(30) Ñ0 (T ) ≈
T

2π
log

T

2πe
,

and von Mangoldt proved in 1905 that [26, 23]

(31) Ñ0 (T )=
T

2π
log

T

2πe
+O (log T ) .

Eq. (31) is the Riemann-von Mangoldt formula due to them.

1.7. Riemann-Siegel formula. In the Riemann’s Nachlass, Riemann proposed the
formula of the method to find the imaginary part of the complex variable sn, where
sn run the roots of ξ (s) = 0 and s ∈ C. In fact, Riemann obtained few values for
the imaginary part of the complex variable sn [2]. Based on the work of Hardy and
Littlewood [10], Siegel in 1932 revised the Riemann result and obtained [27, 28]

(32) eiA(t)ζ

(
1

2
+ it

)
= 2

g(t)∑
j=1

1√
j
cos (A (t)− t log j) + S (t) ,
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where t > 0,

(33) g (t) =

[√
t

2π

]
,

(34) A (t) = − t

2
log π + arg Γ

(
1

4
+
it

2

)
and [10]

(35) S (t) = O
(
1/

4
√
t
)
.

It is clear that Riemann and Siegel [27, 28] showed that

(36) Im (sn) = τn (τn > 0)

subject to the condition, which implies that either [22]

(37) Ñ (T ) = Ñ0 (T ) ,

or [27]

(38) Im (sn) = tn (tn > 0) ,

where Ξ (t) = 0. Different from the techniques [29], a fast algorithm for finding
the nontrivial zeros for the Riemann zeta–function was developed by Odlyzko and
Schönhage [30].

It is well known that (38) might be obtained by the theorem of Hardy [9] and
the Turán inequalities [31], and also deduced by the product for the Riemann Ξ
function [3], which is an analogue of the Euler product of the cosine [32]. Here, tn
are called the Riemann-Siegel zeros, which are well-known constants in the present
paper.

1.8. Riemann hypothesis. In order to present the distribution of the prime, Rie-
mann in 1985 [2] conjectured well-known Riemann hypothesis, which gives the assert
the following [2, 22, 23]:

Conjecture 1. The nontrivial zeros of ζ (s) have real part equal to 1/2, i.e., Re (s) =
1/2.

This famous hypothesis remains the most important unsolved problem in theory
of the analytic number theory for more than 160 years [33, 34, 35]. As a matter of
fact, Riemann [2] showed that the zeros of the completed [5] and entire [36] Riemann
zeta–function are the same as those of the Riemann zeta–function. This implies that
the real part of the zeros of the completed [5] and entire [36] Riemann zeta–functions
functions is the same as that of the Riemann zeta–function [2]. For the details, see [2,
22, 23]. The consequence of its truth implies that Lindelöf conjecture ([17], p.34),
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Montgomery pair correlation conjecture [38, 39] and the Berry–Keating conjecture in
quantum chaos [40, 41] are true and is also related to the Yang-Lee theorem [42, 43].
For the more equivalences of this conjecture, see [44].

1.9. The target of this paper. To prove Conjecture 1, our main aim is to find a
best way to provide new products for the Riemann Ξ–function with the nontrivial
zeros sn of the Riemann zeta–function by the variants of the Hadamard [8] and
Patterson ([17], p.34) products at the critical line because by the result coming from
the theorem of Hardy [9], it is known that it may has infinitely many real zeros, which
is the same as the fact that the Jensen polynomials for the Riemann zeta–function
have real zeros [45]. With the assistance of the Riemann-Siegel zeros tn, we obtain
the real part of the (nontrivial) zeros for the entire Riemann zeta–function (4), which
is derived from the proved fact, which, so–called the conjecture of Jensen [7, 35, 45],
that all zeros for the Riemann Ξ–function (5) are real. This real part implies the
truth of the Riemann hypothesis.

The structure of the paper is designed as follows. In Section 2 we investigate the
integral, series and product for the entire Riemann zeta– function. In Section 3, we
study integral, series and product for the Riemann Ξ function and give the existence
theorem of the zeros for the Riemann Ξ–function, and prove the Riemann hypothesis.
In Section 4 we mainly give the equivalence theorems.

1.10. Acknowledgements. I work on the plan of the Riemann conjecture from
autumn 2018. At first, I would like to express thanks for Professor Nouzha El
Yacoubi (President of African Mathematical Union), Professor Mahmoud Abdel-Aty
(Vice-President of African Academy of Sciences and Sohag University), Professor
Jeffrey Hoffstein (Brown University), Professor Mircea Merca (University of Craiova
and Academy of Romanian Scientists), Professor J. A. Tenreiro Machado (Instituto
Superior de Engenharia do Porto), Professor Mustafa Bayram (Biruni University),
Professor Sohail Nadeem (Quaid-i-Azam University), Professor Miguel A. F. Sanjuan
(King Juan Carlos University), Professor Minvydas Ragulskis (Kaunas University of
Technology), Professor Hossein Jafari (University of South Africa), and Professor
Dumitru Baleanu (Cankaya University), for supporting the plan of the Riemann
conjecture from spring 2019. I would also like to thank Professor Mahouton Norbert
Hounkonnou (University of Abomey-Calavi) and Professor Carlo Cattani (Tuscia
University) for giving the help to improve the manuscript and discuss the Riemann-
zeta function. I would like to remember Professor He-Ping Xie (Shenzhen University)
and Professor Feng Gao (China University of Mining and Technology) who support
me to study mathematics. This work is supported by the Yue-Qi Scholar of the
China University of Mining and Technology (No. 102504180004).
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2. Theory of the entire Riemann zeta–function

In this section we investigate the theory of the entire Riemann zeta–function in-
volving the integral, series and product formulas.

2.1. The integral representation. The integral representation of the entire Rie-
mann zeta–function was first given by Riemann [2].

Lemma 1. (Riemann integral representation theorem)
Let s ∈ C. If ψ (x) is defined in (8), then

(39) ξ (s) = 4

∞∫
1

d
(
x

3
2ψ(1) (x)

)
dx

x−
1
4 cosh

(
(s− 1) log x

2

)
dx.

Moreover,

(40) ξ (s) = ξ (1− s) .

Proof. See, for (39), Riemann [2] and, for (40), Landau [18]. �

2.2. The series representation. The series representation for the entire Riemann
zeta–function was first suggested by Edwards [3].

Lemma 2. (Edwards series theorem)
Let s ∈ C and k ∈ N ∪ {0}. If ψ (x) is defined in (8), then

(41) ξ (s) =
∞∑
k=0

φk

(
s− 1

2

)2k

where

(42) φk =
4

Γ (2k + 1)

∞∫
1

d
(
x

3
2ψ(1) (x)

)
dx

x−
1
4

(
log x

2

)2k

dx.

Proof. For the detailed proof, see [3]. �

2.3. The product representations. We now introduce the products of Hadamard
and Patterson and propose the variants of them.

To begin with, we investigate the special values for the entire Riemann zeta–
function.

Lemma 3. (Non-vanishing theorem)
There exist

(43) ξ (0) = ξ (1) ̸= 0
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and

(44) ξ (1/2) ̸= 0.

Proof. See [18] and related references ([6], p.288; [46], p.49). �
Remark. Here, ξ (0) = ξ (1) = 1/2 and ξ (1/2) ≃ 0.994 ([46], p.49).

Lemma 4. (Product of Hadamard I)
Let s ∈ C and n ∈ N. Then

(45) ξ (s) = ξ (0)
∞∏
n=1

(
1− s

sn

)
,

where the product runs over zeroes sn of (4).

Proof. See Hadamard [8], Edwards ([3], p.47) and Broughan ([46], p.47). �
Lemma 5. (Product of Hadamard II)

Let γ be the Euler’s constant such that

(46) µ = log 2 +
1

2
log π − 1− 1

2
γ.

Then for s ∈ C and n ∈ N,

(47) ξ (s) = ξ (0) esµ
∞∏
n=1

(
1− s

sn

)
es/sn ,

where the product runs over zeroes sn of (4).

Proof. See Hadamard [8]. �
Remark. It is known that (45) and (47) have been proved by Hadamard [8], (45)
has been reported in [3], and (47) has been commented in ([6], p.32), discussed by
Valiron and Titchmarsh ([48], p.3), and proved by Ingham ([47], p.57-58). For more
detailed work, see [46].

Now, we start with the work from Hadamard to Patterson.

Lemma 6. (Products of Patterson)
Let s ∈ C and n ∈ N. Suppose that

(48) ŝn = Re (sn) + iτn,

which are defined in (20). Then

(49) 2ξ (s) =
∞∏
n=1

(
1− s

ŝn

)(
1− s

1− ŝn

)
,

where the product runs over zeroes ŝn.
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Proof. See the work of Patterson ([17], p.34). �

We now propose some variants from the products of Hadamard [8] by Lemma 3.

Theorem 1. Let s ∈ C and n ∈ N. Then

(50) ξ (s) = ξ

(
1

2

) ∞∏
n=1

(
1−

s− 1
2

sn − 1
2

)
,

where the product runs over zeroes sn of (4).

Proof. By Lemmas 3 and 4, we show

(51)

ξ (s)

= ξ (0)
∞∏
n=1

(
1− s

sn

)
= ξ (0)

∞∏
n=1

(
sn−s
sn

)
= ξ (0)

∞∏
n=1

(
sn− 1

2

sn− 1
2

· sn−s
sn

)
= ξ (0)

(
∞∏
n=1

sn− 1
2

sn

)
·
(

∞∏
n=1

sn−s
sn− 1

2

)
= ξ (0)

[
∞∏
n=1

(
1− 1

2sn

)]
·
(

∞∏
n=1

sn−s
sn− 1

2

)
= ξ (0)

[
∞∏
n=1

(
1− 1

2sn

)]
·
[

∞∏
n=1

sn− 1
2
−(s− 1

2)
sn− 1

2

]
= ξ

(
1
2

) ∞∏
n=1

(
1− s− 1

2

sn− 1
2

)
,

which is the required result. �

Theorem 2. If µ is defined in (46), then for s ∈ C and n ∈ N,

(52) ξ (s) = ξ

(
1

2

)
esµ

∞∏
n=1

(
1−

s− 1
2

sn − 1
2

)
es/sn ,

where the product runs over zeroes sn of (4).

Proof. In view of Lemmas 3 and 5, we have

(53)

ξ (s)

= ξ (0) esµ
∞∏
n=1

(
1− s

sn

)
es/sn

=

(
esµ

∞∏
n=1

es/sn
)
·
[
ξ (0)

∞∏
n=1

(
1− s

sn

)]
.
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By Lemma 3 and Theorem 1, Eq. (53) can be rewritten in the form

(54)

ξ (s)

=

(
esµ

∞∏
n=1

es/sn
)
·
[
ξ (0)

∞∏
n=1

(
1− s

sn

)]
=

(
esµ

∞∏
n=1

es/sn
)
·
[
ξ
(
1
2

) ∞∏
n=1

(
1− s− 1

2

sn− 1
2

)]
= ξ

(
1
2

)
esµ

∞∏
n=1

(
1− s− 1

2

sn− 1
2

)
es/sn ,

and the result follows. �

We now suggest a variant from the product of Patterson ([17], p.34) by Lemma 3.

Theorem 3. Let s ∈ C and n ∈ N. Then

(55) ξ (s) = ξ

(
1

2

) ∞∏
n=1

(
1−

(
s− 1

2

)2(
ŝn − 1

2

)2
)
,

where the product runs over ŝn, which are defined in (19).

Proof. With (49) we arrive at

(56)

ξ (s)

= 1
2

∞∏
n=1

(
1− s

ŝn

) ∞∏
n=1

(
1− s

1−ŝn

)
= 1

2

[
∞∏
n=1

(
1− 1

2ŝn

)
·

∞∏
n=1

(
1− s− 1

2

ŝn− 1
2

)]
·
[

∞∏
n=1

(
1−

1
2

1−ŝn

)
·

∞∏
n=1

(
1 +

s− 1
2

ŝn− 1
2

)]
= 1

2

[
∞∏
n=1

(
1− 1

2ŝn

)
·

∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

(
1− s− 1

2

ŝn− 1
2

)
·

∞∏
n=1

(
1 +

s− 1
2

ŝn− 1
2

)]
= 1

2

[
∞∏
n=1

(
1− 1

2ŝn

)
·

∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

(
1− s− 1

2

ŝn− 1
2

)(
1 +

s− 1
2

ŝn− 1
2

)]
= 1

2

[
∞∏
n=1

(
1− 1

2ŝn

)
·

∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

(
1− (s− 1

2)
2

(ŝn− 1
2)

2

)]
= ξ

(
1
2

) ∞∏
n=1

(
1− (s− 1

2)
2

(ŝn− 1
2)

2

)
,
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where

(57)

∞∏
n=1

(
1− s

ŝn

)
=

∞∏
n=1

(
ŝn−s
ŝn

)
=

∞∏
n=1

(
ŝn− 1

2

ŝn− 1
2

· ŝn−s
ŝn

)
=

(
∞∏
n=1

ŝn− 1
2

ŝn

)
·
(

∞∏
n=1

ŝn−s
ŝn− 1

2

)
=

[
∞∏
n=1

(
1− 1

2ŝn

)]
·
(

∞∏
n=1

ŝn−s
ŝn− 1

2

)
=

[
∞∏
n=1

(
1− 1

2ŝn

)]
·
[

∞∏
n=1

ŝn− 1
2
−(s− 1

2)
ŝn− 1

2

]
=

[
∞∏
n=1

(
1− 1

2ŝn

)]
·
[

∞∏
n=1

(
1− s− 1

2

ŝn− 1
2

)]
and

(58)

∞∏
n=1

(
1− s

1−ŝn

)
=

∞∏
n=1

(
1−ŝn−s
1−ŝn

)
=

∞∏
n=1

(
1−ŝn− 1

2

1−ŝn− 1
2

· 1−ŝn−s
1−ŝn

)
=

(
∞∏
n=1

1−ŝn− 1
2

1−ŝn

)
·
(

∞∏
n=1

1−ŝn−s
1−ŝn− 1

2

)
=

[
∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
(

∞∏
n=1

1−ŝn−s
1−ŝn− 1

2

)
=

[
∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

1−ŝn− 1
2
−(s− 1

2)
1−ŝn− 1

2

]
=

[
∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

(
1− s− 1

2

1−ŝn− 1
2

)]
=

[
∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

(
1 +

s− 1
2

ŝn− 1
2

)]
.

�
Theorem 4. If µ is defined in (46), then for s ∈ C and n ∈ N,

(59) esµ
∞∏
n=1

es/sn = 1,

where the product runs over zeroes sn of (4).
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Proof. By (45), we have

(60) ξ (s) = ξ (0)
∞∏
n=1

(
1− s

sn

)
,

and by (47), we show

(61) ξ (s) = ξ (0) esµ
∞∏
n=1

(
1− s

sn

)
es/sn .

Thus, we deduce from (60) and (61) that

(62) ξ (0)
∞∏
n=1

(
1− s

sn

)
= ξ (0) esµ

∞∏
n=1

(
1− s

sn

)
es/sn ,

which implies that

(63) esµ
∞∏
n=1

es/sn = 1.

So, the proof is completed. �

2.4. Order, exponent of convergence, and genus. To show the sufficient con-
dition for the existence of the zeros of the entire Riemann zeta–function, we now
introduce the theory of the entire functions.

Let

(64) M (r) = max
r=|s|

|ξ (s)|

be the maximum modulus of ξ (s) on a disk of radius r.
We denote the order ϑ of ξ (s) by

(65) ϑ = lim
r→∞

sup
log logM (r)

log r
.

The genus of the canonical product, δ, is defined by a canonical product

(66)
∞∏
n=1

E (s/sn, δ) =
∞∏
n=1

(
1− s

sn

)
=
ξ (s)

ξ (0)
.

By Lemma 4, we find that ξ (s) is an entire function having infinite number of zeros
sn. Let

(67) M = {sn}∞n=1 , |sn| ≤ |sn+1| (n ∈ N)
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be a sequence of complex numbers with lim
n→∞

|sn| = +∞. The exponent of conver-

gence ν of the sequence M is defined by

(68) ν = inf
{
α
∣∣|sn|−α <∞ , ξ (sn) = 0

}
.

Theorem 5. ξ (s) is an integral function of order ϑ = 1 with the convergence expo-
nent of their zeros ν = 1 and genus δ = 0.

Proof. Applying Lemmas 3 and 4, we have

(69) ξ (s) = ξ (0)
∞∏
n=1

(
1− s

sn

)
,

where ξ (0) ̸= 0.
Hadamard proved [8] that ξ (s) is an integral function of finite order with genus

δ = 0. Titchmarsh ([48], p.3) proved that ξ (s) is an integral function of order ϑ = 1.
By applying the theorem of Borel ([50], p.30; [51], p.19), we find that an entire
function of order ϑ = 1 is equal to the convergence exponent of its zeros, and we
show ϑ = ν = 1.

Thus, the result follows. �
Remark. By Theorem 4, we deduce that ξ (s) is of genus δ = 0 since ξ (s) is an
integral function of order ϑ = 1.

2.5. Some equivalent classes. Here, we now present some equivalent classes, which
are connected with the series and product representations of them.

Class I
If (40) is valid, by Theorem 1 and Lemma 2, there exist

(70)
∞∑
k=0

φk

(
s− 1

2

)2k

= ξ (1/2)
∞∏
n=1

(
1−

s− 1
2

sn − 1
2

)
,

or, alternatively, by Lemma 2 and Theorem 2,

(71)
∞∑
k=0

φk

(
s− 1

2

)2k

= ξ

(
1

2

) ∞∏
n=1

(
1−

(
s− 1

2

)2(
ŝn − 1

2

)2
)
,

where ξ (1/2) ̸= 0, s ∈ C , k ∈ N ∪ {0}, n ∈ N, φk is defined in (42), ŝn are defined
in (20), and the product runs over zeroes sn of (4).

Class II
If (40) is valid, by Lemmas 2 and 4, there is

(72)
∞∑
k=0

φk

(
s− 1

2

)2k

= ξ (0)
∞∏
n=1

(
1− s

sn

)
,
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where ξ (0) ̸= 0, s ∈ C , k ∈ N ∪ {0}, n ∈ N, φk is defined in (42), and the product
runs over zeroes sn of (4).

Class III
If (40) is valid, by Lemma 4 and Theorems 1, this implies that there exists

(73) ξ (0)
∞∏
n=1

(
1− s

sn

)
= ξ (1/2)

∞∏
n=1

(
1−

s− 1
2

sn − 1
2

)
,

where s ∈ C, n ∈ N, ξ (0) ̸= 0 (ξ (1/2) ̸= 0) , and the products run over zeroes sn of
(4).

3. Theory of the Riemann Ξ function

In this section, we investigate the theory of the Riemann Ξ function. We consider
its order, convergence exponent of its zeros, and genus, theorems of Hardy and
Ingham, Riemann-von Mangoldt formula and Riemann-Siegel formula. Then, we
consider its integral, series and product formulas. Finally, we study its real zeros
based on the theorem of Hardy and give the proof of the Riemann hypothesis.

Let us recall the Riemann Ξ function, defined by [2]

(74) Ξ (t) = ξ

(
1

2
+ it

)
.

3.1. Order, convergence exponent, and genus. Now, we start with its order,
convergence exponent, and genus to study the existence of its zeros.

Theorem 6. Let t ∈ C. Then, Ξ (t) is an integral function of order ϑ = 1 with the
convergence exponent of their zeros ν = 1 and the genus δ = 0.

Proof. Titchmarsh ([49], p.29) proved that Ξ (t) is an integral function of order ϑ = 1.
By (66), we know

(75)
∞∏
n=1

E (it/ (sn − 1/2) , δ) =
∞∏
n=1

(
1− it

sn − 1
2

)
=

Ξ (t)

Ξ (0)
,

and we find δ = 0.
By applying the theorem of Borel ([50], p.30; [51], p.19), we have that an entire

function of order ϑ = 1 is equal to the convergence exponent of its zeros, and we get
ϑ = ν = 1 ([49], p.30)).

Thus, we finish the proof. �
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3.2. Integral representations. We now report the Riemann, Jensen and Hardy
integral representations of it.

Lemma 7. (Riemann integral theorem)
Let t ∈ C. If ψ (x) is defined in (8), then

(76) Ξ (t) = 4

∞∫
1

d
(
x

3
2ψ(1) (x)

)
dx

x−
1
4 cos

(
t log x

2

)
dx

or, alternatively,

(77) Ξ (t) =
1

2
−
(
t2 +

1

4

) ∞∫
1

ψ (x) x−
3
4 cos

(
t

2
log x

)
dx.

Moreover,

(78) Ξ (−t) = Ξ (t) .

Proof. See [2]. �
Lemma 8. (Jensen integral theorem)

Let t ∈ R. Then,

(79) Ξ (t) =

∞∫
0

k (x) cos (tx) dx,

where

(80) k (x) = 4
∞∑
n=1

(
2n4π2e9x/2 − 3n2πe5x/2

)
e−n

2πe2x .

Proof. See the work of Jensen [52, 53]. �
Remark. Wintner [54] proved that

(81) k (x) > 0

and

(82) k (x) = k (−x) .

Lemma 9. (Hardy integral theorem)
Let t ∈ R. Then,

(83) S (x) =

∞∫
0

Ξ (t)

t2 + 1
4

cos (tx) dx,
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where

(84) S (x) =
π

2

(
ex/2 − 2e−x/2ψ

(
e−2x

))
,

and ψ (x) is defined in (8). Moreover,

(85) S (−x) = S (x) .

Proof. See ([9]; [49], p.260; [55]). �
Remark. The Riemann integral theorem [2] was used to obtain the existence of the
real zeros [3]. The Jensen integral theorem [52, 53] was presented to get the Pólya
series theorem [13], which is related to the Jensen polynomials for the Riemann zeta–
function [45]. The Hardy integral theorem [9] was considered to obtain the theorem
of Hardy [9, 55].

3.3. Series representations. We now investigate the series representations for the
Riemann Ξ function.

Lemma 10. (Hadamard series theorem)
Let t ∈ R. Then,

(86) Ξ (t) =
∞∑
k=0

(−1)k φkt
2k

and

(87) φk =
D2k

4
−D2k−2,

where

(88) Dk =
1

22kΓ (2k + 1)

∞∫
1

ψ (x)x−
3
4 (log x)k dx.

Proof. See [8]. �
Lemma 11. (Pólya series theorem)

Let t ∈ R. Then,

(89) Ξ (t) =
∞∑
k=0

(−1)k φkt
2k

and

(90) φk =
2

πΓ (2k + 1)

∞∫
0

k (x) x2kdx =
Ξ(2m) (0)

Γ (2k + 1)
.
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Proof. See [13]. �

Theorem 7. Let t ∈ R. Then,

(91) Ξ (t) =
∞∑
k=0

(−1)k φkt
2k

and

(92) φk =
4

Γ (2k + 1)

∞∫
1

d
(
x

3
2ψ(1) (x)

)
dx

x−
1
4

(
log x

2

)2k

dx.

Proof. Substituting s = 1/2 + it into Lemma 2, the result follows. �

Remark. The coefficients of the series read

(93)

φk =
D2k

4
−D2k−2

= 1
22kΓ(2k+1)

∞∫
1

ψ (x)x−
3
4 (log x)k dx

= 2
πΓ(2k+1)

∞∫
0

k (x)x2kdx

= Ξ(2k)(0)
Γ(2k+1)

= 4
Γ(2k+1)

∞∫
1

d
(
x
3
2 ψ(1)(x)

)
dx

x−
1
4

(
log x
2

)2k
dx

with φk > 0 , where (88) is valid.
By Theorem 6, the coefficients of the series, obtained by Hadamard series theorem,

Pólya series theorem and Theorem 7, is related to order ϑ of the entire function Ξ (t)
by ([51], Theorem 2.2.2, p.9)

ϑ = lim
k→∞

sup
log log k

log (1/|φk|)
= 1,

and the convergence exponent of its zeros ν by

ν = lim
k→∞

sup
log log k

log (1/|φk|)
= 1

if one uses the theorem of Borel ([50], p.30; [51], p.19). Moreover, it is related to the
formula of Jensen, which is connected with the number of zeros of Ξ (t) ([23], p.14).



RIEMANN HYPOTHESIS 20

3.4. Product formulas. We now consider the products for the Riemann Ξ function.

Lemma 12. Let t ∈ R and n ∈ N. Then

(94) Ξ (t) = Ξ (0)
∞∏
n=1

(
1− t2

τ 2n

)
,

where τn run the positive roots of Ξ (t) = 0. Moreover,

(95) log Ξ (t) = log Ξ (0) + log
∞∑
n=1

(
1− t2

τ 2n

)
.

Proof. (94) was reported by Cahen [15] and Titchmarsh [16]. (95) was proposed by
Riemann [2]. �

Lemma 13. Let t ∈ R and n ∈ N. Then

(96) Ξ (t) = Ξ (0)
∞∏
n=1

(
1− t

tn

)
,

where tn run the roots of Ξ (t) = 0.

Proof. (96) was proposed by Hadamard [8] and discussed by Landau ([6], p.199). �

Theorem 8. Let t ∈ R and n ∈ N. Then

(97) Ξ (t) = Ξ (0)
∞∏
n=1

(
1− it

sn − 1
2

)
,

where sn run the roots of ξ (s) = 0.

Proof. Taking s = 1/2 + it into Lemma 4, we present

(98) Ξ (t) = ξ (1/2 + it) = ξ (0)
∞∏
n=1

(
1−

1
2
+ it

sn

)
.



RIEMANN HYPOTHESIS 21

Hence,

(99)

Ξ (t) = ξ (0)
∞∏
n=1

(
1−

1
2
+it

sn

)
= ξ (0)

∞∏
n=1

(
sn− 1

2
−it

sn

)
= ξ (0)

∞∏
n=1

(
sn− 1

2

sn− 1
2

· sn−
1
2
−it

sn

)
= ξ (0)

(
∞∏
n=1

sn− 1
2

sn

)
·
(

∞∏
n=1

sn− 1
2
−it

sn− 1
2

)
= ξ (0)

[
∞∏
n=1

(
1− 1

2sn

)]
·
[

∞∏
n=1

sn− 1
2
−it

sn− 1
2

]
= ξ

(
1
2

) ∞∏
n=1

(
1− it

sn− 1
2

)
= Ξ (0)

∞∏
n=1

(
1− it

sn− 1
2

)
,

and the required result follows. �

Theorem 9. If µ is defined in (46), then for t ∈ R and n ∈ N,

(100) Ξ (s) = Ξ (0) e(1/2+it)µ
∞∏
n=1

(
1− it

sn − 1
2

)
e(1/2+it)/sn ,

where the product runs over zeroes sn of (4).

Proof. Taking s = 1/2 + it into Lemma 5, we give

(101) Ξ (t) = ξ (1/2 + it) = ξ (0) eµ(1/2+it)
∞∏
n=1

(
1−

1
2
+ it

sn

)
e(1/2+it)/sn .

Hence, by Theorem 8, we show

(102)

Ξ (t)

= ξ (0) eµ(1/2+it)
∞∏
n=1

(
1−

1
2
+it

sn

)
e(1/2+it)/sn

=

(
eµ(1/2+it)

∞∏
n=1

e(1/2+it)/sn
)
·
[
ξ (0)

∞∏
n=1

(
1−

1
2
+it

sn

)]
=

(
eµ(1/2+it)

∞∏
n=1

e(1/2+it)/sn
)
·
[
Ξ (0)

∞∏
n=1

(
1− it

sn− 1
2

)]
= Ξ (0) e(1/2+it)µ

∞∏
n=1

(
1− it

sn− 1
2

)
e(1/2+it)/sn .

Thus, we finish the proof. �
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Theorem 10. Let t ∈ R and n ∈ N. Then

(103) Ξ (t) = Ξ (0)
∞∏
n=1

[
1 +

t2(
ŝn − 1

2

)2
]
,

where the product runs over ŝn, which are defined in (20).

Proof. Taking s = 1/2 + it into (49), we arrive at

(104) Ξ (t) = ξ (1/2 + it) =
1

2

∞∏
n=1

(
1−

1
2
+ it

ŝn

) ∞∏
n=1

(
1−

1
2
+ it

1− ŝn

)
.

Therefore,

(105)

ξ (s)

= 1
2

∞∏
n=1

(
1−

1
2
+it

ŝn

) ∞∏
n=1

(
1−

1
2
+it

1−ŝn

)
= 1

2

[
∞∏
n=1

(
1− 1

2ŝn

)
·

∞∏
n=1

(
1− it

ŝn− 1
2

)]
·
[

∞∏
n=1

(
1−

1
2

1−ŝn

)
·

∞∏
n=1

(
1 + it

ŝn− 1
2

)]
= 1

2

[
∞∏
n=1

(
1− 1

2ŝn

)
·

∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

(
1− it

ŝn− 1
2

)
·

∞∏
n=1

(
1 + it

ŝn− 1
2

)]
= 1

2

[
∞∏
n=1

(
1− 1

2ŝn

)
·

∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

(
1− it

ŝn− 1
2

)(
1 + it

ŝn− 1
2

)]
= 1

2

[
∞∏
n=1

(
1− 1

2ŝn

)
·

∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

(
1 + t2

(ŝn− 1
2)

2

)]
= ξ

(
1
2

) ∞∏
n=1

(
1 + t2

(ŝn− 1
2)

2

)
= Ξ (0)

∞∏
n=1

[
1 + t2

(ŝn− 1
2)

2

]
,

where

(106)

∞∏
n=1

(
1−

1
2
+it

ŝn

)
=

∞∏
n=1

(
ŝn− 1

2
−it

ŝn

)
=

∞∏
n=1

(
ŝn− 1

2

ŝn− 1
2

· ŝn−
1
2
−it

ŝn

)
=

(
∞∏
n=1

ŝn− 1
2

ŝn

)
·
(

∞∏
n=1

ŝn− 1
2
−it

ŝn− 1
2

)
=

[
∞∏
n=1

(
1− 1

2ŝn

)]
·
(

∞∏
n=1

ŝn− 1
2
−it

ŝn− 1
2

)
=

[
∞∏
n=1

(
1− 1

2ŝn

)]
·
[

∞∏
n=1

(
1− it

ŝn− 1
2

)]
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and

(107)

∞∏
n=1

(
1−

1
2
+it

1−ŝn

)
=

∞∏
n=1

(
1−ŝn− 1

2
−it

1−ŝn

)
=

∞∏
n=1

(
1−ŝn− 1

2

1−ŝn− 1
2

· 1−ŝn− 1
2
−it

1−ŝn

)
=

(
∞∏
n=1

1−ŝn− 1
2

1−ŝn

)
·
(

∞∏
n=1

1−ŝn− 1
2
−it

1−ŝn− 1
2

)
=

[
∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

1−ŝn− 1
2
−it

1−ŝn− 1
2

]
=

[
∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

(
1− it

1−ŝn− 1
2

)]
=

[
∞∏
n=1

(
1−

1
2

1−ŝn

)]
·
[

∞∏
n=1

(
1 + it

ŝn− 1
2

)]
.

Thus, the proof is completed. �

3.5. Well-known results. By Theorem 6, it is seen that Ξ (t) has infinity many
zeros. We need to know Ξ (t) has an infinity of real zeros. We now investigate the
Riemann-von Mangoldt formula and Riemann-Siegel formula and theorems of Hardy
and Ingham.

Lemma 14. (Theorem of Hardy)
There are infinitely many zeros of ζ (s) on the critical line Re (s) = 1/2.

Proof. See [9] and ([49], p.254-282). �

Lemma 15. (Theorem of Ingham)
There are infinitely many zeros of ξ (s) on the critical line Re (s) = 1/2.

Proof. See the proof ([47], p.48). �

Lemma 16. (Riemann-von Mangoldt formula)
Let

(108) N0 (T ) = # {s = 1/2 + it : 0 ≤ t ≤ T, ξ (s) = 0} .

Then,

(109) N0 (T )=
T

2π
log

T

2πe
+O (log T ) .

Proof. See the work of von Mangoldt [26]. �
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Lemma 17. (Riemann-Siegel formula)
Let

(110) eiA(t)ζ

(
1

2
+ it

)
= 2

g(t)∑
j=1

1√
j
cos (A (t)− t log j) + S (t) ,

where t > 0,

(111) g (t) =

[√
t

2π

]
,

(112) A (t) = − t

2
log π + arg Γ

(
1

4
+
it

2

)
and

(113) S (t) = O
(
1/

4
√
t
)
.

Then, the Riemann-Siegel zeros τn for n ∈ N are determined by (85).

Proof. See the work of Siegel [27]. �

3.6. All zeros are real. Lemmas 12 and 13 showed Ξ (t) has an infinity of real
zeros, which was not proved by Riemann [2], Cahen [15], and Titchmarsh [16]. This
problem was reported by Titchmarsh ([48], p.44; [49], p.255). Theorem 6 gives us to
show that Ξ (t) has an infinity of zeros. The theorems of Hardy and Ingham imply
that infinitely many zeros lie on the critical line Re (s) = 1/2 but do not confirm all
zeros lie on the critical line Re (s) = 1/2. Riemann and Siegel [27] discovered the
Riemann-Siegel zeros tn. Riemann and von Mangoldt [26] presented that the number
of the zeros of Ξ (t). The Jensen polynomials for the Riemann zeta–function have
real zeros [45] but the case of all zeros of Ξ (t) has not been known. However, this
statement of the conjecture of Jensen [7, 35, 45], that all the zeros of Ξ (t) are real,
remains unproved to this day. Now, our aim is to prove it.

Theorem 11. (Conjecture of Jensen)
Let t ∈ R. Then, all zeros of Ξ (t) are real.

Proof. Now, by Theorem 8, we structure

(114) Ξ (t) = Ξ (0)
∞∏
n=1

(
1− it

sn − 1
2

)
where t ∈ R and n ∈ N.
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To prove it, our aim is to consider two hypothesises are that all zeros are complex
number ŝn − 1

2
= σn + ign for σn ∈ R\ {0} and gn ∈ R\ {0}, and that ŝn − 1

2
= fn

for fn ∈ R\ {0}. If they are false, all zeros of Ξ (t) are real.
Now, we begin with the followings:
Case I. We consider the hypothesis that Ξ (t) has the complex zeros, given by

(115) ŝn −
1

2
= σn + ign,

where σn ∈ R\ {0} and gn ∈ R\ {0}.
Putting (115) into (114), we get

(116) Ξ (t) = Ξ (0)
∞∏
n=1

(
1− it

σn + ign

)
.

Substituting t = (s− 1/2) /i into (116), we have
(117)

ξ (s) = Ξ ((s− 1/2) /i) = Ξ (0)
∞∏
n=1

(
1− s− 1/2

σn + ign

)
= ξ

(
1

2

) ∞∏
n=1

(
1− s− 1/2

σn + ign

)
.

Since sn = Re (sn) + itn with ξ (sn) = 0, where Re (sn) ∈ R\ {0} and tn ∈ R\ {0},
(117) can be rewritten as

(118) ξ

(
1

2

) ∞∏
n=1

(
1− sn − 1/2

σn + ign

)
= 0,

which leads to

(119) σn + ign − (sn − 1/2) = 0.

For σn ∈ R\ {0} and gn ∈ R\ {0} we get

(120) sn = Re (sn) + itn = σn + 1/2 + ign.

By σn ∈ R\ {0} and (120), we show that the critical line is Re (sn) = σn+1/2, which
is in contradiction with the fact that the theorems of Hardy and Ingham imply that
infinitely many zeros lie on the critical line Re (s) = 1/2.

Case II. Now, we give the hypothesis that Ξ (t) has the zeros

(121) ŝn −
1

2
= fn,

where fn ∈ R\ {0}.
In a similar way, substituting (121) into (114), we suggest that

(122) Ξ (t) = Ξ (0)
∞∏
n=1

(
1− it

fn

)
.
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Combining t = (s− 1/2) /i and (122), we arrive at
(123)

ξ (s) = Ξ ((s− 1/2) /i) = Ξ (0)
∞∏
n=1

(
1− s− 1/2

fn

)
= ξ

(
1

2

) ∞∏
n=1

(
1− s− 1/2

fn

)
.

Let sn = Re (sn) + itn with Re (sn) ∈ R\ {0} and tn ∈ R\ {0} such that ξ (sn) = 0.
From (123) we have

(124) ξ

(
1

2

) ∞∏
n=1

(
1− sn − 1/2

fn

)
= 0,

which yields that

(125) fn − (sn − 1/2) = 0.

Since fn ∈ R\ {0}, by (125), we show

(126) sn = fn + 1/2 ∈ R,

which is in contradiction with the fact sn = Re (sn) + itn with Re (sn) ∈ R\ {0} and
tn ∈ R\ {0}.

Because two cases are false, all zeros of Ξ (t) are real.
Thus, the result follows. �

3.7. A detailed proof of Conjecture 1. Here, our target is to prove thatRe (ŝn) =
1/2 and Re (sn) = 1/2 since all zeros of Ξ (t) are real.

By Theorem 9, we structure for t ∈ R and n ∈ N,

(127) Ξ (t) = Ξ (0) e(1/2+it)µ
∞∏
n=1

(
1− it

sn − 1
2

)
e(1/2+it)/sn ,

where µ is defined in (46) and the product runs over zeroes sn of (4).
Combining (127) and Theorem 11, we find that there exist real zeros τ̃n ∈ R of

Ξ (t) such that

(128) Ξ (τ̃n) = Ξ (0) e(1/2+iτ̃n)µ
∞∏
n=1

(
1− iτ̃n

sn − 1
2

)
e(1/2+iτ̃n)/sn = 0,

where µ is defined in (46) and the product runs over zeroes sn of (4).
Now, by (128),

(129) 1− iτ̃n
sn − 1

2

= 0,

which implies that

(130) sn =
1

2
+ iτ̃n.
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With (130), we have

(131) Re (sn) =
1

2
,

and

(132) Im (sn) = tn = τ̃n.

Thus,

(133) τn =| tn |=| τ̃n |

and

(134) sn =
1

2
+ itn =

1

2
+ iτ̃n =

1

2
± τn.

By Lemma 17, the Riemann-Siegel formula gives all values of (132) and the number
of all real zeros is confirmed by the Riemann-von Mangoldt formula.

Thus, we finish the proof of Conjecture 1.

Remark. By Theorem 8, we also obtain the same result.

3.8. Turán inequalities. The Turán inequalities was proved by many researcher-
s [11, 12, 13]. Here, we give a new proof of the Turán inequalities from the point of
view of theory of the entire functions.

Theorem 12. (Turán inequalities)
Let k ∈ N ∪ {0}. Then,

(135) φ2
k −

(
2k − 1

2k + 1

)
φk−1φk+1 > 0.

Proof. By Theorem 6, Ξ (t) is an even integral function of order ϑ = 1 and real for
real t. With Theorem 11, Ξ (t) has only real zeros. From Lemma 10, Theorem 7 and
Lemma 11, we show

(136) Ξ (t) =
∞∑
k=0

(−1)k φkt
2k.

By theory of the entire functions ([51], Theorem 2.8.2., p.24), we arrive at

φ2
k −

(
2k − 1

2k + 1

)
φk−1φk+1 > 0.

Thus, the proof is completed. �
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3.9. Proofs of Lemmas 12 and 13. There is the exact significance of this remark,
reported by Titchmarsh ([48], p.44; [49], p.255), that Riemann [2] considered that
τn are real. Riemann [2] and Cahen [15] did not prove it. Hadamard [8] and Landau
([6], p.199) did not report the proof of it. Here, we give their proofs.

At first, we prove Lemma 12.
Putting (133) into Theorem 10, we show

Ξ (t) = Ξ (0)
∞∏
n=1

[
1 + t2

(ŝn− 1
2)

2

]
= Ξ (0)

∞∏
n=1

{
1 + t2

[( 1
2
+iτn)− 1

2 ]
2

}
= Ξ (0)

∞∏
n=1

(
1− t2

τ2n

)
and

log Ξ (t) = log Ξ (0) + log
∞∑
n=1

[
1 + t2

(ŝn− 1
2)

2

]
= log Ξ (0) + log

∞∑
n=1

{
1 + t2

[( 1
2
+iτn)− 1

2 ]
2

}
= log Ξ (0) + log

∞∑
n=1

(
1− t2

τ2n

)
,

which are the required result.
Now, we give the proof of Lemma 13.
Combining (134) and Theorem 8, we give

Ξ (t)

= Ξ (0)
∞∏
n=1

(
1− it

sn− 1
2

)
= Ξ (0)

∞∏
n=1

[
1− it

( 1
2
+itn)− 1

2

]
= Ξ (0)

∞∏
n=1

(
1− it

itn

)
= Ξ (0)

∞∏
n=1

(
1− t

tn

)
,

and the required result follows.

3.10. A equivalent class. We now discuss a equivalent class, which is connected
with the series and product representations.

By Lemmas 10 and 13, there exist
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∞∑
k=0

(−1)k φkt
2k = Ξ (0)

∞∏
n=1

(
1− t

tn

)
,

or, alternatively, by Lemmas 10 and 12,
∞∑
k=0

(−1)k φkt
2k = Ξ (0)

∞∏
n=1

(
1− t2

τ 2n

)
,

where Ξ (0) ̸= 0, s ∈ C , k ∈ N ∪ {0}, n ∈ N, φk is defined in (93), tn run the roots
of Ξ (t) = 0 and τn run the positive roots of Ξ (t) = 0.

4. Comments

4.1. Nontrivial zeros. By applying Lemma 12 and Theorem 10, we also obtain

(137) Ξ (t) = Ξ (0)
∞∏
n=1

[
1 +

t2(
ŝn − 1

2

)2
]
= Ξ (0)

∞∏
n=1

(
1− t2

τ 2n

)
,

which yields that

(138) ŝn =
1

2
± τn.

It is observed that sn = 1/2 + itn, 1 − sn = 1/2 − itn, sn = 1/2 − itn and 1 − sn =
1/2+ itn are the zeros (nontrivial zeros) for the entire Riemann zeta–function, where
tn = ±τn since all zeros are nontrivial zeros.

4.2. Some equivalence theorems. We now present some equivalence theorems
associated with the Riemann zeta–function.

Theorem 13. (Equivalence theorem I)
Let s ∈ C and n ∈ N. Then the following representations are equivalent:

A1:

(139) ξ (s) = ξ (0)
∞∏
n=1

(
1− s

sn

)
,

where the product runs over zeroes sn of (4);
A2:

(140) ξ (s) = ξ (1/2)
∞∏
n=1

(
1 +

i (s− 1/2)

tn

)
,

where tn run the roots of Ξ (t) = 0;
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A3:

(141) ξ (s) = ξ (0) esµ
∞∏
n=1

(
1− s

sn

)
es/sn ,

where µ is defined in (46) and the product runs over zeroes sn of (4);
A4:

(142) ξ (s) = ξ

(
1

2

)
esµ

∞∏
n=1

(
1−

s− 1
2

itn

)
es/sn ,

where µ is defined in (46), tn run the roots of Ξ (t) = 0, and the product runs
over zeroes sn of (4);

A5:

(143) ξ (s) = ξ (0)
∞∏
n=1

(
1− s

ŝn

)(
1− s

1− ŝn

)
,

where the product runs over zeroes sn of (4);
A6:

(144) ξ (s) = ξ (1/2)
∞∏
n=1

(
1 +

(s− 1/2)2

τ 2n

)
,

where τn run the positive roots of Ξ (t) = 0;
A7:

(145) ξ (s) = 4

∞∫
1

d
(
x

3
2ψ(1) (x)

)
dx

x−
1
4 cosh

(
(s− 1) log x

2

)
dx.

whereψ (x) is defined in (8);
A8:

(146) ξ (s) =
∞∑
k=0

φk

(
s− 1

2

)2k

,

where φk are expressed in (93).

Proof. A1 is the product of Hadamard [8]. A2 is the consequence of Theorem 1 and
Conjecture 1. A3 is the product of Hadamard, which was proved in [8] and ([47],
p.57-58). A4 is derived from Theorem 2 and Conjecture 1. A5 is the product of
Patterson ([17], p.34). A6 is deduced from Theorem 3 and Conjecture 1. A7 is
the Riemann integral representation theorem [2]. A8 is the Edwards series theorem,
where φk are expressed in (93). �
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Theorem 14. Let

(147) N (T ) = # {s = σ + it : 0 ≤ t ≤ T, 0 < σ < 1, ξ (s) = 0}

and

(148) N0 (T ) = # {s = 1/2 + it : 0 ≤ t ≤ T, ξ (s) = 0} .

Then

(149) N (T ) = N0 (T ) .

Proof. With Theorem 13, we give

(150) ξ (sn) = ξ (1/2)
∞∏
n=1

(
1 +

(sn − 1/2)2

τ 2n

)
= 0,

and we show

(151) sn = 1/2± iτn,

where n ∈ N and τn run the positive roots of Ξ (t) = 0.
Thus, the required result follows. �

The zeros (nontrivial zeros) for the entire Riemann zeta–function ξ (s) are showed
in Fig. 1.

Theorem 15. (Equivalence theorem II)
Let s ∈ C\ {0, 1} and n ∈ N. Then the following representations are equivalent:

B1:

(152) ς (s) =
1

s (s− 1)

∞∏
n=1

(
1− s

sn

)
,

where the product runs over zeroes sn of (4);
B2:

(153) ς (s) =
2ξ (1/2)

s (s− 1)

∞∏
n=1

(
1 +

i (s− 1/2)

tn

)
,

where tn run the roots of Ξ (t) = 0;
B3:

(154) ς (s) =
1

s (s− 1)
esµ

∞∏
n=1

(
1− s

sn

)
es/sn ,

whereµ is defined in (46) and the product runs over zeroes sn of (4);
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Figure 1. The distribution of the zeros (nontrivial zeros) for the
entire Riemann zeta–function ξ (s). The red points are represented as
the nontrivial zeros for ξ (s). All nontrivial zeros for ξ (s) lie on the
critical line Re (s) = 1/2 and in the critical strip 0 < Re (s) < 1.

B4:

(155) ς (s) =
2ξ (1/2)

s (s− 1)
esµ

∞∏
n=1

(
1−

s− 1
2

itn

)
es/sn ,

whereµ is defined in (46), tn run the roots of Ξ (t) = 0, and the product runs
over zeroes sn of (4);

B5:

(156) ς (s) =
1

s (s− 1)

∞∏
n=1

(
1− s

ŝn

)(
1− s

1− ŝn

)
,

where the product runs over zeroes sn of (4);
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B6:

(157) ς (s) =
2ξ (1/2)

s (s− 1)

∞∏
n=1

(
1 +

(s− 1/2)2

τ 2n

)
,

where τn run the positive roots of Ξ (t) = 0;
B7:

(158) ς (s) =
8

s (s− 1)

∞∫
1

d
(
x

3
2ψ(1) (x)

)
dx

x−
1
4 cosh

(
(s− 1) log x

2

)
dx,

whereψ (x) is defined in (8);
B8:

(159) ς (s) =
1

s (s− 1)

∞∑
k=0

φk

(
s− 1

2

)2k

,

where φk are expressed in (93).

Proof. By (3) and (4), we arrive at

(160) ξ (s) =
1

2
s (s− 1) ς (s) ,

which implies that

(161) ς (s) =
2ξ (s)

s (s− 1)
.

Thus, combining (161) and Theorem 13, we obtain the required results since ξ (0) =
1/2 ([46], p.49). �

Theorem 16. Let

(162) N̂ (T ) = # {s = σ + it : 0 ≤ t ≤ T, 0 < σ < 1, ς (s) = 0}

and

(163) N̂0 (T ) = # {s = 1/2 + it : 0 ≤ t ≤ T, ς (s) = 0} .

Then

(164) Ñ (T ) = Ñ0 (T ) .

Proof. By Theorem 15, we show

(165) ς (sn) =
2ξ (1/2)

sn (sn − 1)

∞∏
n=1

(
1 +

i (sn − 1/2)

tn

)
= 0,
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Figure 2. The distribution of the nontrivial zeros and poles for the
completed Riemann zeta–function ς (s). The red points are represented
as the nontrivial zeros for ς (s). The yellow points are represented as
simple poles for ς (s). All nontrivial zeros for ς (s) lie on the critical
line Re (s) = 1/2 and in the critical strip 0 < Re (s) < 1.

since sn (sn − 1) ̸= 0, and we obtain

(166) sn = 1/2 + itn,

where n ∈ N and tn run the roots of Ξ (t) = 0.
Thus, we finish the proof. �
The nontrivial zeros for the completed Riemann zeta–function ς (s) and its poles

are showed in Fig. 2.

Theorem 17. (Equivalence theorem III)
Let s ∈ C\ {1} and n ∈ N. If Λ (s) = 2πs/2/ (s− 1) Γ (s/2 + 1), then the following

representations are equivalent:
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C1:

(167) ζ (s) = ξ (0) Λ (s)
∞∏
n=1

(
1− s

sn

)
,

where the product runs over zeroes sn of (4);
C2:

(168) ζ (s) = ξ (1/2)Λ (s)
∞∏
n=1

(
1 +

i (s− 1/2)

tn

)
,

where tn run the roots of Ξ (t) = 0;
C3:

(169) ζ (s) = ξ (0) Λ (s) esµ
∞∏
n=1

(
1− s

sn

)
es/sn ,

where µ is defined in (46) and the product runs over zeroes sn of (4);
C4:

(170) ζ (s) = ξ

(
1

2

)
Λ (s) esµ

∞∏
n=1

(
1−

s− 1
2

itn

)
es/sn ,

where µ is defined in (46), tn run the roots of Ξ (t) = 0, and the product runs
over zeroes sn of (4);

C5:

(171) ζ (s) = ξ (0) Λ (s)
∞∏
n=1

(
1− s

ŝn

)(
1− s

1− ŝn

)
,

where the product runs over zeroes sn of (4);
C6:

(172) ζ (s) = ξ (1/2)Λ (s)
∞∏
n=1

(
1 +

(s− 1/2)2

τ 2n

)
,

where τn run the positive roots of Ξ (t) = 0;
C7:

(173) ζ (s) = 4Λ (s)

∞∫
1

d
(
x

3
2ψ(1) (x)

)
dx

x−
1
4 cosh

(
(s− 1) log x

2

)
dx.

where ψ (x) is defined in (8);
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C8:

(174) ζ (s) = Λ (s)
∞∑
k=0

φk

(
s− 1

2

)2k

,

where φk are expressed in (93).

Proof. With (4) we present

(175) ξ (s) =
1

2
s (s− 1) π−s/2Γ (s/2) ζ (s) ,

which leads to

(176) ζ (s) = Λ (s) ξ (s) ,

where

(177) Λ (s) = 2πs/2/ (s− 1) Γ (s/2 + 1) .

Thus, by (176) and Theorem 13, we get the desired results. �

Remark. In Landau’s book ([6], p.313), he suggested that

(178) ζ (s) =
esℓ

2 (s− 1) Γ (s/2 + 1)

∞∏
n=1

(
1− s

sn

)
es/sn ,

where sn run the nontrivial zeros of ζ (s) = 0 and ℓ is a constant.
In his paper ([6], p.199), Landau proved that

(179) ζ (s) =
πs/2Ξ (0)

(s− 1) Γ (1 + s/2)

∞∏
n=1

(
1 +

(
s− 1

2

)2
τ 2n

)
,

where τn run the positive roots of Ξ (t) = 0.
Here, we have to point out that C3 and C6 are equivalent to (178) and (179),

respectively.

Theorem 18. Let

(180) Ñ (T ) = # {s = σ + it : 0 ≤ t ≤ T, 0 < σ < 1, ζ (s) = 0}

and

(181) Ñ0 (T ) = # {s = 1/2 + it : 0 ≤ t ≤ T, ζ (s) = 0} .

Then

(182) Ñ (T ) = Ñ0 (T ) .
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Figure 3. The distribution of the trivial, pole, and nontrivial zeros
for the Riemann zeta–function ζ (s). The red points are represented
as the nontrivial zeros for ζ (s). The blue points are represented as
the trivial zeros for ζ (s). The yellow point is represented as a simple
pole for ζ (s). All nontrivial zeros for ζ (s) lie on the critical line
Re (s) = 1/2 and in the critical strip 0 < Re (s) < 1.

Proof. Making use of Theorem 17, we give

(183)

ζ (sn)

= ξ (1/2)Λ (sn) e
µsn

∞∏
n=1

(
1− sn− 1

2

itn

)
esn/sn

= ξ (1/2)Λ (sn) e
µsn

∞∏
n=1

(
1− sn− 1

2

itn

)
= 0

since

Λ (sn) = 2πsn/2/ (sn − 1) Γ (sn/2 + 1) ̸= 0,

and we have

(184) sn = 1/2 + itn,

where n ∈ N and tn run the roots of Ξ (t) = 0.
Thus, the proof is completed. �

The trivial, pole, and nontrivial zeros for the Riemann zeta–function ζ (s) are
showed in Fig. 3.
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Remark. For the history of Theorems 14, 16 and 18, see [22, 23].
By applying the theory of the entire function ([51], p.29), we show that the canon-

ical product

(185)
∞∏
n=1

E (t/tn, 0) = Ξ (0)
∞∏
n=1

(
1− t2

τ 2n

)
=

∞∏
n=1

(
1− t

tn

)
=

Ξ (t)

Ξ (0)
,

is of growth (1, 0) since
∞∑
n=1

t−2
n converges.

In a similar manner, by theory of the entire function ([51], p.29), the canonical
product

(186)
∞∏
n=1

E (s/sn, 0) =
∞∏
n=1

(
1− s

sn

)
=
ξ (s)

ξ (0)
,

is also of growth (1, 0) since
∞∑
n=1

s−2
n converges.

Heath–Brown in 2005 [36] pointed out that all zeros for ξ (s) are simple. We now
deduce it is true since by (140), we find that all zeros for ξ (s) are different and that
ξ (s) is an integral function of order ϑ = 1.

References

[1] Euler, L. (1744). Variae observationes circa series infinitas. Commentarii academiae scientiarum
Petropolitanae, 9, 160–188.
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[18] Landau, E. (1908). Beiträge zur analytischen zahlentheorie. Rendiconti Del Circolo Matematico

Di Palermo, 26(1), 169–302.
[19] Euler, L. (1768). Remarques sur un beau rapport entre les series des puissances tant directes

que reciproques. Memoires de l’academie des sciences de Berlin, 17, 83–106.
[20] Hadamard, J. (1896). Sur la distribution des zéros de la fonction ζ(s) et ses conséquences
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195.
[53] Lagarias, J. C., Montague, D. (2011). The integral of the Riemann xi-function. Commentarii

mathematici Universitatis Sancti Pauli, 60(1-2), 143–169.
[54] Wintner, A. (1935). A note on the Riemann ξ-function. Journal of the London Mathematical

Society, 1(2), 82–83.
[55] Dixit, A., Robles, N., Roy, A., Zaharescu, A. (2015). Zeros of combinations of the Riemann

ξ-function on bounded vertical shifts. Journal of Number Theory, 149, 404–434.

E-mail address: dyangxiaojun@163.com; xjyang@cumt.edu.cn

School of Mathematics, China University of Mining and Technology, Xuzhou
221116, China


